Full text loading...
Doxorubicin (DOX), a widely used chemotherapeutic agent, is effective against various malignancies, but its clinical application is limited by cumulative dose-dependent cardiotoxicity. The objective of this review is to systematically explore the molecular mechanisms involved in DOX-induced cardiotoxicity (DIC) and evaluate the cardioprotective potential of plant-derived bioactive compounds.
A comprehensive literature search was conducted using databases, such as PubMed, Scopus, and Web of Science, focusing on studies published in the last two decades. Emphasis was placed on experimental and preclinical models that investigated molecular pathways of DIC and the therapeutic role of phytochemicals.
DOX-induced cardiotoxicity is mediated through a cascade of molecular events, including excessive oxidative and nitrosative stress, mitochondrial damage, apoptosis, impaired autophagy, and altered activity of signaling pathways, such as AMPK, Nrf2, TGF-β1/Smad2, and HIF-1α. Epigenetic dysregulation also contributes to myocardial injury. Phytochemicals, such as flavonoids, polyphenols, and alkaloids, have shown significant cardioprotective effects. These compounds exert their actions by modulating redox homeostasis, preserving mitochondrial function, regulating apoptotic markers, and restoring signaling imbalances.
The pleiotropic nature of phytocompounds enables them to target multiple pathological mechanisms associated with DIC. Despite promising in vitro and in vivo evidence, limitations, such as poor bioavailability, lack of standardized dosing, and inadequate clinical data, hinder their translational potential. Novel delivery systems and well-controlled clinical trials are necessary to overcome these challenges.
Plant-derived bioactive compounds show potential in mitigating doxorubicin-induced cardiotoxicity, as supported by preclinical evidence. However, further translational studies are warranted to validate these findings, optimize pharmacokinetics, and evaluate their feasibility in clinical oncology settings.
Article metrics loading...
Full text loading...
References
Data & Media loading...