Skip to content
2000
image of Novel Targets and Nanotechnology Approaches in Treating Vulvovaginal Candidiasis: Insights into Host-Microbe Interactions and Immunotherapy

Abstract

The aim of this article is to study recent developments in the management of vulvovaginal candidiasis (VVC) with emphasis on overcoming antifungal resistance and recurrent VVC by examining host-microbe interaction, new molecular targets, immunotherapeutic interventions, and nanotechnology-based strategies. This review integrates recent VVC pathogenesis, immune response, and therapeutic development literature with a focus on immunomodulation, vaccine development, and nanotechnology interventions. Literature on immunotherapy and nanoparticle-based drug delivery systems was comprehensively reviewed. Immunotherapeutic concepts, such as cytokine modulation and vaccine therapy candidates, hold promise to substitute or supplement current antifungals. Nanoparticles exhibit efficacy in advancing drug solubility, reaching fungal cells, and minimizing unwanted effects. The synergy between nanotechnology and immunotherapy provides combined advantages over the multiple drawbacks of current therapies. Although novel methodologies have shown strong promise, aspects of safety, clinical relevance, and regulatory issues continue to remain key challenges. Nanotechnology-based host-targeted immunotherapy is most probably going to transform the scenario of VVC treatment, especially in drug-resistant cases. Additional research is needed to elucidate molecular host-fungal interaction mechanisms, validate vaccine efficacy in the clinic, and design standardized, reproducible nanotherapeutic platforms. Personalized regimens of treatment through immunological and microbiome profiling can enhance long-term outcomes in VVC treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128388596251001075837
2025-10-30
2025-12-17
Loading full text...

Full text loading...

References

  1. Willems H.M.E. Ahmed S.S. Liu J. Xu Z. Peters B.M. Vulvovaginal candidiasis: A current understanding and burning questions. J. Fungi 2020 6 1 27 10.3390/jof6010027 32106438
    [Google Scholar]
  2. Fisher M.C. Alastruey-Izquierdo A. Berman J. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022 20 9 557 571 10.1038/s41579‑022‑00720‑1 35352028
    [Google Scholar]
  3. Vanreppelen G. Wuyts J. Van Dijck P. Vandecruys P. Sources of antifungal drugs. J. Fungi 2023 9 2 171 10.3390/jof9020171 36836286
    [Google Scholar]
  4. Hossain C.M. Ryan L.K. Gera M. Antifungals and drug resistance. Encyclopedia 2022 2 4 1722 1737 10.3390/encyclopedia2040118
    [Google Scholar]
  5. Mroczyńska M. Brillowska-Dąbrowska A. Review on current status of echinocandins use. Antibiotics 2020 9 5 227 10.3390/antibiotics9050227 32370108
    [Google Scholar]
  6. Gaziano R. Sabbatini S. Monari C. The interplay between Candida albicans, vaginal mucosa, host immunity and resident microbiota in health and disease: An overview and future perspectives. Microorganisms 2023 11 5 1211 10.3390/microorganisms11051211 37317186
    [Google Scholar]
  7. Van De Veerdonk F.L. Netea M.G. Joosten L.A. Van Der Meer J.W.M. Kullberg B.J. Novel strategies for the prevention and treatment of Candida infections: The potential of immunotherapy. FEMS Microbiol. Rev. 2010 34 6 1063 1075 10.1111/j.1574‑6976.2010.00232.x 20528948
    [Google Scholar]
  8. Liu P. Lu Y. Li R. Chen X. Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations. Front. Cell. Infect. Microbiol. 2023 13 1153894 10.3389/fcimb.2023.1153894 37077531
    [Google Scholar]
