Skip to content
2000
image of Otic Drug Delivery Systems: Current and Future Perspectives

Abstract

Many people worldwide suffer from various ear diseases, and their treatments are still challenging. The tympanic, round, and oval windows, and the blood-perilymph barrier are the three main physical obstacles to drug delivery. Conventional methods, such as oral administration or injections, often fail to overcome these obstacles. However, local drug delivery systems present a potential solution by reducing side effects and allowing higher drug concentrations to reach the inner ear. Numerous drug delivery techniques and patents have been evaluated in clinical and research settings in recent years. Even though otic drug delivery has evolved, there are still a number of issues, and further study is required to maximize these therapeutic modalities for clinical use. This review summarizes various local drug delivery techniques. Current barriers in otic drug delivery are highlighted, as well as innovative systems for future clinical applications.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128373749251002102552
2025-10-17
2025-12-23
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128373749251002102552/BMS-CPD-2024-1280.html?itemId=/content/journals/cpd/10.2174/0113816128373749251002102552&mimeType=html&fmt=ahah

References

  1. Schaefer S. Otic regeneration and development: Advancement of stem cell-based methodology for in vitro modeling of mammalian inner ear sensory epithelia. Dissertations and Theses 2018
    [Google Scholar]
  2. Magdy M. Elmowafy E. Elassal M. Ishak R.A.H. Localized drug delivery to the middle ear: Recent advances and perspectives for the treatment of middle and inner ear diseases. J. Drug Deliv. Sci. Technol. 2022 69 103149 10.1016/j.jddst.2022.103149
    [Google Scholar]
  3. Chong L.Y. Head K. Webster K.E. Daw J. Richmond P. Snelling T. Topical versus systemic antibiotics for chronic suppurative otitis media. Cochrane Database Syst. Rev. 2021 2 2 10.1002/14651858.CD013053.pub2
    [Google Scholar]
  4. Liu H. Hao J. Li K.S. Current strategies for drug delivery to the inner ear. Acta Pharm. Sin. B 2013 3 2 86 96 10.1016/j.apsb.2013.02.003
    [Google Scholar]
  5. Valente F. Astolfi L. Simoni E. Nanoparticle drug delivery systems for inner ear therapy: An overview. J. Drug Deliv. Sci. Technol. 2017 39 28 35 10.1016/j.jddst.2017.03.003
    [Google Scholar]
  6. Hao J. Li S.K. Inner ear drug delivery: Recent advances, challenges, and perspective. Eur. J. Pharm. Sci. 2019 126 82 92 10.1016/j.ejps.2018.05.020 29792920
    [Google Scholar]
  7. Fukui H. Raphael Y. Gene therapy for the inner ear. Hear. Res. 2013 297 99 105 10.1016/j.heares.2012.11.017 23265411
    [Google Scholar]
  8. Kojima K Murata M Nishio T Kawaguchi S Ito J. Survival of fetal Rat otocyst cells grafted into the damaged inner ear. Acta Otolaryngol 2004 124 sup551 53 5 10.1080/03655230310016834 15078079
    [Google Scholar]
  9. Desai A. Ophthalmic and otic drug administration: Novel approaches and challenges. In: Novel Drug Delivery Technologies. Singapore Springer 2019 335 381 10.1007/978‑981‑13‑3642‑3_10
    [Google Scholar]
  10. Ding S. Xie S. Chen W. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear? Eur. J. Pharm. Sci. 2019 126 11 22 10.1016/j.ejps.2018.02.031 29499347
    [Google Scholar]
  11. Moher D. Liberati A. Tetzlaff J. Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009 6 7 e1000097 10.1371/journal.pmed.1000097 19621072
    [Google Scholar]
  12. Higgins JPT Altman DG Gøtzsche PC The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011 343 oct18 2 d5928 10.1136/bmj.d5928 22008217
    [Google Scholar]
  13. Sheikh A. Shabbir K. Imtiaz A. Structure and physiology of human ear involved in hearing. In: Auditory System-Function and Disorders. IntechOpen 2022 10.5772/intechopen.105466
    [Google Scholar]
  14. Anthwal N. Thompson H. The development of the mammalian outer and middle ear. J. Anat. 2016 228 2 217 232 10.1111/joa.12344 26227955
    [Google Scholar]
  15. Martinez Devesa P. Willis C.M. Capper J.W.R. External auditory canal pH in chronic otitis externa. Clin. Otolaryngol. Allied Sci. 2003 28 4 320 324 10.1046/j.1365‑2273.2003.00713.x 12871245
    [Google Scholar]
  16. Kim J.K. Cho J.H. Change of external auditory canal pH in acute otitis externa. Ann. Otol. Rhinol. Laryngol. 2009 118 11 769 772 10.1177/000348940911801104 19999361
    [Google Scholar]
  17. Ballachanda B. The human ear canal. San Diego, CA Plural Publishing, Incorporated 2013
    [Google Scholar]
  18. Bathurst B. Sound: A story of hearing lost and found. Profile Books 2017
    [Google Scholar]
  19. Yang R. Wei T. Goldberg H. Wang W. Cullion K. Kohane D.S. Getting drugs across biological barriers. Adv. Mater. 2017 29 37 1606596 10.1002/adma.201606596 28752600
