Skip to content
2000
image of Mechanistic Insights into Qiangjie Xinyi Decoction for Northwest Dryness Syndrome with Allergic Rhinitis: Network Pharmacology and Experimental Validation Methods

Abstract

Introduction

Qiangjie Xinyi Decoction (QJXYD) has been effectively utilized in the clinical treatment of Northwest Dryness Syndrome (NDS) with allergic rhinitis (AR). However, its therapeutic effect lacks a theoretical basis. This study employs network pharmacology and experimental validation to investigate the therapeutic potential of QJXYD on NDS with AR and elucidate its mechanism of action.

Methods

Databases such as TCMSP, OMIM, Genecards, . were used to obtain relevant targets for traditional Chinese medicine and diseases. A protein interaction network (PPI) was constructed in the STRING database to screen the core targets of QJXYD for the prevention and treatment of AR. A drug-disease-pathway network diagram was constructed using Cytoscape 3.9.0 to identify the main active ingredients that exert efficacy. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed using the DAVID database. The significant findings were subsequently validated through molecular dynamics simulations. An NDS was established with the AR model in rats, and the network pharmacology results were validated through experiments.

Results

The key targets screened for PPI network construction included IL-6, TNF, VEGFA, . Key components such as quercetin, luteolin, and beta-sitosterol were explored in the component target pathway network diagram. GO functional enrichment mainly involved protein binding, inflammatory response, and other functions. KEGG enrichment analysis included pathways such as Th17 cell differentiation and the HIF-1 signaling pathway. Molecular docking and molecular dynamics simulations validated the research results. Animal experiments showed that QJXYD can reduce the protein and gene expression of IL-6, TNF, and VEGFA in the nasal mucosal tissue of NDS with AR rats.

Discussion

This study, utilizing network pharmacology and animal experiments, found that QJXYD may target IL-6, TNF, and other targets through components such as quercetin, thereby regulating inflammation-related pathways to treat AR. Animal experiments confirmed that it can reduce the expression of key targets in the nasal mucosa. The research system revealed the mechanism of the compound, but there are limitations, such as unverified predictions and insufficient clinical representativeness of the model, which require further research.

Conclusion

QJXYD can treat NDS with AR through multiple components, targets, and pathways, providing a theoretical basis for further research.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128394375250903053555
2025-10-20
2025-12-22
Loading full text...

Full text loading...

