Skip to content
2000
image of Doxorubicin-Induced Cardiotoxicity: Exploration of Molecular Pathogenesis and Phytocompound-Based Therapeutic Strategies

Abstract

Introduction

Doxorubicin (DOX), a widely used chemotherapeutic agent, is effective against various malignancies, but its clinical application is limited by cumulative dose-dependent cardiotoxicity. The objective of this review is to systematically explore the molecular mechanisms involved in DOX-induced cardiotoxicity (DIC) and evaluate the cardioprotective potential of plant-derived bioactive compounds.

Methods

A comprehensive literature search was conducted using databases, such as PubMed, Scopus, and Web of Science, focusing on studies published in the last two decades. Emphasis was placed on experimental and preclinical models that investigated molecular pathways of DIC and the therapeutic role of phytochemicals.

Results

DOX-induced cardiotoxicity is mediated through a cascade of molecular events, including excessive oxidative and nitrosative stress, mitochondrial damage, apoptosis, impaired autophagy, and altered activity of signaling pathways, such as AMPK, Nrf2, TGF-β1/Smad2, and HIF-1α. Epigenetic dysregulation also contributes to myocardial injury. Phytochemicals, such as flavonoids, polyphenols, and alkaloids, have shown significant cardioprotective effects. These compounds exert their actions by modulating redox homeostasis, preserving mitochondrial function, regulating apoptotic markers, and restoring signaling imbalances.

Discussion

The pleiotropic nature of phytocompounds enables them to target multiple pathological mechanisms associated with DIC. Despite promising and evidence, limitations, such as poor bioavailability, lack of standardized dosing, and inadequate clinical data, hinder their translational potential. Novel delivery systems and well-controlled clinical trials are necessary to overcome these challenges.

Conclusion

Plant-derived bioactive compounds show potential in mitigating doxorubicin-induced cardiotoxicity, as supported by preclinical evidence. However, further translational studies are warranted to validate these findings, optimize pharmacokinetics, and evaluate their feasibility in clinical oncology settings.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128410093251006160508
2025-11-03
2026-01-27
Loading full text...

Full text loading...

References

  1. Chu X. Tian W. Ning J. Cancer Stem Cells: Advances in Knowledge and Implications for Cancer Therapy. Signal Transduct. Target. Ther. 2024 9 1 170 10.1038/s41392‑024‑01851‑y
    [Google Scholar]
  2. Anand U. Dey A. Chandel A.K.S. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  3. Sung H. Ferlay J. Siegel R.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  4. Curry H.L. Parkes S.E. Powell J.E. Mann J.R. Caring for survivors of childhood cancers: The size of the problem. Eur. J. Cancer 2006 42 4 501 508 10.1016/j.ejca.2005.11.003 16406574
    [Google Scholar]
  5. Weiss R.B. The anthracyclines: Will we ever find a better doxorubicin? Semin. Oncol. 1992 19 6 670 686 1462166
    [Google Scholar]
  6. Aries A. Paradis P. Lefebvre C. Schwartz R.J. Nemer M. Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proc. Natl. Acad. Sci. USA 2004 101 18 6975 6980 10.1073/pnas.0401833101 15100413
    [Google Scholar]
  7. Sritharan S. Sivalingam N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci. 2021 278 119527 10.1016/j.lfs.2021.119527 33887349
    [Google Scholar]
  8. Takemura G. Fujiwara H. Doxorubicin-Induced Cardiomyopathy. Prog. Cardiovasc. Dis. 2007 49 5 330 352 10.1016/j.pcad.2006.10.002 17329180