  9. Liu Y. Qv W. Ma Y. The interplay between oral microbes and immune responses. Front. Microbiol. 2022 13 1009018 10.3389/fmicb.2022.1009018
    [Google Scholar]
  10. Talapko J. Juzbašić M. Matijević T. Candida albicans—the virulence factors and clinical manifestations of infection. J. Fungi 2021 7 2 79 10.3390/jof7020079 33499276
    [Google Scholar]
  11. Jain A. Parihar D.K. Tiwary B. Kushwaha M. Evaluation of antibacterial activity of silver nanoparticle loaded curcuma extract collected from Sarguja district of Chhattisgarh. Prob Sci 2024 1 2 58 64 10.5281/zenodo.14640610
    [Google Scholar]
  12. Nami S. Aghebati-Maleki A. Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI J. 2021 20 562 584 33883983
    [Google Scholar]
  13. Loh J.T. Lam K.P. Fungal infections: Immune defense, immunotherapies and vaccines. Adv. Drug Deliv. Rev. 2023 196 114775 10.1016/j.addr.2023.114775 36924530
    [Google Scholar]
  14. Huang Y. Guo X. Wu Y. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct. Target. Ther. 2024 9 1 34 10.1038/s41392‑024‑01745‑z 38378653
    [Google Scholar]
  15. Weth F.R. Hoggarth G.B. Weth A.F. Unlocking hidden potential: Advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br. J. Cancer 2024 130 5 703 715 10.1038/s41416‑023‑02502‑9 38012383
    [Google Scholar]
  16. Jabra-Rizk M.A. Kong E.F. Tsui C. Candida albicans pathogenesis: Fitting within the host-microbe damage response framework. Infect. Immun. 2016 84 10 2724 2739 10.1128/IAI.00469‑16 27430274
    [Google Scholar]
  17. Ghannoum M.A. Rice L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 1999 12 4 501 517 10.1128/CMR.12.4.501 10515900
    [Google Scholar]
  18. Mesa-Arango A.C. Scorzoni L. Zaragoza O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front. Microbiol. 2012 3 286 10.3389/fmicb.2012.00286 23024638
    [Google Scholar]
  19. Anderson T.M. Clay M.C. Cioffi A.G. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 2014 10 5 400 406 10.1038/nchembio.1496 24681535
    [Google Scholar]
  20. Herrick E.J. Patel P. Hashmi M.F. Antifungal Ergosterol Synthesis Inhibitors. Treasure Island, FL StatPearls Publishing 2025 Available from: https://www.ncbi.nlm.nih.gov/books/NBK551581/.
    [Google Scholar]
  21. Sucher A.J. Chahine E.B. Balcer H.E. Echinocandins: The newest class of antifungals. Ann. Pharmacother. 2009 43 10 1647 1657 10.1345/aph.1M237 19724014
    [Google Scholar]
  22. McKeny P.T. Nessel T.A. Zito P.M. Antifungal Antibiotics. Treasure Island, FL StatPearls Publishing 2025 Available from: https://www.ncbi.nlm.nih.gov/books/NBK538168/.
    [Google Scholar]
  23. Delma F.Z. Al-Hatmi A.M.S. Brüggemann R.J.M. Molecular mechanisms of 5-fluorocytosine resistance in yeasts and filamentous fungi. J. Fungi 2021 7 11 909 10.3390/jof7110909 34829198
    [Google Scholar]
  24. Yocheva L. Tserovska L. Danguleva-Cholakova A. In vitro inhibitory effects and co-aggregation activity of lactobacilli on Candida albicans. Microbiol. Res. 2024 15 3 1576 1589 10.3390/microbiolres15030104
    [Google Scholar]
  25. Barrientos-Durán A. Fuentes-López A. de Salazar A. Plaza-Díaz J. García F. Reviewing the composition of vaginal microbiota: Inclusion of nutrition and probiotic factors in the maintenance of eubiosis. Nutrients 2020 12 2 419 10.3390/nu12020419 32041107
    [Google Scholar]
  26. Baldewijns S. Sillen M. Palmans I. Vandecruys P. Van Dijck P. Demuyser L. The role of fatty acid metabolites in vaginal health and disease: Application to candidiasis. Front. Microbiol. 2021 12 705779 10.3389/fmicb.2021.705779 34276639
    [Google Scholar]
