Skip to content
2000
image of Review on Molecular Targeting, Pharmacological Action, and Advanced Biopharmaceutical Aspects for the Management of Alzheimer’s Disease

Abstract

Alzheimer’s disease (AD) is an ongoing progressive neurodegenerative disorder that predominantly affects elderly individuals. A systematic literature search was conducted using electronic databases such as PubMed, Scopus, Web of Science, and Google Scholar. Peer-reviewed articles, clinical trial reports, and experimental studies published in English within the last 15 years were considered. The keywords used for the search included “Alzheimer’s disease,” “amyloid-beta,” “tau protein,” “neuroinflammation,” “immunotherapy,” “drug repurposing,” and “experimental treatment strategies.” It is the most common form of dementia, ultimately leading to death in advanced stages. Recent advances in AD have featured the expected role of anti-amyloid, anti-tau, and anti-inflammatory therapies. Nonetheless, these treatments are still in various stages of preclinical and clinical trials. Moreover, drug repurposing is another promising avenue to identify effective therapeutic alternatives for Alzheimer's disease. This review highlights the underlying pathophysiological mechanisms of AD along with the limits of existing treatments. It also includes two methodologies, specifically; active immunotherapy and passive immunotherapy. Active immunotherapy tactics include the administration of antigens to stimulate antibody production. Additionally, this study discusses several experimental drugs and novel pharmaceutical approaches for AD.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128387875250805042824
2025-11-05
2025-12-16
Loading full text...

Full text loading...

References

  1. Ferri C.P. Prince M. Brayne C. Global prevalence of dementia: A Delphi consensus study. Lancet 2005 366 9503 2112 2117 10.1016/S0140‑6736(05)67889‑0 16360788
    [Google Scholar]
  2. Birks J.S. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006 2006 1 CD005593 10.1002/14651858.CD005593 16437532
    [Google Scholar]
  3. Areosa S.A. Sherriff F. McShane R. Memantine for dementia. Cochrane Database Syst. Rev. 2005 3 CD003154 10.1002/14651858.CD003154.pub4 16034889
    [Google Scholar]
  4. Ballard C. Corbett A. Management of neuropsychiatric symptoms in people with dementia. CNS Drugs 2010 24 9 1 10.2165/11319240‑000000000‑00000 20806986
    [Google Scholar]
  5. Aanandhi M.V. Niventhi A. Rujaswini T. Hemalatha C.N. Praveen D. A comprehensive review on the role of tau proteins in Alzheimer’s pathology. Res J Pharm Technol 2018 11 2 788 790 10.5958/0974‑360X.2018.00149.X
    [Google Scholar]
  6. Pai V. Shreedhara C.S. Chandrashekar K.S. Pai A. Kamath V. Cognitive enhancement and neuroprotective effects of ancient ayurvedic medicinal plant Celastrus Paniculatus: An overview. Res J Pharm Technol 2016 9 8 1295 1298 10.5958/0974‑360X.2016.00246.8
    [Google Scholar]
  7. Thomas P. Jeyarani S.V. Choephel T. Manisha C. Antony J. Recent plant based remedies for Alzheimer’s disease, Parkinson’s disease and cerebral ischemic stroke. Res J Pharm Technol 2019 12 8 3951 3959 10.5958/0974‑360X.2019.00681.4
    [Google Scholar]
  8. Alzheimer's disease Alzheimer's disease 2025 Available from: https://www.alzheimers.org.uk/about-dementia/types-dementia/alzheimers-disease