    [Google Scholar]
  9. Ahmad N. Ullah A. Chu P. Tian W. Tang Z. Sun Z. Doxorubicin induced cardio toxicity through sirtuins mediated mitochondrial disruption. Chem. Biol. Interact. 2022 365 110028 10.1016/j.cbi.2022.110028 35921947
    [Google Scholar]
  10. O’Brien M.E.R. Wigler N. Inbar M. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Ann. Oncol. 2004 15 3 440 449 10.1093/annonc/mdh097 14998846
    [Google Scholar]
  11. Volkova M. Palmeri M. Russell K.S. Russell R.R. Activation of the aryl hydrocarbon receptor by doxorubicin mediates cytoprotective effects in the heart. Cardiovasc. Res. 2011 90 2 305 314 10.1093/cvr/cvr007 21233252
    [Google Scholar]
  12. Licata S. Saponiero A. Mordente A. Minotti G. Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem. Res. Toxicol. 2000 13 5 414 420 10.1021/tx000013q 10813659
    [Google Scholar]
  13. Beigi F. Jouneghani A.S. Heidari-Soureshjani S. Sherwin C.M.T. Mohajeri S. The Biological Effects of Nano-Curcumins against Drugs and Chemicals-Induced Nephrotoxicity: A Systematic Review. Curr. Pharm. Biotechnol. 2025 26 10.2174/0113892010360420250409111751 40325524
    [Google Scholar]
  14. Masoumi S. Moetazedian M. Jafari S. Heidari-Soureshjani S. Sherwin C.M.T. Mechanistic effects and complications of berberine on cardiac arrhythmias: A systematic review. Curr. Rev. Clin. Exp. Pharmacol. 2025 20 10.2174/0127724328346501250404175826 40248925
    [Google Scholar]
  15. Mardani-Nafchi H. Rahimian G. Amini A. Baratpour I. A systematic review of polyphenols therapeutic and preventive role in cholelithiasis. J HerbMed Pharmacol 2025 14 120 132 10.34172/jhp.2025.53011
    [Google Scholar]
  16. Pizzino G. Irrera N. Cucinotta M. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 10.1155/2017/8416763 28819546
    [Google Scholar]
  17. Aranda-Rivera A.K. Cruz-Gregorio A. Arancibia-Hernández Y.L. Hernández-Cruz E.Y. Pedraza-Chaverri J. RONS and oxidative Stress: An overview of basic concepts. Oxygen (Basel) 2022 2 4 437 478 10.3390/oxygen2040030
    [Google Scholar]
  18. Angsutararux P. Luanpitpong S. Issaragrisil S. Chemotherapy-induced cardiotoxicity: Overview of the roles of oxidative stress. Oxid. Med. Cell. Longev. 2015 2015 1 13 10.1155/2015/795602 26491536
    [Google Scholar]
  19. Vitale R. Marzocco S. Popolo A. Role of oxidative stress and inflammation in doxorubicin-induced cardiotoxicity: A brief account. Int. J. Mol. Sci. 2024 25 13 7477 10.3390/ijms25137477 39000584
    [Google Scholar]
  20. Zahra K.F. Lefter R. Ali A. The involvement of the oxidative stress status in cancer pathology: A double view on the role of the antioxidants. Oxid. Med. Cell. Longev. 2021 2021 1 9965916 10.1155/2021/9965916 34394838
    [Google Scholar]
  21. Shi S. Chen Y. Luo Z. Nie G. Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun. Signal. 2023 21 1 61 10.1186/s12964‑023‑01077‑5 36918950
    [Google Scholar]
  22. Li Y. Yan J. Yang P. The mechanism and therapeutic strategies in doxorubicin-induced cardiotoxicity: Role of programmed cell death. Cell Stress Chaperones 2024 29 5 666 680 10.1016/j.cstres.2024.09.001 39343295
    [Google Scholar]
  23. Tanwar S.S. Dwivedi S. Khan S. Sharma S. Cardiomyopathies and a brief insight into DOX-induced cardiomyopathy. Egypt. Heart J. 2025 77 1 29 10.1186/s43044‑025‑00628‑0 40064787
    [Google Scholar]
  24. Sangweni N.F. Gabuza K. Huisamen B. Mabasa L. van Vuuren D. Johnson R. Molecular insights into the pathophysiology of doxorubicin-induced cardiotoxicity: A graphical representation. Arch. Toxicol. 2022 96 6 1541 1550 10.1007/s00204‑022‑03262‑w 35333943
    [Google Scholar]