  27. Gallo M. Giovati L. Magliani W. Metabolic plasticity of Candida albicans in response to different environmental conditions. J. Fungi 2022 8 7 723 10.3390/jof8070723 35887478
    [Google Scholar]
  28. Sanguinetti M. Posteraro B. Fiori B. Ranno S. Torelli R. Fadda G. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob. Agents Chemother. 2005 49 2 668 679 10.1128/AAC.49.2.668‑679.2005 15673750
    [Google Scholar]
  29. De Gregorio P.R. Parolin C. Abruzzo A. Biosurfactant from vaginal Lactobacillus crispatus BC1 as a promising agent to interfere with Candida adhesion. Microb. Cell Fact. 2020 19 1 133 10.1186/s12934‑020‑01390‑5 32552788
    [Google Scholar]
  30. Ceresa C. Tessarolo F. Caola I. Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus -derived biosurfactant. J. Appl. Microbiol. 2015 118 5 1116 1125 10.1111/jam.12760 25644534
    [Google Scholar]
  31. Zhu X. Wang A. Zheng Y. Anti-Biofilm Activity of Cocultimycin A against Candida albicans. Int. J. Mol. Sci. 2023 24 23 17026 10.3390/ijms242317026 38069349
    [Google Scholar]
  32. Adnan M. Siddiqui A.J. Noumi E. Biosurfactant derived from probiotic Lactobacillus acidophilus exhibits broad-spectrum antibiofilm activity and inhibits the quorum sensing-regulated virulence. Biomol. Biomed. 2023 23 6 1051 1068 10.17305/bb.2023.9324 37421468
    [Google Scholar]
  33. Malinovská Z. Čonková E. Váczi P. Biofilm formation in medically important Candida species. J. Fungi 2023 9 10 955 10.3390/jof9100955 37888211
    [Google Scholar]
  34. Köhler G.A. Assefa S. Reid G. Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect. Dis. Obstet. Gynecol. 2012 2012 1 14 10.1155/2012/636474 22811591
    [Google Scholar]
  35. Zangl I. Pap I.J. Aspöck C. Schüller C. The role of Lactobacillus species in the control of Candida via biotrophic interactions. Microb. Cell 2020 7 1 1 14 10.15698/mic2020.01.702 31921929
    [Google Scholar]
  36. Simons A. Alhanout K. Duval R.E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020 8 5 639 10.3390/microorganisms8050639 32349409
    [Google Scholar]
  37. Okkers D.J. Dicks L.M.T. Silvester M. Joubert J.J. Odendaal H.J. Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J. Appl. Microbiol. 1999 87 5 726 734 10.1046/j.1365‑2672.1999.00918.x 10594714
    [Google Scholar]
  38. Lewis F.M.T. Bernstein K.T. Aral S.O. Vaginal microbiome and its relationship to behavior, sexual health, and sexually transmitted diseases. Obstet. Gynecol. 2017 129 4 643 654 10.1097/AOG.0000000000001932 28277350
    [Google Scholar]
  39. Wall L.L. Yemane A. Infectious complications of abortion. Open Forum Infect. Dis. 2022 9 11 ofac553 10.1093/ofid/ofac553 36438622
    [Google Scholar]
  40. Mitchell C. Prabhu M. Pelvic inflammatory disease: Current concepts in pathogenesis, diagnosis and treatment. Infect. Dis. Clin. North Am. 2013 27 4 793 809 10.1016/j.idc.2013.08.004 24275271
    [Google Scholar]
  41. Achilles S.L. Reeves M.F. Prevention of infection after induced abortion. Contraception 2011 83 4 295 309 10.1016/j.contraception.2010.11.006 21397086
    [Google Scholar]
  42. Karim M.M. Paswan S. Bhairam M. Mishra S. Understanding gut microbiota and antibiotics complex interplay and clinical implications. Prob Sci 2024 1 2 46 57 10.5281/zenodo.14635348
    [Google Scholar]
  43. Saadaoui M. Singh P. Ortashi O. Al Khodor S. Role of the vaginal microbiome in miscarriage: Exploring the relationship. Front. Cell. Infect. Microbiol. 2023 13 1232825 10.3389/fcimb.2023.1232825 37780845
    [Google Scholar]