References

  1. Zhou M.X. General introduction to northwest dryness syndrome. Shanghai J Tradit Chin Med 2005 11 44 46
    [Google Scholar]
  2. Jiang D. Zhou M.X. Correlative case-control study on chronic rhinitis and the northwest dryness syndrome. Chin J Tradit Chin Med Pharm 2012 27 04 1123 1127
    [Google Scholar]
  3. Albloushi S. Al-Ahmad M. Exploring the latest understanding on the role of immune mediators, genetic and environmental factors in pathogenesis of allergic rhinitis: A systematic review. Frontiers in Allergy 2023 4 1223427 10.3389/falgy.2023.1223427 37692890
    [Google Scholar]
  4. Sin B. Togias A. Pathophysiology of allergic and nonallergic rhinitis. Proc. Am. Thorac. Soc. 2011 8 1 106 114 10.1513/pats.201008‑057RN 21364228
    [Google Scholar]
  5. Zhang Y. Lan F. Zhang L. Update on pathomechanisms and treatments in allergic rhinitis. Allergy 2022 77 11 3309 3319 10.1111/all.15454 35892225
    [Google Scholar]
  6. Nur Husna S.M. Tan H.T.T. Md Shukri N. Mohd Ashari N.S. Wong K.K. Allergic rhinitis: A clinical and pathophysiological overview. Front. Med. 2022 9 874114 10.3389/fmed.2022.874114 35463011
    [Google Scholar]
  7. Che Q. Luo T. Shi J. He Y. Xu D.L. Mechanisms by which traditional Chinese medicines influence the intestinal flora and intestinal barrier. Front. Cell. Infect. Microbiol. 2022 12 863779 10.3389/fcimb.2022.863779 35573786
    [Google Scholar]
  8. Zhang X. Lan F. Zhang Y. Zhang L. Chinese herbal medicine to treat allergic rhinitis: Evidence from a meta-analysis. Allergy Asthma Immunol. Res. 2018 10 1 34 42 10.4168/aair.2018.10.1.34 29178676
    [Google Scholar]
  9. Ko M. Kim Y. Kim H.H. Network pharmacology and molecular docking approaches to elucidate the potential compounds and targets of Saeng-Ji-Hwang-Ko for treatment of type 2 diabetes mellitus. Comput. Biol. Med. 2022 149 106041 10.1016/j.compbiomed.2022.106041 36049411
    [Google Scholar]
  10. Arif R. Bukhari S.A. Mustafa G. Ahmed S. Albeshr M.F. Network pharmacology and experimental validation to explore the potential mechanism of Nigella sativa for the treatment of breast cancer. Pharmaceuticals 2024 17 5 617 10.3390/ph17050617 38794187
    [Google Scholar]
  11. Karim M.R. Morshed M.N. Iqbal S. A network pharmacology and molecular-docking-based approach to identify the probable targets of short-chain fatty-acid-producing microbial metabolites against kidney cancer and inflammation. Biomolecules 2023 13 11 1678 10.3390/biom13111678 38002360
    [Google Scholar]
  12. Alam M.S. Sultana A. Sun H. Bioinformatics and network-based screening and discovery of potential molecular targets and small molecular drugs for breast cancer. Front. Pharmacol. 2022 13 942126 10.3389/fphar.2022.942126 36204232
    [Google Scholar]
  13. Zhou L. Huang Y. Han Z. Effects of rosmarinic acid on the inflammatory response in allergic rhinitis rat models after PM2.5 exposure. J. Clin. Lab. Anal. 2022 36 4 24316 10.1002/jcla.24316 35285093
    [Google Scholar]
  14. Tu W. Chen X. Wu Q. Acupoint application inhibits nerve growth factor and attenuates allergic inflammation in allergic rhinitis model rats. J. Inflamm. 2020 17 1 4 10.1186/s12950‑020‑0236‑9 32063751
    [Google Scholar]
  15. Lv G.Y. Li J. Zhou M.X. Symptom integraland life quality in resients with north-western dry syndrome (NWDS)in Hami of Xinjiang: A multiple linear regression analysis. J Nangjing Univ Tradit Chin Med 2010 26 03 181 184
    [Google Scholar]
  16. Bernstein D.I. Schwartz G. Bernstein J.A. Allergic Rhinitis: Mechanisms and treatment. Immunol. Allergy Clin. North Am. 2016 36 2 261 278 10.1016/j.iac.2015.12.004 27083101
    [Google Scholar]
  17. Liu H. The studying on relationship between the Northwest Dryness Syndrome and Allergie Rhinitis. Chronie Bronehitis 2005
    [Google Scholar]
  18. Gao Z. Fu W.Y. Sun Y. Artemisia pollen allergy in China: Component‐resolved diagnosis reveals allergic asthma patients have significant multiple allergen sensitization. Allergy 2019 74 2 284 293 10.1111/all.13597 30155917
    [Google Scholar]
  19. Ichinose T. Hiyoshi K. Yoshida S. Asian sand dust aggravates allergic rhinitis in guinea pigs induced by Japanese cedar pollen. Inhal. Toxicol. 2009 21 12 985 993 10.1080/08958370802672883 19552583
    [Google Scholar]
  20. Lim S. Jeong I. Cho J. The natural products targeting on allergic rhinitis: From traditional medicine to modern drug discovery. Antioxidants 2021 10 10 1524 10.3390/antiox10101524 34679659