  25. Aryal B. Rao V.A. Deficiency in cardiolipin reduces doxorubicin-induced oxidative stress and mitochondrial damage in human B-lymphocytes. PLoS One 2016 11 7 e0158376 10.1371/journal.pone.0158376 27434059
    [Google Scholar]
  26. Gorini S. De Angelis A. Berrino L. Malara N. Rosano G. Ferraro E. Chemotherapeutic drugs and mitochondrial dysfunction: Focus on doxorubicin, trastuzumab, and sunitinib. Oxid. Med. Cell. Longev. 2018 2018 1 7582730 10.1155/2018/7582730 29743983
    [Google Scholar]
  27. Cappetta D. De Angelis A. Sapio L. Oxidative stress and cellular response to doxorubicin: A common factor in the complex milieu of anthracycline cardiotoxicity. Oxid. Med. Cell. Longev. 2017 2017 1 1521020 10.1155/2017/1521020 29181122
    [Google Scholar]
  28. Priya L.B. Baskaran R. Huang C.Y. Padma V.V. Neferine ameliorates cardiomyoblast apoptosis induced by doxorubicin: Possible role in modulating NADPH oxidase/ROS-mediated NFκB redox signaling cascade. Sci. Rep. 2017 7 1 12283 10.1038/s41598‑017‑12060‑9 28947826
    [Google Scholar]
  29. Antonucci S. Di Sante M. Tonolo F. The determining role of mitochondrial reactive oxygen species generation and monoamine oxidase activity in doxorubicin-induced cardiotoxicity. Antioxid. Redox Signal. 2021 34 7 531 550 10.1089/ars.2019.7929 32524823
    [Google Scholar]
  30. de Oliveira B.L. Niederer S. A Biophysical systems approach to identifying the pathways of acute and chronic doxorubicin mitochondrial cardiotoxicity. PLOS Comput. Biol. 2016 12 11 e1005214 10.1371/journal.pcbi.1005214 27870850
    [Google Scholar]
  31. Schirone L. D’Ambrosio L. Forte M. Mitochondria and doxorubicin-induced cardiomyopathy: A complex interplay. Cells 2022 11 13 2000 10.3390/cells11132000 35805084
    [Google Scholar]
  32. Yan F. Li K. Xing W. Dong M. Yi M. Zhang H. Role of iron‐related oxidative stress and mitochondrial dysfunction in cardiovascular diseases. Oxid. Med. Cell. Longev. 2022 2022 1 5124553 10.1155/2022/5124553 36120592
    [Google Scholar]
  33. Li T. Wang N. Yi D. ROS-mediated ferroptosis and pyroptosis in cardiomyocytes: An update. Life Sci. 2025 370 123565 10.1016/j.lfs.2025.123565 40113077
    [Google Scholar]
  34. Qiu H. Huang S. Liu Y. Idebenone alleviates doxorubicin-induced cardiotoxicity by stabilizing FSP1 to inhibit ferroptosis. Acta Pharm. Sin. B 2024 14 6 2581 2597 10.1016/j.apsb.2024.03.015 38828159
    [Google Scholar]
  35. Perfettini J.L. Roumier T. Kroemer G. Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol. 2005 15 4 179 183 10.1016/j.tcb.2005.02.005 15817372
    [Google Scholar]
  36. Corrado M. Scorrano L. Campello S. Mitochondrial dynamics in cancer and neurodegenerative and neuroinflammatory diseases. Int. J. Cell Biol. 2012 2012 1 13 10.1155/2012/729290 22792111
    [Google Scholar]
  37. Aung L.H.H. Li R. Prabhakar B.S. Li P. Knockdown of Mtfp1 can minimize doxorubicin cardiotoxicity by inhibiting Dnm1l‐mediated mitochondrial fission. J. Cell. Mol. Med. 2017 21 12 3394 3404 10.1111/jcmm.13250 28643438
    [Google Scholar]
  38. Hu S.S.J. Mackie K. Distribution of the endocannabinoid system in the central nervous system. Handb. Exp. Pharmacol. 2015 231 59 93 10.1007/978‑3‑319‑20825‑1_3 26408158
    [Google Scholar]
  39. Xia Y. Chen Z. Chen A. LCZ696 improves cardiac function via alleviating Drp1-mediated mitochondrial dysfunction in mice with doxorubicin-induced dilated cardiomyopathy. J. Mol. Cell. Cardiol. 2017 108 138 148 10.1016/j.yjmcc.2017.06.003 28623750
    [Google Scholar]
  40. Miyoshi T. Nakamura K. Amioka N. LCZ696 ameliorates doxorubicin-induced cardiomyocyte toxicity in rats. Sci. Rep. 2022 12 1 4930 10.1038/s41598‑022‑09094‑z 35322164