  44. Barousse M.M. Espinosa T. Dunlap K. Fidel P.L. Vaginal epithelial cell anti-Candida albicans activity is associated with protection against symptomatic vaginal candidiasis. Infect. Immun. 2005 73 11 7765 7767 10.1128/IAI.73.11.7765‑7767.2005 16239581
    [Google Scholar]
  45. Mogensen T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009 22 2 240 273 10.1128/CMR.00046‑08 19366914
    [Google Scholar]
  46. Yano J. Noverr M.C. Fidel P.L. Vaginal heparan sulfate linked to neutrophil dysfunction in the acute inflammatory response associated with experimental vulvovaginal candidiasis. MBio 2017 8 2 e00211 e00217 10.1128/mBio.00211‑17 28292981
    [Google Scholar]
  47. Naglik J.R. Gaffen S.L. Hube B. Candidalysin: Discovery and function in Candida albicans infections. Curr. Opin. Microbiol. 2019 52 100 109 10.1016/j.mib.2019.06.002 31288097
    [Google Scholar]
  48. Zwang Y. Yarden Y. p38 MAP kinase mediates stress-induced internalization of EGFR: Implications for cancer chemotherapy. EMBO J. 2006 25 18 4195 4206 10.1038/sj.emboj.7601297 16932740
    [Google Scholar]
  49. Moyes D.L. Wilson D. Richardson J.P. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016 532 7597 64 68 10.1038/nature17625 27027296
    [Google Scholar]
  50. Rogiers O. Frising U.C. Kucharíková S. Candidalysin crucially contributes to Nlrp3 inflammasome activation by candida albicans hyphae. MBio 2019 10 1 e02221 e18 10.1128/mBio.02221‑18 30622184
    [Google Scholar]
  51. Kelley N. Jeltema D. Duan Y. He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019 20 13 3328 10.3390/ijms20133328 31284572
    [Google Scholar]
  52. Pathakumari B. Liang G. Liu W. Immune defence to invasive fungal infections: A comprehensive review. Biomed. Pharmacother. 2020 130 110550 10.1016/j.biopha.2020.110550 32739740
    [Google Scholar]
  53. Aristizábal B. González Á. Innate immune system. In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, Eds. Autoimmunity: From bench to bedside. Bogota, Colombia El Rosario University Press 2013
    [Google Scholar]
  54. Gow N.A.R. Latge J.P. Munro C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 2017 5 3 10.1128/microbiolspec.FUNK‑0035‑2016 28513415
    [Google Scholar]
  55. Ferwerda G. Meyer-Wentrup F. Kullberg B.J. Netea M.G. Adema G.J. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell. Microbiol. 2008 10 10 2058 2066 10.1111/j.1462‑5822.2008.01188.x 18549457
    [Google Scholar]
  56. Qin Y. Zhang L. Xu Z. Innate immune cell response upon Candida albicans infection. Virulence 2016 7 5 512 526 10.1080/21505594.2016.1138201 27078171
    [Google Scholar]
  57. Ott L.W. Resing K.A. Sizemore A.W. Tumor Necrosis Factor-alpha- and interleukin-1-induced cellular responses: Coupling proteomic and genomic information. J. Proteome Res. 2007 6 6 2176 2185 10.1021/pr060665l 17503796
    [Google Scholar]
  58. Balish E. Wagner R.D. Vázquez-Torres A. Pierson C. Warner T. Candidiasis in interferon-gamma knockout (IFN-gamma-/-) mice. J. Infect. Dis. 1998 178 2 478 487 10.1086/515645 9697730
    [Google Scholar]
  59. Weindl G. Wagener J. Schaller M. Epithelial cells and innate antifungal defense. J. Dent. Res. 2010 89 7 666 675 10.1177/0022034510368784 20395411
    [Google Scholar]
  60. Richardson J.P. Moyes D.L. Adaptive immune responses to Candida albicans infection. Virulence 2015 6 4 327 337 10.1080/21505594.2015.1004977 25607781
    [Google Scholar]
  61. Fidel P.L. Candida-host interactions in HIV disease: Implications for oropharyngeal candidiasis. Adv. Dent. Res. 2011 23 1 45 49 10.1177/0022034511399284 21441480
    [Google Scholar]