  9. Dementia. 2021 Available from: https://www.who.int/health-topics/dementia#tab=tab_1
  10. Prince M. Comas-Herrera A. Knapp M. Guerchet M. Karagiannidou M. World Alzheimer report 2016 improving healthcare for people living with dementia coverage, quality and costs now and. In: The Future. London Alzheimer’s Disease International 2016
    [Google Scholar]
  11. Martins R.N. Villemagne V. Sohrabi H.R. Alzheimer’s disease: A journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies—gains from AIBL and DIAN cohort studies. J. Alzheimers Dis. 2018 62 3 965 992 10.3233/JAD‑171145 29562546
    [Google Scholar]
  12. Mahendran R. Jeyabasker S. Francis A. Manoharan S. Homology modeling and in silico docking analysis of BDNF in the treatment of Alzheimer’s disease. Res J Pharm Technol 2017 10 9 2899 2906 10.5958/0974‑360X.2017.00512.1
    [Google Scholar]
  13. Lanctôt K.L. Amatniek J. Ancoli-Israel S. Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms. Alzheimers Dement. 2017 3 3 440 449 10.1016/j.trci.2017.07.001 29067350
    [Google Scholar]
  14. Hampel H. Toschi N. Babiloni C. Revolution of Alzheimer precision neurology. Passageway of systems biology and neurophysiology. J. Alzheimers Dis. 2018 64 s1 S47 S105 10.3233/JAD‑179932 29562524
    [Google Scholar]
  15. Chen R. Chan P.T. Chu H. Treatment effects between monotherapy of donepezil versus combination with memantine for Alzheimer disease: A meta-analysis. PLoS One 2017 12 8 e0183586 10.1371/journal.pone.0183586 28827830
    [Google Scholar]
  16. Chitra V. Narayanan J. In vitroscreening for anti-cholinesterase and anti oxidant activity of extract of Garcinia hanburyi. Research Journal of Pharmacy and Technology 2018 11 7 2918 2921 10.5958/0974‑360X.2018.00538.3
    [Google Scholar]
  17. Sharma V.K. Current therapeutic strategies for Alzheimer’s disease: A Lost direction or a hope remains? Res J Pharmacol Pharmacodyn 2010 2 3 215 220
    [Google Scholar]
  18. Bartus R.T. Dean R.L. Beer B. Lippa A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982 217 4558 408 414 10.1126/science.7046051 7046051
    [Google Scholar]
  19. Cummings JL Back C The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer’s disease. Am J Geriatr Psychiatry 1998 6 2 S64 78.(Suppl. 1) 10.1097/00019442‑199821001‑00009 9581223
    [Google Scholar]
  20. Farlow M. A clinical overview of cholinesterase inhibitors in Alzheimer’s disease. Int. Psychogeriatr. 2002 14 S1 93 126 12636182
    [Google Scholar]
  21. Alahmari A. Blood-brain barrier overview: Structural and functional correlation. Neural Plast. 2021 2021 1 10 10.1155/2021/6564585 34912450
    [Google Scholar]
  22. Cummings J. Jones R. Wilkinson D. Effect of donepezil on cognition in severe Alzheimer’s disease: A pooled data analysis. J. Alzheimers Dis. 2010 21 3 843 851 10.3233/JAD‑2010‑100078 20634594
    [Google Scholar]
  23. Alfirevic A. Mills T. Carr D. Tacrine-induced liver damage: An analysis of 19 candidate genes. Pharmacogenet. Genomics 2007 17 12 1091 1100 10.1097/FPC.0b013e3282f1f12b 18004213
    [Google Scholar]
  24. Alva G. Cummings J.L. Relative tolerability of Alzheimer’s disease treatments. Psychiatry 2008 5 11 27 36 19724715
    [Google Scholar]