    [Google Scholar]
  41. Chen R. Niu M. Hu X. He Y. Targeting mitochondrial dynamics proteins for the treatment of doxorubicin-induced cardiotoxicity. Front. Mol. Biosci. 2023 10 1241225 10.3389/fmolb.2023.1241225 37602332
    [Google Scholar]
  42. Bell E.L. Guarente L. The SirT3 divining rod points to oxidative stress. Mol. Cell 2011 42 5 561 568 10.1016/j.molcel.2011.05.008 21658599
    [Google Scholar]
  43. He L. Liu F. Li J. Mitochondrial sirtuins and doxorubicin-induced cardiotoxicity. Cardiovasc. Toxicol. 2021 21 3 179 191 10.1007/s12012‑020‑09626‑x 33438065
    [Google Scholar]
  44. Wallace R. Fractured symmetries: Information and control theory perspectives on mitochondrial dysfunction. Acta Biotheor. 2021 69 3 277 301 10.1007/s10441‑020‑09387‑8 32725452
    [Google Scholar]
  45. Wallace K.B. Sardão V.A. Oliveira P.J. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ. Res. 2020 126 7 926 941 10.1161/CIRCRESAHA.119.314681 32213135
    [Google Scholar]
  46. Marechal X. Montaigne D. Marciniak C. Doxorubicin-induced cardiac dysfunction is attenuated by ciclosporin treatment in mice through improvements in mitochondrial bioenergetics. Clin. Sci. (Lond.) 2011 121 9 405 413 10.1042/CS20110069 21605084
    [Google Scholar]
  47. Aluganti Narasimhulu C. Singla D.K. Doxorubicin-induced apoptosis enhances monocyte infiltration and adverse cardiac remodeling in diabetic animals. Can. J. Physiol. Pharmacol. 2022 100 5 441 452 10.1139/cjpp‑2021‑0596 34932406
    [Google Scholar]
  48. Kciuk M. Gielecińska A. Mujwar S. Doxorubicin—An agent with multiple mechanisms of anticancer activity. Cells 2023 12 4 659 10.3390/cells12040659 36831326
    [Google Scholar]
  49. Pérez-Torres I. Manzano-Pech L. Rubio-Ruíz M.E. Soto M.E. Guarner-Lans V. Nitrosative stress and its association with cardiometabolic disorders. Molecules 2020 25 11 2555 10.3390/molecules25112555 32486343
    [Google Scholar]
  50. Li J.M. Shah A.M. Endothelial cell superoxide generation: Regulation and relevance for cardiovascular pathophysiology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004 287 5 R1014 R1030 10.1152/ajpregu.00124.2004 15475499
    [Google Scholar]
  51. Pecoraro M. Pala B. Di Marcantonio M. Doxorubicin induced oxidative and nitrosative stress: Mitochondrial connexin 43 is at the crossroads. Int. J. Mol. Med. 2020 46 3 1197 1209 10.3892/ijmm.2020.4669 32705166
    [Google Scholar]
  52. Mukhopadhyay P. Rajesh M. Bátkai S. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am. J. Physiol. Heart Circ. Physiol. 2009 296 5 H1466 H1483 10.1152/ajpheart.00795.2008 19286953
    [Google Scholar]
  53. Ohshima H. Sawa T. Akaike T. 8-nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: Formation, occurrence, and implications in inflammation and carcinogenesis. Antioxid. Redox Signal. 2006 8 5-6 1033 1045 10.1089/ars.2006.8.1033 16771693
    [Google Scholar]
  54. Moini Jazani A. Arabzadeh A. Haghi-Aminjan H. Nasimi Doost Azgomi R. The role of ginseng derivatives against chemotherapy-induced cardiotoxicity: A systematic review of non-clinical studies. Front. Cardiovasc. Med. 2023 10 1022360 10.3389/fcvm.2023.1022360 36844721
    [Google Scholar]
  55. Neilan T.G. Blake S.L. Ichinose F. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation 2007 116 5 506 514 10.1161/CIRCULATIONAHA.106.652339 17638931
    [Google Scholar]
  56. Rawat D.K. Hecker P. Watanabe M. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function. PLoS One 2012 7 10 e45365 10.1371/journal.pone.0045365 23071515
    [Google Scholar]