  62. Feng Z. Lu H. Jiang Y. Promising immunotherapeutic targets for treating candidiasis. Front. Cell. Infect. Microbiol. 2024 14 1339501 10.3389/fcimb.2024.1339501 38404288
    [Google Scholar]
  63. Singh S. Uppuluri P. Mamouei Z. The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLoS Pathog. 2019 15 8 1007460 10.1371/journal.ppat.1007460 31381597
    [Google Scholar]
  64. Ibrahim A.S. Luo G. Gebremariam T. NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine 2013 31 47 5549 5556 10.1016/j.vaccine.2013.09.016 24063977
    [Google Scholar]
  65. Uppuluri P. Singh S. Alqarihi A. Human anti-Als3p antibodies are surrogate markers of NDV-3A vaccine efficacy against recurrent vulvovaginal candidiasis. Front. Immunol. 2018 9 1349 10.3389/fimmu.2018.01349 29963049
    [Google Scholar]
  66. Jahantigh H.R. Faezi S. Habibi M. The candidate antigens to achieving an effective vaccine against Staphylococcus aureus. Vaccines 2022 10 2 199 10.3390/vaccines10020199 35214658
    [Google Scholar]
  67. König A. Hube B. Kasper L. The dual function of the fungal toxin candidalysin during Candida albicans—macrophage interaction and virulence. Toxins 2020 12 8 469 10.3390/toxins12080469 32722029
    [Google Scholar]
  68. Bojang E. Ghuman H. Kumwenda P. Hall R.A. Immune sensing of Candida albicans. J. Fungi 2021 7 2 119 10.3390/jof7020119 33562068
    [Google Scholar]
  69. Kaur G. Chawla S. Kumar P. Singh R. Advancing vaccine strategies against Candida infections: Exploring new frontiers. Vaccines 2023 11 11 1658 10.3390/vaccines11111658 38005990
    [Google Scholar]
  70. Inácio M.M. Moreira A.L.E. Cruz-Leite V.R.M. Fungal vaccine development: State of the art and perspectives using immunoinformatics. J. Fungi 2023 9 6 633 10.3390/jof9060633 37367569
    [Google Scholar]
  71. Torosantucci A. Bromuro C. Chiani P. A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med. 2005 202 5 597 606 10.1084/jem.20050749 16147975
    [Google Scholar]
  72. Ibrahim A.S. Spellberg B.J. Avanesian V. Fu Y. Edwards J.E. The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect. Immun. 2006 74 5 3039 3041 10.1128/IAI.74.5.3039‑3041.2006 16622247
    [Google Scholar]
  73. Lampe A.T. Puniya B.L. Pannier A.K. Helikar T. Brown D.M. Combined TLR4 and TLR9 agonists induce distinct phenotypic changes in innate immunity in vitro and in vivo. Cell. Immunol. 2020 355 104149 10.1016/j.cellimm.2020.104149 32619809
    [Google Scholar]
  74. Wang X. Sui X. Yan L. Wang Y. Cao Y. Jiang Y. Vaccines in the treatment of invasive candidiasis. Virulence 2015 6 4 1 7 10.4161/21505594.2014.983015 25559739
    [Google Scholar]
  75. Lin L. Ibrahim A.S. Xu X. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 2009 5 12 1000703 10.1371/journal.ppat.1000703 20041174
    [Google Scholar]
  76. Carrano G. Arrieta-Aguirre I. Díez A. Bregón-Villahoz M. Fernandez-de-Larrinoa I. Moragues M.D. Anti-candida antibodies of patients with invasive candidiasis inhibit growth, alter cell wall structure, and kill candida albicans in vitro. Mycopathologia 2024 189 1 16 10.1007/s11046‑023‑00819‑w 38324097
    [Google Scholar]
  77. Karwa R. Wargo K.A. Efungumab: A novel agent in the treatment of invasive candidiasis. Ann. Pharmacother. 2009 43 11 1818 1823 10.1345/aph.1M218 19773528
    [Google Scholar]
  78. Han Y. Cutler J.E. Antibody response that protects against disseminated candidiasis. Infect. Immun. 1995 63 7 2714 2719 10.1128/iai.63.7.2714‑2719.1995 7790089
    [Google Scholar]
  79. Xin H. Dziadek S. Bundle D.R. Cutler J.E. Synthetic glycopeptide vaccines combining β-mannan and peptide epitopes induce protection against candidiasis. Proc. Natl. Acad. Sci. USA 2008 105 36 13526 13531 10.1073/pnas.0803195105 18725625