    [Google Scholar]
  20. Qureishi A. Lee Y. Belfield K. Birchall J.P. Daniel M. Update on otitis media - prevention and treatment. Infect. Drug Resist. 2014 7 15 24 24453496
    [Google Scholar]
  21. Liu X. Li M. Smyth H. Zhang F. Otic drug delivery systems: Formulation principles and recent developments. Drug Dev. Ind. Pharm. 2018 44 9 1395 1408 10.1080/03639045.2018.1464022 29659300
    [Google Scholar]
  22. Wei C. Gao Z. Knabel M. Development of a drug delivering round window niche implant for cochlear pharmacotherapy. Drug Deliv. 2024 31 1 2392755 10.1080/10717544.2024.2392755 39166341
    [Google Scholar]
  23. Hofmann V.M. Schoenfeld U. Jagielski M. Pudszuhn A. Does sealing the oval window in addition to the round window bring an advantage in reserve therapy of acute idiopathic deafness? HNO 2021 69 1 31 41 10.1007/s00106‑020‑00903‑3 32728759
    [Google Scholar]
  24. Zhao Y. Gan L. Ren L. Lin Y. Ma C. Lin X. Factors influencing the blood-brain barrier permeability. Brain Res. 2022 1788 147937 10.1016/j.brainres.2022.147937 35568085
    [Google Scholar]
  25. Juhn SK Barrier systems in the inner ear. Acta Otolaryngol 1988 105 sup458 79 83 10.3109/00016488809125107 3245438
    [Google Scholar]
  26. Rybak L.P. Dhukhwa A. Mukherjea D. Ramkumar V. Local drug delivery for prevention of hearing loss. Front. Cell. Neurosci. 2019 13 300 10.3389/fncel.2019.00300 31338024
    [Google Scholar]
  27. Zhang W. Xie J. Liu H. Wang M. Blood–labyrinth barrier breakdown in Meniere’s disease. Eur. Arch. Otorhinolaryngol. 2024 281 5 2327 2332 10.1007/s00405‑023‑08353‑7 38057488
    [Google Scholar]
  28. Li W. Zheng N. Zhou Q. A state-of-the-art analysis of pharmacological delivery and artificial intelligence techniques for inner ear disease treatment. Environ. Res. 2023 236 Pt 1 116457 10.1016/j.envres.2023.116457 37459944
    [Google Scholar]
  29. Jena G.K. Patra C.N. Jammula S. Rana R. Chand S. Artificial intelligence and machine learning implemented drug delivery systems: A paradigm shift in the pharmaceutical industry. J Bio-X Res 2024 7 10.34133/jbioxresearch.001
    [Google Scholar]
  30. Hidayah N. Nassaruddin H. Mesi S. Literature review: characteristics of outer ear diseases. J Edu Health 2024 15 02 1390 1402
    [Google Scholar]
  31. Fedorova O.V. Shadrin G.B. The current views of the treatment of diffuse external otitis. Vestn. Otorinolaringol. 2016 81 3 51 53 10.17116/otorino201681351‑53 27367351
    [Google Scholar]
  32. Di Traglia R. Tudor-Green B. Muzaffar J. Borsetto D. Smith M.E. Antibiotics versus non-antibiotic treatments for acute otitis externa: A systematic review and meta-analysis. Clin. Otolaryngol. 2023 48 6 841 862 10.1111/coa.14084 37550850
    [Google Scholar]
  33. Jamal A. Alsabea A. Tarakmeh M. Safar A. Etiology, diagnosis, complications, and management of acute otitis media in children. Cureus 2022 14 8 e28019 10.7759/cureus.28019 36134092
    [Google Scholar]
  34. Leung A.K.C. Wong A.H.C. Acute otitis media in children. Recent Pat. Inflamm. Allergy Drug Discov. 2017 11 1 32 40 10.2174/1874609810666170712145332 28707578
    [Google Scholar]
  35. Zahid A. Wilson J.C. Grice I.D. Peak I.R. Otitis media: Recent advances in otitis media vaccine development and model systems. Front. Microbiol. 2024 15 1345027 10.3389/fmicb.2024.1345027 38328427
    [Google Scholar]
  36. Daniel M. Chessman R. Al-Zahid S. Biofilm eradication with biodegradable modified-release antibiotic pellets: A potential treatment for glue ear. Arch. Otolaryngol. Head Neck Surg. 2012 138 10 942 949 10.1001/archotol.2013.238 23069825
    [Google Scholar]
  37. Feng L. Ward J. Li S. Tolia G. Hao J. Choo D. Assessment of PLGA-PEG-PLGA copolymer hydrogel for sustained drug delivery in the ear. Curr. Drug Deliv. 2014 11 2 279 286 10.2174/1567201811666140118224616 24438444
    [Google Scholar]
  38. Härkönen K. Kivekäs I. Rautiainen M. Kotti V. Vasama J.P. Quality of life and hearing eight years after sudden sensorineural hearing loss. Laryngoscope 2017 127 4 927 931 10.1002/lary.26133 27328455
    [Google Scholar]
  39. van der Valk W.H. van Beelen E.S.A. Steinhart M.R. A single-cell level comparison of human inner ear organoids with the human cochlea and vestibular organs. Cell Rep. 2023 42 6 112623 10.1016/j.celrep.2023.112623 37289589
    [Google Scholar]
  40. Cunningham L.L. Tucci D.L. Hearing loss in adults. N. Engl. J. Med. 2017 377 25 2465 2473 10.1056/NEJMra1616601 29262274
    [Google Scholar]
  41. Atar O. Avraham K.B. Therapeutics of hearing loss: Expectations vs. reality. Drug Discov. Today 2005 10 19 1323 1330 10.1016/S1359‑6446(05)03618‑4 16214677
    [Google Scholar]
  42. Ralli M. Rolesi R. Anzivino R. Turchetta R. Fetoni A.R. Acquired sensorineural hearing loss in children: Current research and therapeutic perspectives. Acta Otorhinolaryngol. Ital. 2017 37 6 500 508 10.14639/0392‑100X‑1574 29327735