  25. Winblad B. Kawata A.K. Beusterien K.M. Caregiver preference for rivastigmine patch relative to capsules for treatment of probable Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2007 22 5 485 491 10.1002/gps.1806 17407176
    [Google Scholar]
  26. Gill S.S. Anderson G.M. Fischer H.D. Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: A population-based cohort study. Arch. Intern. Med. 2009 169 9 867 873 10.1001/archinternmed.2009.43 19433698
    [Google Scholar]
  27. Hansen R.A. Gartlehner G. Webb A.P. Morgan L.C. Moore C.G. Jonas D.E. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Clin. Interv. Aging 2008 3 2 211 225 18686744
    [Google Scholar]
  28. Qaseem A. Snow V. Cross J.T. Current pharmacologic treatment of dementia: A clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann. Intern. Med. 2008 148 5 370 378 10.7326/0003‑4819‑148‑5‑200803040‑00008 18316755
    [Google Scholar]
  29. Farlow M. Anand R. Messina J. Hartman R. Veach J. A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer’s disease. Eur. Neurol. 2000 44 4 236 241 10.1159/000008243 11096224
    [Google Scholar]
  30. Almkvist O. Darreh-Shori T. Stefanova E. Spiegel R. Nordberg A. Preserved cognitive function after 12 months of treatment with rivastigmine in mild Alzheimer’s disease in comparison with untreated AD and MCI patients. Eur. J. Neurol. 2004 11 4 253 261 10.1046/j.1468‑1331.2003.00757.x 15061827
    [Google Scholar]
  31. McShane R. Memantine for dementia. Cochrane Database Syst. Rev. 2006 2 CD003154 10.1002/14651858.CD003154.pub5 16625572
    [Google Scholar]
  32. Maidment I.D. Fox C.G. Boustani M. Rodriguez J. Brown R.C. Katona C.L. Efficacy of memantine on behavioral and psychological symptoms related to dementia: A systematic meta-analysis. Ann. Pharmacother. 2008 42 1 32 38 10.1345/aph.1K372 18056833
    [Google Scholar]
  33. Ashrafi H. Azadi A. Mohammadi-Samani S. Hamidi M. New candidate delivery system for Alzheimer’s disease: Deferoxamine nanogels. Biointerface Res. Appl. Chem. 2020 10 6 7106 7119 10.33263/BRIAC106.71067119
    [Google Scholar]
  34. Tariot P.N. Farlow M.R. Grossberg G.T. Graham S.M. McDonald S. Gergel I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: A randomized controlled trial. JAMA 2004 291 3 317 324 10.1001/jama.291.3.317 14734594
    [Google Scholar]
  35. Feldman H.H. Schmitt F.A. Olin J.T. Activities of daily living in moderate-to-severe Alzheimer disease: An analysis of the treatment effects of memantine in patients receiving stable donepezil treatment. Alzheimer Dis. Assoc. Disord. 2006 20 4 263 268 10.1097/01.wad.0000213859.35355.59 17132971
    [Google Scholar]
  36. Howard R. McShane R. Lindesay J. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 2012 366 10 893 903 10.1056/NEJMoa1106668 22397651
    [Google Scholar]
  37. Farlow M.R. Alva G. Meng X. Olin J.T. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: A post hoc analysis. Curr. Med. Res. Opin. 2010 26 2 263 269 10.1185/03007990903434914 19929593
    [Google Scholar]
  38. Zec R.F. Burkett N.R. Non-pharmacological and pharmacological treatment of the cognitive and behavioral symptoms of Alzheimer disease. NeuroRehabilitation 2008 23 5 425 438 10.3233/NRE‑2008‑23506 18957729
    [Google Scholar]
  39. Sharma R. Kour A. Dewangan H.K. Enhancements in Parkinson’s disease management: Leveraging levodopa optimization and surgical breakthroughs. Curr. Drug Targets 2025 26 1 17 32 10.2174/0113894501319817240919103802 39350551