  57. Vásquez-Vivar J. Martasek P. Hogg N. Masters B.S.S. Pritchard K.A. Kalyanaraman B. Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry 1997 36 38 11293 11297 10.1021/bi971475e 9333325
    [Google Scholar]
  58. Bartesaghi S. Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018 14 618 625 10.1016/j.redox.2017.09.009 29154193
    [Google Scholar]
  59. Ghigo A. Li M. Hirsch E. New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 7 1916 1925 10.1016/j.bbamcr.2016.01.021 26828775
    [Google Scholar]
  60. Liu B. Bai Q-X. Chen X-Q. Gao G-X. Gu H-T. Effect of curcumin on expression of survivin, Bcl-2 and Bax in human multiple myeloma cell line. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2007 15 4 762 766 17708799
    [Google Scholar]
  61. Matusik K. Kamińska K. Sobiborowicz-Sadowska A. Borzuta H. Buczma K. Cudnoch-Jędrzejewska A. The significance of the apelinergic system in doxorubicin-induced cardiotoxicity. Heart Fail. Rev. 2024 29 5 969 988 10.1007/s10741‑024‑10414‑w 38990214
    [Google Scholar]
  62. Franco R. Cidlowski J.A. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ. 2009 16 10 1303 1314 10.1038/cdd.2009.107 19662025
    [Google Scholar]
  63. Vedam K. Nishijima Y. Druhan L.J. Role of heat shock factor-1 activation in the doxorubicin-induced heart failure in mice. Am. J. Physiol. Heart Circ. Physiol. 2010 298 6 H1832 H1841 10.1152/ajpheart.01047.2009 20363884
    [Google Scholar]
  64. Li H. Gu H. Sun B. Protective effects of pyrrolidine dithiocarbamate on myocardium apoptosis induced by adriamycin in rats. Int. J. Cardiol. 2007 114 2 159 165 10.1016/j.ijcard.2006.01.010 16712983
    [Google Scholar]
  65. Liu P. Bao H.Y. Jin C.C. Targeting extracellular heat shock protein 70 ameliorates doxorubicin‐induced heart failure through resolution of toll‐like receptor 2-mediated myocardial inflammation. J. Am. Heart Assoc. 2019 8 20 e012338 10.1161/JAHA.119.012338 31576776
    [Google Scholar]
  66. Shan Y. Liu T-J. Su H-F. Samsamshariat A. Mestril R. Wang P.H. Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J. Mol. Cell. Cardiol. 2003 35 9 1135 1143 10.1016/S0022‑2828(03)00229‑3 12967636
    [Google Scholar]
  67. Lan Y. Wang Y. Huang K. Zeng Q. Heat shock protein 22 attenuates doxorubicin-induced cardiotoxicity via regulating inflammation and apoptosis. Front. Pharmacol. 2020 11 257 10.3389/fphar.2020.00257 32269523
    [Google Scholar]
  68. Fan G.C. Zhou X. Wang X. Heat shock protein 20 interacting with phosphorylated Akt reduces doxorubicin-triggered oxidative stress and cardiotoxicity. Circ. Res. 2008 103 11 1270 1279 10.1161/CIRCRESAHA.108.182832 18948619
    [Google Scholar]
  69. Yi X. Wang F. Feng Y. Zhu J. Wu Y. Danhong injection attenuates doxorubicin-induced cardiotoxicity in rats via suppression of apoptosis: network pharmacology analysis and experimental validation. Front. Pharmacol. 2022 13 929302 10.3389/fphar.2022.929302 36071840
    [Google Scholar]
  70. Liao W. Rao Z. Wu L. Chen Y. Li C. Cariporide attenuates doxorubicin-induced cardiotoxicity in rats by inhibiting oxidative stress, inflammation and apoptosis partly through regulation of Akt/GSK-3β and Sirt1 signaling pathway. Front. Pharmacol. 2022 13 850053 10.3389/fphar.2022.850053 35747748
    [Google Scholar]
  71. Steinberg G.R. Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat. Rev. Drug Discov. 2019 18 7 527 551 10.1038/s41573‑019‑0019‑2 30867601
    [Google Scholar]
  72. Renu K. Molecular mechanism of doxorubicin-induced cardiomy opathy - An update. Eur J Pharmacol 2018 818 241 53 10.1016/j.ejphar.2017.10.043
    [Google Scholar]