    [Google Scholar]
  43. Mäder K. Lehner E. Liebau A. Plontke S.K. Controlled drug release to the inner ear: Concepts, materials, mechanisms, and performance. Hear. Res. 2018 368 49 66 10.1016/j.heares.2018.03.006 29576310
    [Google Scholar]
  44. Tavazzani E. Spaiardi P. Contini D. Sancini G. Russo G. Masetto S. Precision medicine: A new era for inner ear diseases. Front. Pharmacol. 2024 15 1328460 10.3389/fphar.2024.1328460 38327988
    [Google Scholar]
  45. Ayoob A.M. Borenstein J.T. The role of intracochlear drug delivery devices in the management of inner ear disease. Expert Opin. Drug Deliv. 2015 12 3 465 479 10.1517/17425247.2015.974548 25347140
    [Google Scholar]
  46. Nguyen K. Kempfle J.S. Jung D.H. Recent advances in therapeutics and drug delivery for the treatment of inner ear diseases: A patent review (2011-2015). Expert Opin. Ther. Pat. 2016 27 2 191 202 10.1080/13543776.2017.1252751
    [Google Scholar]
  47. El Kechai N. Agnely F. Mamelle E. Nguyen Y. Ferrary E. Bochot A. Recent advances in local drug delivery to the inner ear. Int. J. Pharm. 2015 494 1 83 101 10.1016/j.ijpharm.2015.08.015 26260230
    [Google Scholar]
  48. Glueckert R. Johnson Chacko L. Rask-Andersen H. Liu W. Handschuh S. Schrott-Fischer A. Anatomical basis of drug delivery to the inner ear. Hear. Res. 2018 368 10 27 10.1016/j.heares.2018.06.017 30442227
    [Google Scholar]
  49. Hedaya M.A. Routes of drug administration. In: Pharmaceutics. Academic Press 2024 537 554 10.1016/B978‑0‑323‑99796‑6.00006‑0
    [Google Scholar]
  50. Di Stadio A. De Luca P. Koohi N. Neuroinflammatory disorders of the brain and inner ear: A systematic review of auditory function in patients with migraine, multiple sclerosis, and neurodegeneration to support the idea of an innovative ‘window of discovery’. Front. Neurol. 2023 14 1204132 10.3389/fneur.2023.1204132 37662038
    [Google Scholar]
  51. Zhuo S. Li Y. Cui B. Round window niche veil is visible on high-resolution computed tomography and a predictor of local drug efficacy to inner ear. Laryngoscope 2024 134 3 1396 1402 10.1002/lary.31006 37638702
    [Google Scholar]
  52. Nguyen T.N. Park J.S. Intratympanic drug delivery systems to treat inner ear impairments. J. Pharm. Investig. 2023 53 1 93 118 10.1007/s40005‑022‑00586‑8
    [Google Scholar]
  53. Prenzler N.K. Salcher R. Lenarz T. Gaertner L. Lesinski-Schiedat A. Warnecke A. Deep intracochlear injection of triamcinolone-acetonide with an inner ear catheter in patients with residual hearing. Front. Neurosci. 2023 17 1202429 10.3389/fnins.2023.1202429 37564369
    [Google Scholar]
  54. Schuh J.C. Special senses: Eye and ear. In: Toxicologic Pathology. CRC Press 2024 366 408 10.1201/9780429354861‑16
    [Google Scholar]
  55. Xu Y. Bei Z. Li M. Biomaterials for non-invasive trans-tympanic drug delivery: Requirements, recent advances and perspectives. J. Mater. Chem. B Mater. Biol. Med. 2024 12 32 7787 7813 10.1039/D4TB00676C 39044544
    [Google Scholar]
  56. Eng C.Y. El-Hawrani A.S. The pH of commonly used topical ear drops in the treatment of otitis externa. Ear Nose Throat J. 2011 90 4 160 162 10.1177/014556131109000406 21500167
    [Google Scholar]
  57. Khoo X. Simons E.J. Chiang H.H. Formulations for trans-tympanic antibiotic delivery. Biomaterials 2013 34 4 1281 1288 10.1016/j.biomaterials.2012.10.025 23146430
    [Google Scholar]
  58. Marom T. Yelin R. Goldfarb A. Comparison of safety and efficacy of foam-based versus solution-based ciprofloxacin for acute otitis externa. Otolaryngol. Head Neck Surg. 2010 143 4 492 499 10.1016/j.otohns.2010.06.819 20869557
    [Google Scholar]
  59. Qiu K. Mao M. Deng D. Is postauricular injection a systemic or a topical route for inner ear drug delivery? Hear. Res. 2022 422 108570 10.1016/j.heares.2022.108570 35863163
    [Google Scholar]
  60. Haynes D.S. Topical antibiotics: Strategies for avoiding ototoxicity. Ear Nose Throat J. 2004 83 1_suppl. 12 14 10.1177/014556130408301s04 14986398
    [Google Scholar]
  61. Al-mahallawi A.M. Abdelbary A.A. El-Zahaby S.A. Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: In vitro and in vivo evaluation. Int. J. Pharm. 2021 600 120490 10.1016/j.ijpharm.2021.120490 33744451
    [Google Scholar]
  62. Serban B. Stipe K. Alverson J. Johnston E. Priestley N. Serban M. A controlled antibiotic release system for the development of single-application otitis externa therapeutics. Gels 2017 3 2 19 10.3390/gels3020019 30920516
    [Google Scholar]
  63. Medina-Blasini Y. Sharman T. Otitis Externa. In: StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  64. Bruk L.A. Dunkelberger K.E. Khampang P. Controlled release of ciprofloxacin and ceftriaxone from a single ototopical administration of antibiotic-loaded polymer microspheres and thermoresponsive gel. PLoS One 2020 15 10 e0240535 10.1371/journal.pone.0240535 33045028