    [Google Scholar]
  80. Bhattacharya P. Thiruppathi M. Elshabrawy H.A. Alharshawi K. Kumar P. Prabhakar B.S. GM-CSF: An immune modulatory cytokine that can suppress autoimmunity. Cytokine 2015 75 2 261 271 10.1016/j.cyto.2015.05.030 26113402
    [Google Scholar]
  81. Vazquez J.A. Gupta S. Villanueva A. Potential utility of recombinant human GM-CSF as adjunctive treatment of refractory oropharyngeal candidiasis in AIDS patients. Eur. J. Clin. Microbiol. Infect. Dis. 1998 17 11 781 783 10.1007/s100960050185 9923519
    [Google Scholar]
  82. Kuwar U.C. Pradhan M. Dhote N.S. Patel R. Sinha A. Novel approaches and applications of nanotechnology in the delivery of topical drugs for psoriasis via nanocarriers. Curr. Nanosci. 2024 20 1 27
    [Google Scholar]
  83. Bhairam M. Prasad J. Verma K. Jain P. Gidwani B. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes. Mater. Today Proc. 2023 83 59 68 10.1016/j.matpr.2023.01.147
    [Google Scholar]
  84. Dikshit P. Kumar J. Das A. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021 11 8 902 10.3390/catal11080902
    [Google Scholar]
  85. Almawash S. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs. Saudi Pharm. J. 2023 31 7 1167 1180 10.1016/j.jsps.2023.05.011 37273269
    [Google Scholar]
  86. Sud I.J. Chou D.L. Feingold D.S. Effect of free fatty acids on liposome susceptibility to imidazole antifungals. Antimicrob. Agents Chemother. 1979 16 5 660 663 10.1128/AAC.16.5.660 393166
    [Google Scholar]
  87. Pandey M. Choudhury H. Abdul-Aziz A. Promising drug delivery approaches to treat microbial infections in the vagina: A recent update. Polymers 2020 13 1 26 10.3390/polym13010026 33374756
    [Google Scholar]
  88. Andersen T. Mishchenko E. Flaten G. Chitosan-based nanomedicine to fight genital candida infections: Chitosomes. Mar. Drugs 2017 15 3 64 10.3390/md15030064 28273850
    [Google Scholar]
  89. Elmowafy M. Shalaby K. Elkomy M.H. Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges. Polymers 2023 15 5 1123 10.3390/polym15051123 36904364
    [Google Scholar]
  90. Marena G.D. Carvalho G.C. dos Santos Ramos M.A. Chorilli M. Bauab T.M. Anti- Candida auris activity in vitro and in vivo of micafungin loaded nanoemulsions. Med. Mycol. 2023 61 2 myac090 10.1093/mmy/myac090 36427066
    [Google Scholar]
  91. El-Housiny S. Shams Eldeen M.A. El-Attar Y.A. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: Formulation and clinical study. Drug Deliv. 2018 25 1 78 90 10.1080/10717544.2017.1413444 29239242
    [Google Scholar]
  92. Alakkad A. Stapleton P. Schlosser C. Amphotericin B polymer nanoparticles show efficacy against Candida species biofilms. Pathogens 2022 11 1 73 10.3390/pathogens11010073 35056021
    [Google Scholar]
  93. Tayah D.Y. Eid A.M. Development of miconazole nitrate nanoparticles loaded in nanoemulgel to improve its antifungal activity. Saudi Pharm. J. 2023 31 4 526 534 10.1016/j.jsps.2023.02.005 37063448
    [Google Scholar]
  94. Liu Y. Liang Y. Yuhong J. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des. Devel. Ther. 2024 18 1469 1495 10.2147/DDDT.S447496 38707615
    [Google Scholar]
  95. Zhuo Y. Zhao Y.G. Zhang Y. Enhancing drug solubility, bioavailability, and targeted therapeutic applications through magnetic nanoparticles. Molecules 2024 29 20 4854 10.3390/molecules29204854 39459222
    [Google Scholar]
  96. Eltabeeb M.A. Abdellatif M.M. El-Nabarawi M.A. Chitosan decorated oleosomes loaded propranolol hydrochloride hydrogel repurposed for Candida albicans -vaginal infection. Nanomedicine 2024 19 15 1369 1388 10.1080/17435889.2024.2359364 38900630