    [Google Scholar]
  21. Mlcek J. Jurikova T. Skrovankova S. Sochor J. Quercetin and its anti-allergic immune response. Molecules 2016 21 5 623 10.3390/molecules21050623 27187333
    [Google Scholar]
  22. Otaki A. Furuta A. Asano K. Quercetin-induced enhancement of nasal epithelial cells’ ability to produce clara cell 10-kd protein in vitro and in vivo. Medicines 2023 10 4 28 10.3390/medicines10040028 37103783
    [Google Scholar]
  23. Zhu JX Guo MX Zhou L Evaluation of the anti-inflammatory material basis of Lagotis brachystachya in HepG2 and THP-1 cells J Ethnopharmacol 2024 318 Pt B 117055 10.1016/j.jep.2023.117055
    [Google Scholar]
  24. Dong J. Xu O. Wang J. Shan C. Ren X. Luteolin ameliorates inflammation and Th1/Th2 imbalance via regulating the TLR4/NF-κB pathway in allergic rhinitis rats. Immunopharmacol. Immunotoxicol. 2021 43 3 319 327 10.1080/08923973.2021.1905659 33900898
    [Google Scholar]
  25. Liang K.L. Yu S.J. Huang W.C. Yen H.R. Luteolin attenuates allergic nasal inflammation via inhibition of interleukin-4 in an allergic rhinitis mouse model and peripheral blood from human subjects with allergic rhinitis. Front. Pharmacol. 2020 11 291 10.3389/fphar.2020.00291 32256362
    [Google Scholar]
  26. Khan Z. Nath N. Rauf A. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem. Biol. Interact. 2022 365 110117 10.1016/j.cbi.2022.110117 35995256
    [Google Scholar]
  27. Wang R. Zeng M. Zhang B. β-Sitosterol inhibits ovalbumin-induced asthma-related inflammation by regulating dendritic cells. Immunopharmacol. Immunotoxicol. 2022 44 6 1013 1021 10.1080/08923973.2022.2102990 35850599
    [Google Scholar]
  28. Woehlk C. Ramu S. Sverrild A. Allergen immunotherapy enhances airway epithelial antiviral immunity in patients with allergic asthma (VITAL Study): A double-blind randomized controlled trial. Am. J. Respir. Crit. Care Med. 2023 207 9 1161 1170 10.1164/rccm.202209‑1708OC 36701676
    [Google Scholar]
  29. Wong C.K. Ip W.K. Kei Lam C.W. Biochemical assessment of intracellular signal transduction pathways in eosinophils: Implications for pharmacotherapy. Crit. Rev. Clin. Lab. Sci. 2004 41 1 79 113 10.1080/10408360490427624 15077724
    [Google Scholar]
  30. Jiang Y. Nguyen T.V. Jin J. Yu Z.N. Song C.H. Chai O.H. Bergapten ameliorates combined allergic rhinitis and asthma syndrome after PM2.5 exposure by balancing Treg/Th17 expression and suppressing STAT3 and MAPK activation in a mouse model. Biomed. Pharmacother. 2023 164 114959 10.1016/j.biopha.2023.114959 37267637
    [Google Scholar]
  31. Gao Z. Upur H. Jing J. Liao C. Xu D. Li F. Inflammatory responses of the rat lungs in cold-dryness syndrome in the northwest of China. J. Tradit. Chin. Med. 2012 32 2 234 237 10.1016/S0254‑6272(13)60017‑5 22876449
    [Google Scholar]
  32. Huang C. Zheng D. Fu C. Secreted S100A4 causes asthmatic airway epithelial barrier dysfunction induced by house dust mite extracts via activating VEGFA/VEGFR2 pathway. Environ. Toxicol. 2023 38 6 1431 1444 10.1002/tox.23776 36883729
    [Google Scholar]
  33. Shi C. Pei S. Ding Y. Exosomes with overexpressed miR 147a suppress angiogenesis and infammatory injury in an experimental model of atopic dermatitis. Sci. Rep. 2023 13 1 8904 10.1038/s41598‑023‑34418‑y 37264030
    [Google Scholar]
  34. Nielsen L.P. Mygind N. Dahl R. Intranasal corticosteroids for allergic rhinitis: Superior relief? Drugs 2001 61 11 1563 1579 10.2165/00003495‑200161110‑00004 11577794
    [Google Scholar]
  35. Bachert C. A review of the efficacy of desloratadine, fexofenadine, and levocetirizine in the treatment of nasal congestion in patients with allergic rhinitis. Clin. Ther. 2009 31 5 921 944 10.1016/j.clinthera.2009.05.017 19539095
    [Google Scholar]
  36. Koshi E.J. Young K. Mostales J.C. Vo K.B. Burgess L.P. Complications of corticosteroid therapy: A comprehensive literature review. J. Pharm. Technol. 2022 38 6 360 367 10.1177/87551225221116266 36311302
    [Google Scholar]
  37. Zhou H. Chen X. Zhang W.M. Zhu L.P. Cheng L. HIF-1α inhibition reduces nasal inflammation in a murine allergic rhinitis model. PLoS One 2012 7 11 48618 10.1371/journal.pone.0048618 23133644
    [Google Scholar]
  38. Choi G-S. Park H-J. Hur G-Y. Vascular endothelial growth factor in allergen‐induced nasal inflammation. Clin. Exp. Allergy 2009 39 5 655 661 10.1111/j.1365‑2222.2009.03216.x 19236408
    [Google Scholar]