    [Google Scholar]
  65. Barrett-Catton E. Arrigali E.M. Serban B.A. Sandau K.C. Serban M.A. Manufacturability of a tetraethyl orthosilicate-based hydrogel for use as a single application otitis externa therapeutic. Pharmaceutics 2022 14 10 2020 10.3390/pharmaceutics14102020 36297460
    [Google Scholar]
  66. Serban B.A. Shi K. Alverson J.B. Single application cold-chain independent drug delivery system for outer ear infections. ACS Biomater. Sci. Eng. 2020 6 10 5969 5978 10.1021/acsbiomaterials.0c01223 33299928
    [Google Scholar]
  67. Wajeeha F.K. Javed I. Bioavailability and pharmacokinetics of norfloxacin after intramuscular administration in goats. Pak. Vet. J. 2006 26 1 14 16
    [Google Scholar]
  68. Shabbir Z. Ashfaq A.H. Arshad M. Riaz N. Efficacy of pyodine soaked gelfoam vs. single topical application of clotrimazole in treatment of otomycosis: A randomized controlled clinical trial. Indian J. Otolaryngol. Head Neck Surg. 2024 76 6 5091 5097 10.1007/s12070‑024‑05076‑x 39559157
    [Google Scholar]
  69. Farrah A.Y. Al-mahallawi A.M. Bashir E.B. Nesseem D.I. Investigating the potential of phosphatidylcholine-based nano-sized carriers in boosting the oto-topical delivery of caroverine: in vitro characterization, stability assessment and ex vivo transport studies. Int. J. Nanomedicine 2020 15 8921 8931 10.2147/IJN.S259172 33223827
    [Google Scholar]
  70. Peek N.F.A.W. Nell M.J. Brand R. Ototopical drops containing a novel antibacterial synthetic peptide: Safety and efficacy in adults with chronic suppurative otitis media. PLoS One 2020 15 4 e0231573 10.1371/journal.pone.0231573 32287316
    [Google Scholar]
  71. Mösges R. Baues C.M. Schröder T. Sahin K. Acute bacterial otitis externa: efficacy and safety of topical treatment with an antibiotic ear drop formulation in comparison to glycerol treatment. Curr. Med. Res. Opin. 2011 27 4 871 878 10.1185/03007995.2011.557719 21332272
    [Google Scholar]
  72. Jaudoin C. Agnely F. Nguyen Y. Ferrary E. Bochot A. Nanocarriers for drug delivery to the inner ear: Physicochemical key parameters, biodistribution, safety and efficacy. Int. J. Pharm. 2021 592 120038 10.1016/j.ijpharm.2020.120038 33159985
    [Google Scholar]
  73. Yang R. Sabharwal V. Okonkwo O.S. Treatment of otitis media by transtympanic delivery of antibiotics. Sci. Transl. Med. 2016 8 356 356ra120 10.1126/scitranslmed.aaf4363 27629487
    [Google Scholar]
  74. Liu S.S. White J.M. Chao Z. A pseudo-surfactant chemical permeation enhancer to treat otitis media via sustained transtympanic delivery of antibiotics. Adv. Healthc. Mater. 2024 13 22 2400457 10.1002/adhm.202400457 38738584
    [Google Scholar]
  75. Ku M. Cheung S. Slattery W. Pierstorff E. An extended release ciprofloxacin/dexamethasone hydrogel for otitis media. Int. J. Pediatr. Otorhinolaryngol. 2020 138 110311 10.1016/j.ijporl.2020.110311 32891940
    [Google Scholar]
  76. Al-mahallawi A.M. Khowessah O.M. Shoukri R.A. Enhanced non invasive trans -tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int. J. Pharm. 2017 522 1-2 157 164 10.1016/j.ijpharm.2017.03.005 28279741
    [Google Scholar]
  77. Al-mahallawi A.M. Khowessah O.M. Shoukri R.A. Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: In-vitro optimization, ex-vivo permeation studies, and in-vivo assessment. Int. J. Pharm. 2014 472 1-2 304 314 10.1016/j.ijpharm.2014.06.041 24971692
    [Google Scholar]
  78. Abdelbari M.A. El-Gazar A.A. Abdelbary A.A. Elshafeey A.H. Mosallam S. Investigating the potential of novasomes in improving the trans-tympanic delivery of niflumic acid for effective treatment of acute otitis media. J. Drug Deliv. Sci. Technol. 2024 98 105912 10.1016/j.jddst.2024.105912
    [Google Scholar]
  79. Abdelbary A.A. Abd-Elsalam W.H. Al-mahallawi A.M. Fabrication of levofloxacin polyethylene glycol decorated nanoliposomes for enhanced management of acute otitis media: Statistical optimization, trans-tympanic permeation and in vivo evaluation. Int. J. Pharm. 2019 559 201 209 10.1016/j.ijpharm.2019.01.037 30684597
    [Google Scholar]
  80. Park J.H. Kim H.B. Ko S.H. Effects of amniotic membrane extract on the hyperplastic response of the middle ear mucosa in a bacterially-induced otitis media rat model: A preliminary study. Clin. Exp. Otorhinolaryngol. 2020 13 4 381 388 10.21053/ceo.2019.01753 32279472
    [Google Scholar]
  81. Kurabi A. Pak K.K. Bernhardt M. Baird A. Ryan A.F. Discovery of a biological mechanism of active transport through the tympanic membrane to the middle ear. Sci. Rep. 2016 6 1 22663 10.1038/srep22663 26946957
    [Google Scholar]