  73. Timm K.N. Tyler D.J. The role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity. Cardiovasc. Drugs Ther. 2020 34 2 255 269 10.1007/s10557‑020‑06941‑x 32034646
    [Google Scholar]
  74. Song J.H. Kim M.S. Lee S.H. Hydroethanolic extract of Cirsium setidens ameliorates doxorubicin-induced cardiotoxicity by AMPK-PGC-1α-SOD-mediated mitochondrial protection. Phytomedicine 2024 129 155633 10.1016/j.phymed.2024.155633 38640859
    [Google Scholar]
  75. Zou H. Zhang M. Yang X. Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis. J. Zhejiang Univ. Sci. B 2024 25 9 756 772 10.1631/jzus.B2300691 39308066
    [Google Scholar]
  76. Fujita K. Maeda D. Xiao Q. Srinivasula S.M. Nrf2-mediated induction of p62 controls Toll-like receptor-4–driven aggresome-like induced structure formation and autophagic degradation. Proc. Natl. Acad. Sci. USA 2011 108 4 1427 1432 10.1073/pnas.1014156108 21220332
    [Google Scholar]
  77. Li S. Wang W. Niu T. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid. Med. Cell. Longev. 2014 2014 1 15 10.1155/2014/748524 24895528
    [Google Scholar]
  78. Hu X. Li C. Wang Q. Dimethyl fumarate ameliorates doxorubicin-induced cardiotoxicity by activating the Nrf2 pathway. Front. Pharmacol. 2022 13 872057 10.3389/fphar.2022.872057 35559248
    [Google Scholar]
  79. Patricelli C. Lehmann P. Oxford J.T. Pu X. Doxorubicin-induced modulation of TGF-β signaling cascade in mouse fibroblasts: insights into cardiotoxicity mechanisms. Sci. Rep. 2023 13 1 18944 10.1038/s41598‑023‑46216‑7 37919370
    [Google Scholar]
  80. Sun Z. Schriewer J. Tang M. The TGF-β pathway mediates doxorubicin effects on cardiac endothelial cells. J. Mol. Cell. Cardiol. 2016 90 129 138 10.1016/j.yjmcc.2015.12.010 26686989
    [Google Scholar]
  81. Attia Y. Hakeem A. Samir R. Harnessing adrenergic blockade in stress-promoted TNBC in vitro and solid tumor in vivo: Disrupting HIF-1α and GSK-3β/β-catenin driven resistance to doxorubicin. Front. Pharmacol. 2024 15 1362675 10.3389/fphar.2024.1362675 38962320
    [Google Scholar]
  82. Papazoglou P. Peng L. Sachinidis A. Epigenetic mechanisms involved in the cardiovascular toxicity of anticancer drugs. Front. Cardiovasc. Med. 2021 8 658900 10.3389/fcvm.2021.658900 33987212
    [Google Scholar]
  83. Bauer M. Todorova V. Stone A. Genome-Wide DNA methylation signatures predict the early asymptomatic doxorubicin-induced cardiotoxicity in breast cancer. Cancers (Basel) 2021 13 24 6291 10.3390/cancers13246291 34944912
    [Google Scholar]
  84. Hong Y. Li X. Li J. H3K27ac acts as a molecular switch for doxorubicin-induced activation of cardiotoxic genes. Clin. Epigenetics 2024 16 1 91 10.1186/s13148‑024‑01709‑8 39014511
    [Google Scholar]
  85. Lai R. Lin Z. Yang C. Novel berberine derivatives as p300 histone acetyltransferase inhibitors in combination treatment for breast cancer. Eur. J. Med. Chem. 2024 266 116116 10.1016/j.ejmech.2023.116116 38215590
    [Google Scholar]
  86. Sun X. Zhou L. Han Y. Scutellarin attenuates doxorubicin‐induced cardiotoxicity by inhibiting myocardial fibrosis, apoptosis and autophagy in rats. Chem. Biodivers. 2023 20 1 e202200450 10.1002/cbdv.202200450 36419360
    [Google Scholar]
  87. Saleh Ahmed A.S. Potential protective effect of catechin on doxorubicin-induced cardiotoxicity in adult male albino rats. Toxicol. Mech. Methods 2022 32 2 97 105 10.1080/15376516.2021.1972375 34427160
    [Google Scholar]
  88. Xiao J. Sun G.B. Sun B. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology 2012 292 1 53 62 10.1016/j.tox.2011.11.018 22155320
    [Google Scholar]