    [Google Scholar]
  40. Banerjee S. Hellier J. Dewey M. Sertraline or mirtazapine for depression in dementia (HTA-SADD): A randomised, multicentre, double-blind, placebo-controlled trial. Lancet 2011 378 9789 403 411 10.1016/S0140‑6736(11)60830‑1 21764118
    [Google Scholar]
  41. Cummings J.L. The black book of Alzheimer’s disease, part 1. Prim. Psychiatry 2008 15 2 66 76
    [Google Scholar]
  42. Golde T.E. The Abeta hypothesis: Leading us to rationally-designed therapeutic strategies for the treatment or prevention of Alzheimer disease. Brain Pathol. 2005 15 1 84 87 10.1111/j.1750‑3639.2005.tb00104.x 15779241
    [Google Scholar]
  43. Cummings J.L. Optimizing phase II of drug development for disease‐modifying compounds. Alzheimers Dement. 2008 4 S1 S15 S20 10.1016/j.jalz.2007.10.002 18631992
    [Google Scholar]
  44. Grossman I. Lutz M.W. Crenshaw D.G. Saunders A.M. Burns D.K. Roses A.D. Alzheimer’s disease: Diagnostics, prognostics and the road to prevention. EPMA J. 2010 1 2 293 303 10.1007/s13167‑010‑0024‑3 21124753
    [Google Scholar]
  45. Thal L.J. Kantarci K. Reiman E.M. The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2006 20 1 6 15 10.1097/01.wad.0000191420.61260.a8 16493230
    [Google Scholar]
  46. Lane R.F. Dacks P.A. Shineman D.W. Fillit H.M. Diverse therapeutic targets and biomarkers for Alzheimer’s disease and related dementias: Report on the Alzheimer’s Drug Discovery Foundation 2012 International Conference on Alzheimer’s Drug Discovery. Alzheimers Res. Ther. 2013 Feb 4 5 1 5 10.1186/alzrt159 23374760
    [Google Scholar]
  47. Vos S.J.B. Gordon B.A. Su Y. NIA-AA staging of preclinical Alzheimer disease: Discordance and concordance of CSF and imaging biomarkers. Neurobiol. Aging 2016 44 1 8 10.1016/j.neurobiolaging.2016.03.025 27318129
    [Google Scholar]
  48. Tanwir S.E. Kumar A. Recent advances in the quest for treatment and management of Alzheimer and other dementia. Open J. Med. Chem. 2019 9 1 1 35 10.4236/ojmc.2019.91001
    [Google Scholar]
  49. Delrieu J. Ousset P.J. Voisin T. Vellas B. Amyloid beta peptide immunotherapy in Alzheimer disease. Rev. Neurol. 2014 170 12 739 748 10.1016/j.neurol.2014.10.003 25459121
    [Google Scholar]
  50. Gibbons G.S. Banks R.A. Kim B. Detection of Alzheimer disease (AD)-specific tau pathology in AD and nonAD tauopathies by immunohistochemistry with novel conformation-selective tau antibodies. J. Neuropathol. Exp. Neurol. 2018 77 3 216 228 10.1093/jnen/nly010 29415231
    [Google Scholar]
  51. Dhote L Dewangan HK Advancements in managing schizophrenia through classical approaches, mechanisms, and deep brain stimulation. Curr Pharm Des 2025 2025 10.2174/0113816128341348241224065313 39871564
    [Google Scholar]
  52. Khedkar M.A. Sharma V. Anjum M. Paliperidone-loaded nose to brain targeted NLCS: Optimisation, evaluation, histopathology and pharmacokinetic estimation for schizophrenia. J. Microencapsul. 2024 41 8 832 843 10.1080/02652048.2024.2426545 39548964
    [Google Scholar]
  53. Medina M. An overview on the clinical development of tau-based therapeutics. Int. J. Mol. Sci. 2018 19 4 1160 10.3390/ijms19041160 29641484
    [Google Scholar]
  54. Wang Y. Mandelkow E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016 17 1 22 35 10.1038/nrn.2015.1 26631930