  82. Kurabi A. Beasley K.A. Chang L. McCann J. Pak K. Ryan A.F. Peptides actively transported across the tympanic membrane: Functional and structural properties. PLoS One 2017 12 2 e0172158 10.1371/journal.pone.0172158 28234923
    [Google Scholar]
  83. Budhori A. Tiwari A. Tiwari V. QbD design, formulation, optimization and evaluation of trans-tympanic reverse gelatination gel of norfloxacin: investigating gene-gene interactions to enhance therapeutic efficacy. Gels 2023 9 8 657 10.3390/gels9080657 37623112
    [Google Scholar]
  84. Szeto B. Chiang H. Valentini C. Yu M. Kysar J.W. Lalwani A.K. Inner ear delivery: Challenges and opportunities. Laryngoscope Investig. Otolaryngol. 2020 5 1 122 131 10.1002/lio2.336 32128438
    [Google Scholar]
  85. Phuc Le T. Yu Y. Chan Kwon H. Shin S-A. Park Y-H. Moo Huh K. Novel self-degradable prodrug blend thermogel for intratympanic drug delivery to treat inner ear diseases. Chem. Eng. J. 2023 476 146726 10.1016/j.cej.2023.146726
    [Google Scholar]
  86. Topf M.C. Hsu D.W. Adams D.R. Rate of tympanic membrane perforation after intratympanic steroid injection. Am. J. Otolaryngol. 2017 38 1 21 25 10.1016/j.amjoto.2016.09.004 27751619
    [Google Scholar]
  87. Hoda E. Intratympanic dexamethasone injection in chronic tinnitus associated with SNHL. Med. J. Cairo Univ. 2018 86 September 2909 2916
    [Google Scholar]
  88. Rivera T. Sanz L. Camarero G. Varela-Nieto I. Drug delivery to the inner ear: Strategies and their therapeutic implications for sensorineural hearing loss. Curr. Drug Deliv. 2012 9 3 231 242 10.2174/156720112800389098 22283653
    [Google Scholar]
  89. Mikulec A.A. Hartsock J.J. Salt A.N. Permeability of the round window membrane is influenced by the composition of applied drug solutions and by common surgical procedures. Otol. Neurotol. 2008 29 7 1020 1026 10.1097/MAO.0b013e31818658ea 18758387
    [Google Scholar]
  90. Meyer T. Intratympanic treatment for tinnitus: A review. Noise Health 2013 15 63 83 90 10.4103/1463‑1741.110285 23571297
    [Google Scholar]
  91. Moatti A. Connard S. De Britto N. Surgical procedure of intratympanic injection and inner ear pharmacokinetics simulation in domestic pigs. Front. Pharmacol. 2024 15 1348172 10.3389/fphar.2024.1348172 38344174
    [Google Scholar]
  92. Wang X. Dellamary L. Fernandez R. Ye Q. LeBel C. Piu F. Principles of inner ear sustained release following intratympanic administration. Laryngoscope 2011 121 2 385 391 10.1002/lary.21370 21271594
    [Google Scholar]
  93. Lajud S.A. Han Z. Chi F.L. A regulated delivery system for inner ear drug application. J. Control. Release 2013 166 3 268 276 10.1016/j.jconrel.2012.12.031 23313113
    [Google Scholar]
  94. Dai J. Long W. Liang Z. Wen L. Yang F. Chen G. A novel vehicle for local protein delivery to the inner ear: Injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles. Drug Dev. Ind. Pharm. 2018 44 1 89 98 10.1080/03639045.2017.1373803 28851247
    [Google Scholar]
  95. Kim D.H. Nguyen T.N. Han Y.M. Local drug delivery using poly(lactic-co-glycolic acid) nanoparticles in thermosensitive gels for inner ear disease treatment. Drug Deliv. 2021 28 1 2268 2277 10.1080/10717544.2021.1992041 34668836
    [Google Scholar]
  96. Wen X. Ding S. Cai H. Nanomedicine strategy for optimizing delivery to outer hair cells by surface-modified poly(lactic/glycolic acid) nanoparticles with hydrophilic molecules. Int. J. Nanomedicine 2016 11 5959 5969 10.2147/IJN.S116867 27877041
    [Google Scholar]
  97. Wang N. Gao X. Li M. Li Y. Sun M. Use of solid lipid nanoparticles for the treatment of acute acoustic stress-induced cochlea damage. J. Nanosci. Nanotechnol. 2020 20 12 7412 7418 10.1166/jnn.2020.18522 32711608
    [Google Scholar]
  98. Cervantes B. Arana L. Murillo-Cuesta S. Bruno M. Alkorta I. Varela-Nieto I. Solid lipid nanoparticles loaded with glucocorticoids protect auditory cells from cisplatin-induced ototoxicity. J. Clin. Med. 2019 8 9 1464 10.3390/jcm8091464 31540035
    [Google Scholar]
  99. Jaudoin C. Carré F. Gehrke M. Transtympanic injection of a liposomal gel loaded with N-acetyl-L-cysteine: A relevant strategy to prevent damage induced by cochlear implantation in guinea pigs? Int. J. Pharm. 2021 604 120757 10.1016/j.ijpharm.2021.120757 34058306
    [Google Scholar]
  100. Xu X. Chen H. Wu X. Hollow mesoporous silica@ zeolitic imidazolate framework capsules and their applications for gentamicin delivery. Neural Plast. 2018 2018 1 1 9 10.1155/2018/2160854 29849553
    [Google Scholar]
  101. Yu D. Sun C. Zheng Z. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel. Int. J. Pharm. 2016 503 1-2 229 237 10.1016/j.ijpharm.2016.02.048 26972377
    [Google Scholar]
  102. Chen Y. Gu J. Liu J. Dexamethasone-loaded injectable silk-polyethylene glycol hydrogel alleviates cisplatin-induced ototoxicity. Int. J. Nanomedicine 2019 14 4211 4227 10.2147/IJN.S195336 31239676