  89. Bradic J. Andjic M. Novakovic J. Lady’s Bedstraw as a Powerful Antioxidant for Attenuation of Doxorubicin-Induced Cardiotoxicity. Antioxidants 2023 12 6 1277 10.3390/antiox12061277 37372007
    [Google Scholar]
  90. Menon S. Lawrence L. Sivaram V.P. Padikkala J. Oroxylum indicum root bark extract prevents doxorubicin-induced cardiac damage by restoring redox balance. J. Ayurveda Integr. Med. 2019 10 3 159 165 10.1016/j.jaim.2017.06.007 29398409
    [Google Scholar]
  91. Safaeian L. Baniahmad B. Vaseghi G. Rabbani M. Mohammadi B. Cardioprotective effect of vanillic acid against doxorubicin-induced cardiotoxicity in rat. Res. Pharm. Sci. 2020 15 1 87 96 10.4103/1735‑5362.278718 32180820
    [Google Scholar]
  92. Warpe V.S. Mali V.R. S A, Bodhankar SL, Mahadik KR. Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in wistar rats. J. Acute Med. 2015 5 1 1 8 10.1016/j.jacme.2015.02.003
    [Google Scholar]
  93. Chaudhary R. Singh R. Verma R. Investigation on protective effect of Terminalia bellirica (Roxb.) against drugs induced cardiotoxicity in wistar albino rats. J. Ethnopharmacol. 2020 261 113080 10.1016/j.jep.2020.113080 32534117
    [Google Scholar]
  94. Afsar T. Razak S. Batoo K.M. Khan M.R. Acacia hydaspica R. Parker prevents doxorubicin-induced cardiac injury by attenuation of oxidative stress and structural Cardiomyocyte alterations in rats. BMC Complement. Altern. Med. 2017 17 1 554 10.1186/s12906‑017‑2061‑0 29284479
    [Google Scholar]
  95. Patel I.B. Atar M.A. Ali S.A. Punica granatum peel extract ameliorates doxorubicin induced cardiotoxicity. Anal. Chem. Lett. 2019 9 6 835 844 10.1080/22297928.2019.1708789
    [Google Scholar]
  96. Sandamali J.A.N. Hewawasam R.P. Jayatilaka K.A.P.W. Mudduwa L.K.B. Cardioprotective potential of Murraya koenigii (L.) Spreng. leaf extract against doxorubicin‐induced cardiotoxicity in rats. Evid. Based Complement. Alternat. Med. 2020 2020 1 6023737 10.1155/2020/6023737 32308710
    [Google Scholar]
  97. Li G. Li W.R. Jin Y.G. Jie Q.Q. Wang C.Y. Wu L. Tetrandrine attenuated doxorubicin‐induced acute cardiac injury in mice. BioMed Res. Int. 2020 2020 1 2616024 10.1155/2020/2616024 32461972
    [Google Scholar]
  98. Karabulut D. Ozturk E. Kaymak E. Akin A.T. Yakan B. Thymoquinone attenuates doxorubicin‐cardiotoxicity in rats. J. Biochem. Mol. Toxicol. 2021 35 1 e22618 10.1002/jbt.22618 32860490
    [Google Scholar]
  99. Al-Kenany S.A. Al-Shawi N.N. Protective effect of cafestol against doxorubicin-induced cardiotoxicity in rats by activating the Nrf2 pathway. Front. Pharmacol. 2023 14 1206782 10.3389/fphar.2023.1206782 37377932
    [Google Scholar]
  100. Munir S. Hafeez R. Younis W. The protective effect of citronellol against doxorubicin-induced cardiotoxicity in rats. Biomedicines 2023 11 10 2820 10.3390/biomedicines11102820 37893193
    [Google Scholar]
  101. Pradhan A. Chakraborty M. Lepcha O. Bhattacharjee A. Chutia D. Bhuyan N.R. Cardioprotective effects of Rhododendron arboreum leaf extract against Doxorubicin-induced cardiotoxicity in Wistar rats by modulating electrocardiographic and cardiac biomarkers. Clinical Phytoscience 2023 9 1 10 10.1186/s40816‑023‑00361‑8
    [Google Scholar]
  102. Sandamali J.A.N. Hewawasam R.P. Jayatilaka K.A.P.W. Mudduwa L.K.B. Cinnamomum zeylanicum Blume (Ceylon cinnamon) bark extract attenuates doxorubicin induced cardiotoxicity in Wistar rats. Saudi Pharm. J. 2021 29 8 820 832 10.1016/j.jsps.2021.06.004 34408544
    [Google Scholar]
  103. Hosseini A. Safari M.K. Rajabian A. Cardioprotective Effect of Rheum turkestanicum Against Doxorubicin-Induced Toxicity in Rats. Front. Pharmacol. 2022 13 909079 10.3389/fphar.2022.909079 35754479