    [Google Scholar]
  97. Asif F. Zaman S.U. Arnab M.K.H. Hasan M. Islam M.M. Antimicrobial peptides as therapeutics: Confronting delivery challenges to optimize efficacy. Microbe 2024 2 100051 10.1016/j.microb.2024.100051
    [Google Scholar]
  98. Wang Y. Liu Z. Chen T. Vaginal microbiota: Potential targets for vulvovaginal candidiasis infection. Heliyon 2024 10 5 27239 10.1016/j.heliyon.2024.e27239 38463778
    [Google Scholar]
  99. Kadam O. Dalai S. Chauhan B. Nanobiotechnology unveils the power of probiotics: A comprehensive review on the synergistic role of probiotics and advanced nanotechnology in enhancing geriatric health. Cureus 2025 17 3 80478 10.7759/cureus.80478 40225478
    [Google Scholar]
  100. Mishra S. Gupta A. Upadhye V. Singh S.C. Sinha R.P. Häder D.P. Therapeutic strategies against biofilm infections. Life 2023 13 1 172 10.3390/life13010172 36676121
    [Google Scholar]
  101. Radhakrishnan V.S. Reddy Mudiam M.K. Kumar M. Dwivedi S.P. Singh S.P. Prasad T. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int. J. Nanomedicine 2018 13 2647 2663 10.2147/IJN.S150648 29760548
    [Google Scholar]
  102. Yassin M.T. Al-Otibi F.O. Al-Askar A.A. Elmaghrabi M.M. Synergistic anticandidal effectiveness of greenly synthesized zinc oxide nanoparticles with antifungal agents against nosocomial candidal pathogens. Microorganisms 2023 11 8 1957 10.3390/microorganisms11081957 37630517
    [Google Scholar]
  103. d’Enfert C. Kaune A.K. Alaban L.R. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives. FEMS Microbiol. Rev. 2021 45 3 fuaa060 10.1093/femsre/fuaa060 33232448
    [Google Scholar]
  104. Roth K.D.R. Wenzel E.V. Ruschig M. Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy. Front. Cell. Infect. Microbiol. 2021 11 697876 10.3389/fcimb.2021.697876 34307196
    [Google Scholar]
  105. Kullberg B.J. Lashof A.M.L.O. Netea M.G. Design of efficacy trials of cytokines in combination with antifungal drugs. Clin. Infect. Dis. 2004 39 Suppl. 4 S218 S223 10.1086/421960 15546121
    [Google Scholar]
  106. Landwehr-Kenzel S. Müller-Jensen L. Kuehl J.S. Adoptive transfer of ex vivo expanded regulatory T cells improves immune cell engraftment and therapy-refractory chronic GvHD. Mol. Ther. 2022 30 6 2298 2314 10.1016/j.ymthe.2022.02.025 35240319
    [Google Scholar]
  107. Wurster S. Watowich S.S. Kontoyiannis D.P. Checkpoint inhibitors as immunotherapy for fungal infections: Promises, challenges, and unanswered questions. Front. Immunol. 2022 13 1018202 10.3389/fimmu.2022.1018202 36389687
    [Google Scholar]
  108. Netea M.G. Van der Graaf C. Van der Meer J.W.M. Kullberg B.J. Toll-like receptors and the host defense against microbial pathogens: Bringing specificity to the innate-immune system. J. Leukoc. Biol. 2004 75 5 749 755 10.1189/jlb.1103543 15075354
    [Google Scholar]
  109. Brown G.D. Dectin-1: A signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 2006 6 1 33 43 10.1038/nri1745 16341139
    [Google Scholar]
  110. Voigt J. Hünniger K. Bouzani M. Human natural killer cells acting as phagocytes against Candida albicans and mounting an inflammatory response that modulates neutrophil antifungal activity. J. Infect. Dis. 2014 209 4 616 626 10.1093/infdis/jit574 24163416
    [Google Scholar]
  111. Garner W. Samanta P. Haidar G. Invasive fungal infections after anti-CD19 chimeric antigen receptor-modified T-Cell therapy: State of the evidence and future directions. J. Fungi 2021 7 2 156 10.3390/jof7020156 33672208