    [Google Scholar]
  103. Gausterer J.C. Saidov N. Ahmadi N. Intratympanic application of poloxamer 407 hydrogels results in sustained N-acetylcysteine delivery to the inner ear. Eur. J. Pharm. Biopharm. 2020 150 143 155 10.1016/j.ejpb.2020.03.005 32173603
    [Google Scholar]
  104. Yoon J.Y. Yang K.J. Park S.N. Kim D.K. Kim J.D. The effect of dexamethasone/cell-penetrating peptide nanoparticles on gene delivery for inner ear therapy. Int. J. Nanomedicine 2016 11 6123 6134 10.2147/IJN.S114241 27895484
    [Google Scholar]
  105. Yoon J.Y. Yang K.J. Kim D.E. Intratympanic delivery of oligoarginine-conjugated nanoparticles as a gene (or drug) carrier to the inner ear. Biomaterials 2015 73 243 253 10.1016/j.biomaterials.2015.09.025 26414408
    [Google Scholar]
  106. Le T.P. Yu Y. Cho I.S. Injectable poloxamer hydrogel formulations for intratympanic delivery of dexamethasone. J. Korean Med. Sci. 2023 38 17 e135 10.3346/jkms.2023.38.e135 37128878
    [Google Scholar]
  107. Jung S.Y. Kim S. Kang Z. Efficiency of a dexamethasone nanosuspension as an intratympanic injection for acute hearing loss. Drug Deliv. 2022 29 1 149 160 10.1080/10717544.2021.2021320 34967280
    [Google Scholar]
  108. Salt A.N. Hartsock J. Plontke S. LeBel C. Piu F. Distribution of dexamethasone and preservation of inner ear function following intratympanic delivery of a gel-based formulation. Audiol. Neurotol. 2011 16 5 323 335 10.1159/000322504 21178339
    [Google Scholar]
  109. Yang K.J. Son J. Jung S.Y. Optimized phospholipid-based nanoparticles for inner ear drug delivery and therapy. Biomaterials 2018 171 133 143 10.1016/j.biomaterials.2018.04.038 29689410
    [Google Scholar]
  110. Chen G. Hou S.X. Hu P. Hu Q.H. Guo D.D. Xiao Y. In vitro dexamethasone release from nanoparticles and its pharmacokinetics in the inner ear after administration of the drug-loaded nanoparticles via the round window. Nan Fang Yi Ke Da Xue Xue Bao 2008 28 6 28 6
    [Google Scholar]
  111. Buckiová D. Ranjan S. Newman T.A. Minimally invasive drug delivery to the cochlea through application of nanoparticles to the round window membrane. Nanomedicine 2012 7 9 1339 1354 10.2217/nnm.12.5 22475648
    [Google Scholar]
  112. Mittal R. Pena S.A. Zhu A. Nanoparticle-based drug delivery in the inner ear: Current challenges, limitations and opportunities. Artif. Cells Nanomed. Biotechnol. 2019 47 1 1312 1320 10.1080/21691401.2019.1573182 30987439
    [Google Scholar]
  113. Sellick P. Layton M.G. Rodger J. Robertson D. A method for introducing non-silencing siRNA into the guinea pig cochlea in vivo. J. Neurosci. Methods 2008 167 2 237 245 10.1016/j.jneumeth.2007.08.026 17945347
    [Google Scholar]
  114. Plontke S.K. Hartsock J.J. Gill R.M. Salt A.N. Intracochlear drug injections through the round window membrane: Measures to improve drug retention. Audiol. Neurotol. 2016 21 2 72 79 10.1159/000442514 26905306
    [Google Scholar]
  115. Leong S. Feng S.J. Aksit A. Olson E.S. Kysar J.W. Lalwani A.K. Microneedles facilitate small-volume intracochlear delivery without physiologic injury in guinea pigs. Otol. Neurotol. 2023 44 5 513 519 10.1097/MAO.0000000000003845 37026782
    [Google Scholar]
  116. Watanabe H. Kysar J.W. Lalwani A.K. Round window membrane as a portal for inner ear therapy. Recent Adv Otolaryngol Head Neck Surg 2017 6 39
    [Google Scholar]
  117. Wazen J.M. Stevens J.P. Watanabe H. Kysar J.W. Lalwani A.K. Silver/silver chloride microneedles can detect penetration through the round window membrane. J. Biomed. Mater. Res. B Appl. Biomater. 2017 105 2 307 311 10.1002/jbm.b.33557 26506512
    [Google Scholar]
  118. Lee J.J. Jang J.H. Choo O.S. Lim H.J. Choung Y.H. Steroid intracochlear distribution differs by administration method: Systemic versus intratympanic injection. Laryngoscope 2018 128 1 189 194 10.1002/lary.26562 28304075
    [Google Scholar]
  119. Pawley D.C. Goncalves S. Bas E. Dexamethasone (DXM)-coated poly (lactic-co-glycolic acid) (PLGA) microneedles as an improved drug delivery system for intracochlear biodegradable devices. Adv. Ther. 2021 4 11 2100155 10.1002/adtp.202100155
    [Google Scholar]
  120. Feng S.J. Voruz F. Leong S. Microneedle-mediated delivery of siRNA via liposomal-based transfection for inner ear gene therapy. Otol. Neurotol. 2024 45 9 1068 1077 10.1097/MAO.0000000000004297 39165134
    [Google Scholar]
  121. Dash S. Zuo J. Steyger P.S. Local delivery of therapeutics to the cochlea using nanoparticles and other biomaterials. Pharmaceuticals 2022 15 9 1115 10.3390/ph15091115 36145336
    [Google Scholar]
  122. Prenzler N.K. Salcher R. Timm M. Gaertner L. Lenarz T. Warnecke A. Intracochlear administration of steroids with a catheter during human cochlear implantation: A safety and feasibility study. Drug Deliv. Transl. Res. 2018 8 5 1191 1199 10.1007/s13346‑018‑0539‑z 29761349