    [Google Scholar]
  104. Olorundare O. Adeneye A. Akinsola A. Irvingia gabonensis seed extract: An effective attenuator of doxorubicin-mediated cardiotoxicity in wistar rats. Oxid. Med. Cell. Longev. 2020 2020 1 14 10.1155/2020/1602816 33149803
    [Google Scholar]
  105. Liu J. Liu H. Deng L. Protective role of dioscin against doxorubicin-induced chronic cardiotoxicity: Insights from Nrf2-GPX4 axis-mediated cardiac ferroptosis. Biomolecules 2024 14 4 422 10.3390/biom14040422 38672439
    [Google Scholar]
  106. Alwaili M.A. Abu-Almakarem A.S. El-Said K.S. Shikimic acid protects against doxorubicin-induced cardiotoxicity in rats. Sci. Rep. 2025 15 1 8126 10.1038/s41598‑025‑90549‑4 40057537
    [Google Scholar]
  107. Ilyas S. Midoen Y.H. Santoso P. A novel therapeutic approach to doxorubicin-induced cardiotoxicity, with a particular emphasis on the potential cardioprotective properties of vitis gracilis wall. J. Pharm. Pharmacogn. Res. 2025 13 1 254 263 10.56499/jppres24.2000_13.1.254
    [Google Scholar]
  108. Harishkumar R. Selvaraj C.I. Lotusine, an alkaloid from Nelumbo nucifera (Gaertn.), attenuates doxorubicin-induced toxicity in embryonically derived H9c2 cells. In Vitro Cell. Dev. Biol. Anim. 2020 56 5 367 377 10.1007/s11626‑020‑00466‑1 32468412
    [Google Scholar]
  109. Ahmed A.Z. Satyam S.M. Shetty P. D’Souza M.R. Methyl gallate attenuates doxorubicin-induced cardiotoxicity in rats by suppressing oxidative stress. Scientifica (Cairo) 2021 2021 1 12 10.1155/2021/6694340 33510932
    [Google Scholar]
  110. Dharashive V.M. Ghiware N.B. Cardioprotective activity of randia dumetorum against doxorubicin induced cardiotoxicity. Biosci. Biotechnol. Res. Asia 2022 19 3 713 726 10.13005/bbra/3023
    [Google Scholar]
  111. Wang Y. Cardioprotective effect of phytosterol stigmasterol supplementation against doxorubicin-induced cardiotoxicity. Folia Morphol (Warsz) 2025 10.5603/fm.103866
    [Google Scholar]
  112. Alherz F.A. El-Masry T.A. Negm W.A. El-Kadem A.H. Potential cardioprotective effects of Amentoflavone in doxorubicin-induced cardiotoxicity in mice. Biomed. Pharmacother. 2022 154 113643 10.1016/j.biopha.2022.113643 36942597
    [Google Scholar]
  113. Syahputra R.A. Harahap U. Dalimunthe A. Pandapotan M. Satria D. Protective effect of Vernonia amygdalina Delile against doxorubicin-induced cardiotoxicity. Heliyon 2021 7 7 e07434 10.1016/j.heliyon.2021.e07434 34401548
    [Google Scholar]
  114. Nagoor Meeran M.F. Arunachalam S. Azimullah S. α-bisabolol, a dietary sesquiterpene, attenuates doxorubicin-induced acute cardiotoxicity in rats by inhibiting cellular signaling] pathways, Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3β, NF-κB/p38/] MAPK, and NLRP3 inflammasomes regulating oxidative stress and inflammatory cascades. Int. J. Mol. Sci. 2023 24 18 14013 10.3390/ijms241814013 37762315
    [Google Scholar]
  115. Rathaur P. Sr K.J. Metabolism and pharmacokinetics of phytochemicals in the human body. Curr. Drug Metab. 2020 20 14 1085 1102 10.2174/1389200221666200103090757 31902349
    [Google Scholar]
  116. Sharma A. Sharma S. Gupta M. Fatima S. Saini R. Agarwal S.M. Pharmacokinetic profiling of anticancer phytocompounds using computational approach. Phytochem. Anal. 2018 29 6 559 568 10.1002/pca.2767 29667756
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128410093251006160508
Loading
/content/journals/cpd/10.2174/0113816128410093251006160508
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cardiotoxicity ; inflammation ; oxidative stress ; Doxorubicin ; phytoconstituent ; chemotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test