    [Google Scholar]
  112. Wubulikasimu A. Huang Y. Wali A. Yili A. Rong M. A designed antifungal peptide with therapeutic potential for clinical drug-resistant Candida albicans. Biochem. Biophys. Res. Commun. 2020 533 3 404 409 10.1016/j.bbrc.2020.08.117 32972753
    [Google Scholar]
  113. Marciano B.E. Wesley R. De Carlo E.S. Long-term interferon-gamma therapy for patients with chronic granulomatous disease. Clin. Infect. Dis. 2004 39 5 692 699 10.1086/422993 15356785
    [Google Scholar]
  114. Newman S.L. Bhugra B. Holly A. Morris R.E. Enhanced killing of Candida albicans by human macrophages adherent to type 1 collagen matrices via induction of phagolysosomal fusion. Infect. Immun. 2005 73 2 770 777 10.1128/IAI.73.2.770‑777.2005 15664915
    [Google Scholar]
  115. Goje O. Sobel R. Nyirjesy P. Oral Ibrexafungerp for vulvovaginal candidiasis treatment: An analysis of VANISH 303 and VANISH 306. J. Womens Health 2023 32 2 178 186 10.1089/jwh.2022.0132 36255448
    [Google Scholar]
  116. Sawyer P.R. Brogden R.N. Pinder R.M. Speight T.M. Avery G.S. Clotrimazole: A review of its antifungal activity and therapeutic efficacy. Drugs 1975 9 6 424 447 10.2165/00003495‑197509060‑00003 1097234
    [Google Scholar]
  117. Wang X. Chen L. Ruan H. Oteseconazole versus fluconazole for the treatment of severe vulvovaginal candidiasis: A multicenter, randomized, double-blinded, phase 3 trial. Antimicrob. Agents Chemother. 2024 68 1 e00778 e23 10.1128/aac.00778‑23 38095426
    [Google Scholar]
  118. Stojanov S. Kristl J. Zupančič Š. Berlec A. Influence of excipient composition on survival of vaginal lactobacilli in electrospun nanofibers. Pharmaceutics 2022 14 6 1155 10.3390/pharmaceutics14061155 35745728
    [Google Scholar]
  119. Sobel JD Donders G Degenhardt T Efficacy and safety of oteseconazole in recurrent vulvovaginal candidiasis. NEJM Evid 2022 1 8 EVIDoa2100055 10.1056/EVIDoa2100055 38319878
    [Google Scholar]
  120. Falagas M.E. Betsi G.I. Athanasiou S. Probiotics for prevention of recurrent vulvovaginal candidiasis: A review. J. Antimicrob. Chemother. 2006 58 2 266 272 10.1093/jac/dkl246 16790461
    [Google Scholar]
  121. Sanati H. Ramos C.F. Bayer A.S. Ghannoum M.A. Combination therapy with amphotericin B and fluconazole against invasive candidiasis in neutropenic-mouse and infective-endocarditis rabbit models. Antimicrob. Agents Chemother. 1997 41 6 1345 1348 10.1128/AAC.41.6.1345 9174196
    [Google Scholar]
  122. Wiederhold N.P. Najvar L.K. Fothergill A.W. The novel arylamidine T-2307 demonstrates in vitro and in vivo activity against echinocandin-resistant Candida glabrata. J. Antimicrob. Chemother. 2016 71 3 692 695 10.1093/jac/dkv398 26620102
    [Google Scholar]
  123. Jindal S. Dedhia A. Tambe S. Jerajani H. Vulvovaginal varicosities: An uncommon sight in a dermatology clinic. Indian J. Dermatol. 2014 59 2 210 10.4103/0019‑5154.127757 24700962
    [Google Scholar]
  124. Carmo P.H.F. Garcia M.T. Figueiredo-Godoi L.M.A. Lage A.C.P. Silva N.S. Junqueira J.C. Metal nanoparticles to combat Candida albicans infections: An update. Microorganisms 2023 11 1 138 10.3390/microorganisms11010138 36677430
    [Google Scholar]
  125. Gunasekaran ML.S. Premarathna A.D. Enhancing monoclonal antibodies with natural products: Mechanisms and applications. Intelligent Pharmacy 2025 3 1 84 89 10.1016/j.ipha.2024.09.002
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128388596251001075837
Loading
/content/journals/cpd/10.2174/0113816128388596251001075837
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test