    [Google Scholar]
  123. Lippross S. Lorenz H.M. Braunschweig L. Osmotic pump with potential for bone lengthening distracts continuously in vitro and in vivo. PLoS One 2023 18 9 e0291335 10.1371/journal.pone.0291335 37708150
    [Google Scholar]
  124. Salt A.N. Plontke S.K. Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Hear. Res. 2018 368 28 40 10.1016/j.heares.2018.03.002 29551306
    [Google Scholar]
  125. Tandon V. Kang W.S. Robbins T.A. Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing. Lab Chip 2016 16 5 829 846 10.1039/C5LC01396H 26778829
    [Google Scholar]
  126. Lehner E. Gündel D. Liebau A. Plontke S. Mäder K. Intracochlear PLGA based implants for dexamethasone release: Challenges and solutions. Int. J. Pharm. X 2019 1 100015 10.1016/j.ijpx.2019.100015 31517280
    [Google Scholar]
  127. Cai H. Liang Z. Huang W. Wen L. Chen G. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int. J. Pharm. 2017 532 1 55 65 10.1016/j.ijpharm.2017.08.084 28870763
    [Google Scholar]
  128. Hütten M. Dhanasingh A. Hessler R. In vitro and in vivo evaluation of a hydrogel reservoir as a continuous drug delivery system for inner ear treatment. PLoS One 2014 9 8 e104564 10.1371/journal.pone.0104564 25105670
    [Google Scholar]
  129. Pierstorff E. Chen S. Chaparro M.P. A polymer-based extended release system for stable, long-term intracochlear drug delivery. Otol. Neurotol. 2018 39 9 1195 1202 10.1097/MAO.0000000000001977 30199502
    [Google Scholar]
  130. Feng S.J. Leong S. Aksit A. Physiologic effects of microneedle-mediated intracochlear dexamethasone injection in the guinea pig. Laryngoscope 2024 134 1 388 392 10.1002/lary.30811 37318112
    [Google Scholar]
  131. Branch M. Oglesbee V. Sterile otic formulations. US Patent 20150297588A1, 2015
    [Google Scholar]
  132. Hepler D.I. Dempsey G.L. Erxleben D.A. Paulsen N.E. Otic formulations, methods and devices. US Patent 20210106597A1, 2013
    [Google Scholar]
  133. Hepler D.I. Dempsey G.L. Erxleben D.A. Paulsen N.E. Otic formulations, methods and devices. US Patent 20240285651A1, 2024
    [Google Scholar]
  134. Yaacobi Y. System and methods for treating ear disorders. US Patent 20140107423A1, 2012
    [Google Scholar]
  135. Savel R. Zhang Z. Coleman S. Piu F. Qi H. Triglyceride otic formulations and uses thereof. US Patent 10821185B2, 2022
    [Google Scholar]
  136. Piu F. Jacques B. Tsivkovskaia N. Growth factor otic formulations. US Patent 20230190642A1 2019
    [Google Scholar]
  137. Foster A. Jacques B.E. Piu F. Growth factor formulation for condition associated with otic event. US Patent 20230122991A1 2021
    [Google Scholar]
  138. Piu F. Ye Q. Dellamary L.A. Lebel C. Methods for the treatment of pediatric otic disorders. US Patent 9486405B2 2016
    [Google Scholar]
  139. Lebel C. Otic gel formulations for treating otitis externa. US Patent 20210393511A1, 2017
    [Google Scholar]
  140. Lichter J. Trammel A.M. Piu F. Auris formulations for treating otic diseases and conditions. US Patent 11123285B2, 2021
    [Google Scholar]
  141. Lichter J. Trammel A.M. Piu F. Controlled release antimicrobial compositions and methods for the treatment of otic disorders. US Patent 20160038594A, 2016
    [Google Scholar]
  142. Lichter J. Trammel A.M. Piu F. Auris formulations for treating otic diseases and conditions. US Patent 20220040096A1, 2022
    [Google Scholar]
  143. Maier TA Ear spray device and ear protection composition for preventing water related ear canal disorders. EP Patent 3795144C0, 2021
    [Google Scholar]
  144. Lichter J. Trammel A.M. Piu F. Controlled release immunomodulator compositions and methods for the treatment of otic disorders. US Patent 8648119B2, 2014
    [Google Scholar]
  145. Lichter J Vollrath B Trammel AM Auris formulation for treating otic disease and condition and application related to auris formulation. JP Patent 2014058557A, 2014
    [Google Scholar]
  146. Bishop K.M. Foster A. Otic formulations for drug-induced ototoxicity. US Patent 20210186943A1, 2019
    [Google Scholar]
  147. Balm A.J.M. Beijnen J.H. Nuijen B. Schellens J.H.M. Zuur C.L. Sodium thiosulfate gel for preventing or reducing hearing loss. US Patent 20220296637A1, 2020
    [Google Scholar]
  148. Bausch A Zeller M Gel formulation for preventing or treating hearing loss. WO Patent 2019154895A1, 2019
    [Google Scholar]
  149. de Juan E. Erickson S. Limb C. Peris H. Ayoob A. Levering V. Systems and methods for treating hearing loss. US Patent 11467386B2, 2024
    [Google Scholar]
  150. Transtympanic Gentamicin vs. steroids in refractory meniere's disease 2025 Available from: https://clinicaltrials.gov/study/