  39. Ai C. Zou Y. Liu H. Yang Z. Xi J. Traditional Chinese herbal medicine for allergic diseases: A review. Am. J. Chin. Med. 2023 51 4 779 806 10.1142/S0192415X23500374 37060193
    [Google Scholar]
  40. Chiorcea-Paquim A.M. Electrochemistry of flavonoids: A comprehensive review. Int. J. Mol. Sci. 2023 24 21 15667 10.3390/ijms242115667 37958651
    [Google Scholar]
  41. Ke X. Chen Z. Wang X. Kang H. Hong S. Quercetin improves the imbalance of Th1/Th2 cells and Treg/Th17 cells to attenuate allergic rhinitis. Autoimmunity 2023 56 1 2189133 10.1080/08916934.2023.2189133 36938614
    [Google Scholar]
  42. Tang M. Zeng Y. Peng W. Pharmacological aspects of natural quercetin in rheumatoid arthritis. Drug Des. Devel. Ther. 2022 16 2043 2053 10.2147/DDDT.S364759 35791403
    [Google Scholar]
  43. Bai X. Liu P. Shen H. Zhang Q. Zhang T. Jin X. Water-extracted Lonicera japonica polysaccharide attenuates allergic rhinitis by regulating NLRP3-IL-17 signaling axis. Carbohydr. Polym. 2022 297 120053 10.1016/j.carbpol.2022.120053 36184153
    [Google Scholar]
  44. Fan Y. Shen J. Liu X. β-Sitosterol suppresses lipopolysaccharide-induced inflammation and lipogenesis disorder in bovine mammary epithelial cells. Int. J. Mol. Sci. 2023 24 19 14644 10.3390/ijms241914644 37834091
    [Google Scholar]
  45. Huerta-Yepez S. Baay-Guzman G.J. Bebenek I.G. Hypoxia Inducible Factor promotes murine allergic airway inflammation and is increased in asthma and rhinitis. Allergy 2011 66 7 909 918 10.1111/j.1398‑9995.2011.02594.x 21517900
    [Google Scholar]
  46. Chen X. Li Y.Y. Zhang W.Q. Zhang W.M. Zhou H. House dust mite extract induces growth factor expression in nasal mucosa by activating the PI3K/Akt/HIF-1α pathway. Biochem. Biophys. Res. Commun. 2016 469 4 1055 1061 10.1016/j.bbrc.2015.12.110 26740176
    [Google Scholar]
  47. Schnyder B Schnyder-Candrian S. Dual role of Th17 cytokines, IL-17A,F, and IL-22 in allergic asthma IL-17, IL-22 and their producing cells: Role in inflammation and autoimmunity 2012 143 55
    [Google Scholar]
  48. a Schütze S. Wiegmann K. Machleidt T. Krönke M. TNF-induced activation of NF-kappa B. Immunobiology. 1995;193(2-4):193-203. Madge LA, Pober JS. TNF signaling in vascular endothelial cells. Immunobiology 1995 193 2 193 203 11418010
    [Google Scholar]
  49. b Madge J.A. Pober J.S. TNF signaling in vascular endothelial cells. Exp. Mol. Pathol. 2001 70 3 317 325 10.1006/exmp.2001.2368
    [Google Scholar]
  50. Jang T.Y. Jung A.Y. Kyung T.S. Kim D.Y. Hwang J.H. Kim Y.H. Anti-allergic effect of luteolin in mice with allergic asthma and rhinitis. Cent. Eur. J. Immunol. 2017 1 1 24 29 10.5114/ceji.2017.67315 28680328
    [Google Scholar]
  51. Yang Y. Shi G. Wu X. Quercetin impedes Th17 Cell differentiation to Mitigate Arthritis involving PPARγ‐driven transactivation of SOCS3 and redistribution corepressor SMRT from PPARγ to STAT3. Mol. Nutr. Food Res. 2022 66 12 2100826 10.1002/mnfr.202100826 35384292
    [Google Scholar]
  52. Sun Y. Gao L. Hou W. Wu J. β ‐Sitosterol alleviates inflammatory response via inhibiting the activation of ERK/p38 and NF‐ κ B pathways in LPS‐exposed BV2 cells. BioMed Res. Int. 2020 2020 1 7532306 10.1155/2020/7532306 32596368
    [Google Scholar]
  53. Zhang D. Ge F. Ji J. β-sitosterol alleviates dextran sulfate sodium-induced experimental colitis via inhibition of NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Front. Pharmacol. 2023 14 1218477 10.3389/fphar.2023.1218477 37954856
    [Google Scholar]
  54. Espinosa J.M. Castellano J.M. Garcia-Rodriguez S. Quintero-Flórez A. Carrasquilla N. Perona J.S. Lipophilic bioactive compounds transported in triglyceride-rich lipoproteins modulate microglial inflammatory response. Int. J. Mol. Sci. 2022 23 14 7706 10.3390/ijms23147706 35887052
    [Google Scholar]
  55. Park I.H. Um J.Y. Cho J.S. Lee S.H. Lee S.H. Lee H.M. Histamine promotes the release of interleukin-6 via the H1R/p38 and NF-κB pathways in nasal fibroblasts. Allergy Asthma Immunol. Res. 2014 6 6 567 572 10.4168/aair.2014.6.6.567 25374757
    [Google Scholar]
  56. Vento S.I. Wolff C.H. Salven P.J. Hytönen M.L. Ertama L.O. Malmberg C.H. Vascular permeability factor/vascular endothelial growth factor in nasal polyps. Acta Otolaryngol. Suppl. 2000 543 170 174 10.1080/000164800454314 10909012
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128394375250903053555
Loading
/content/journals/cpd/10.2174/0113816128394375250903053555
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test