  151. ACOU085 for hearing loss prevention in testicular cancer patients receiving cisplatin (PROHEAR) 2025 Available from: https://ctv.veeva.com/study/acou085-for-hearing-loss-prevention-in-testicular-cancer-patients-receiving-cisplatin
  152. Intratympanic Steroids for Sudden Hearing Loss Intratympanic Steroids for Sudden Hearing Loss 2019 Available from: https://www.clinicaltrials.gov/study/NCT04129697
  153. Goodall A.F. Siddiq M.A. Current understanding of the pathogenesis of autoimmune inner ear disease: A review. Clin. Otolaryngol. 2015 40 5 412 419 10.1111/coa.12432 25847404
    [Google Scholar]
  154. Holley M.C. Keynote review: The auditory system, hearing loss and potential targets for drug development. Drug Discov. Today 2005 10 19 1269 1282 10.1016/S1359‑6446(05)03595‑6 16214671
    [Google Scholar]
  155. De Paolis A. Watanabe H. Nelson J.T. Bikson M. Packer M. Cardoso L. Human cochlear hydrodynamics: A high-resolution μCT-based finite element study. J. Biomech. 2017 50 209 216 10.1016/j.jbiomech.2016.11.020 27855986
    [Google Scholar]
  156. Salt A.N. Plontke S.K.R. Local inner-ear drug delivery and pharmacokinetics. Drug Discov. Today 2005 10 19 1299 1306 10.1016/S1359‑6446(05)03574‑9 16214674
    [Google Scholar]
  157. Leong S. Aksit A. Feng S.J. Kysar J.W. Lalwani A.K. Inner ear diagnostics and drug delivery via microneedles. J. Clin. Med. 2022 11 18 5474 10.3390/jcm11185474 36143121
    [Google Scholar]
  158. Pritz C.O. Dudás J. Rask-Andersen H. Schrott-Fischer A. Glueckert R. Nanomedicine strategies for drug delivery to the ear. Nanomedicine (Lond.) 2013 8 7 1155 1172 10.2217/nnm.13.104 23837855
    [Google Scholar]
  159. Khorrami M. Pastras C. Haynes P.A. Mirzaei M. Asadnia M. The current state of proteomics and metabolomics for inner ear health and disease. Proteomes 2024 12 2 17 10.3390/proteomes12020017 38921823
    [Google Scholar]
  160. Mavel S. Lefèvre A. Bakhos D. Dufour-Rainfray D. Blasco H. Emond P. Validation of metabolomics analysis of human perilymph fluid using liquid chromatography-mass spectroscopy. Hear. Res. 2018 367 129 136 10.1016/j.heares.2018.05.016 29871827
    [Google Scholar]
  161. Jung D.H. Rauch S.D. Clinical trials for inner ear drugs: Design and execution challenges. Hear. Res. 2018 368 123 126 10.1016/j.heares.2018.03.020 29602591
    [Google Scholar]
  162. Sakamoto T Nakagawa T Horie RT Inner ear drug delivery system from the clinical point of view. Acta Otolaryngol 2010 130 sup563 101 4 10.3109/00016489.2010.486801 20879828
    [Google Scholar]
  163. Liebau A. Pogorzelski O. Salt A.N. Plontke S.K. Hearing changes after intratympanically applied steroids for primary therapy of sudden hearing loss: a meta-analysis using mathematical simulations of drug delivery protocols. Otol. Neurotol. 2017 38 1 19 30 10.1097/MAO.0000000000001254 27779563
    [Google Scholar]
  164. Plontke S. Siedow N. Hahn H. Wegener R. Zenner H.P. Salt A.N. 1D-and 3D- computer simulation for experimental planning and interpretation of pharmacokinetic studies in the inner ear after local drug delivery. Altern. Anim. Exp. 2004 21 77 85 15057412
    [Google Scholar]
  165. Salt A.N. Plontke S.K. Endolymphatic hydrops: Pathophysiology and experimental models. Otolaryngol. Clin. North Am. 2010 43 5 971 983 10.1016/j.otc.2010.05.007 20713237
    [Google Scholar]
  166. Das K. Xu H. Gu J. Coaxially electrocentrifugally spun ciprofloxacin/paclitaxel-loaded pullulan/PLGA core/sheath nanofibers and their in vitro cytotoxic efficacy toward melanoma cells. J. Appl. Polym. Sci. 2025 142 16 e56759 10.1002/app.56759
    [Google Scholar]
  167. Chen N. Diao T. Zhang J. Yu L. Ototoxic effects of unilateral postauricular neomycin administration on the inner ears of Guinea pigs. Acta Otolaryngol. 2025 145 1 93 100 10.1080/00016489.2024.2436076 39663200
    [Google Scholar]
  168. Olivier C. Beck C. Risoud M. Perilymph sampling in Mongolian gerbil, technical note and procedure evaluation. Hear. Res. 2025 458 109188 10.1016/j.heares.2025.109188 39874937
    [Google Scholar]
  169. Zagalo D.M. Simões S. Sousa J. Regulatory science approach in pharmaceutical development of follow-on versions of non-biological complex drug products. J. Pharm. Sci. 2022 111 10 2687 2713 10.1016/j.xphs.2022.07.015 35901943
    [Google Scholar]
  170. Klein K. Borchard G. Shah V.P. Flühmann B. McNeil S.E. de Vlieger J.S.B. A pragmatic regulatory approach for complex generics through the U.S. FDA 505(j) or 505(b)(2) approval pathways. Ann. N. Y. Acad. Sci. 2021 1502 1 5 13 10.1111/nyas.14662 34296458
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128373749251002102552
Loading
/content/journals/cpd/10.2174/0113816128373749251002102552
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: patents ; Ear disease ; clinical trials ; nanomedicine ; otic drug delivery ; ML driven drug
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test