    [Google Scholar]
  55. Congdon E.E. Sigurdsson E.M. Tau-targeting therapies for Alzheimer disease. Nat. Rev. Neurol. 2018 14 7 399 415 10.1038/s41582‑018‑0013‑z 29895964
    [Google Scholar]
  56. Dai C-L. Targeting tau phosphorylation and aggregation in Alzheimer’s disease. Front. Aging Neurosci. 2022 14 836601 10.3389/fnagi.2022.836601
    [Google Scholar]
  57. Rai A. Shah K. Dewangan H.K. Review on the artificial intelligence-based nanorobotics targeted drug delivery system for brain-specific targeting. Curr. Pharm. Des. 2023 29 44 3519 3531 10.2174/0113816128279248231210172053 38111114
    [Google Scholar]
  58. Iqbal K. Liu F. Gong C.X. Tau and neurodegenerative disease: The story so far. Nat. Rev. Neurol. 2016 12 1 15 27 10.1038/nrneurol.2015.225 26635213
    [Google Scholar]
  59. Goedert M. Eisenberg D.S. Crowther R.A. Propagation of tau aggregates and neurodegeneration. Annu. Rev. Neurosci. 2017 40 1 189 210 10.1146/annurev‑neuro‑072116‑031153 28772101
    [Google Scholar]
  60. Arendt T. Stieler J.T. Holzer M. Tau and tauopathies. Brain Res. Bull. 2016 126 Pt 3 238 292 10.1016/j.brainresbull.2016.08.018 27615390
    [Google Scholar]
  61. Spillantini M.G. Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013 12 6 609 622 10.1016/S1474‑4422(13)70090‑5 23684085
    [Google Scholar]
  62. Tomar S. Yadav R.K. Shah K. Dewangan H.K. A comprehensive review on carrier mediated nose to brain targeting: Emphasis on molecular targets, current trends, future prospects, and challenges. Int. J. Polym. Mater. Polym Biomater 2022 73 2 91 103 10.1080/00914037.2022.2124255
    [Google Scholar]
  63. Lo Cascio F. Kayed R. Azure C targets and modulates toxic tau oligomers. ACS Chem. Neurosci. 2018 9 6 1317 1326 10.1021/acschemneuro.7b00501 29378132
    [Google Scholar]
  64. Liu F. Dong B. Yang X. NO inhibitors function as potential anti-neuroinflammatory agents for AD from the flowers of Inula japonica. Bioorg. Chem. 2018 77 168 175 10.1016/j.bioorg.2018.01.009 29421695
    [Google Scholar]
  65. Chen C. Li X. Gao P. Baicalin attenuates Alzheimer-like pathological changes and memory deficits induced by amyloid β1–42 protein. Metab. Brain Dis. 2015 30 2 537 544 10.1007/s11011‑014‑9601‑9 25108596
    [Google Scholar]
  66. van Gijsel-Bonnello M. Baranger K. Benech P. Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer’s disease: Alleviation by pantethine. PLoS One 2017 12 4 e0175369 10.1371/journal.pone.0175369 28410378
    [Google Scholar]
  67. Takahashi J.A. Sande D. da Silva Lima G. Moura M.A. Lima M.T. Fungal metabolites as promising new drug leads for the treatment of Alzheimer’s disease. In: Studies in Natural Products Chemistry Elsevier 2019 62 1 3 10.1016/B978‑0‑444‑64185‑4.00001‑0
    [Google Scholar]
  68. Paley E.L. Merkulova-Rainon T. Faynboym A. Shestopalov V.I. Aksenoff I. Geographical distribution and diversity of gut microbial NADH: Ubiquinone oxidoreductase sequence associated with Alzheimer’s disease. J. Alzheimers Dis. 2018 61 4 1531 1540 10.3233/JAD‑170764 29376868
    [Google Scholar]
  69. Vanshita G.A. Shah K. Sharma R. Dewangan H.K. Review: Recent advances of nanotechnology in brain targeting. Curr. Nanosci. 2022 19 350 361 10.2174/1570180819999220204110306
    [Google Scholar]
  70. Hong-Qi Y. Zhi-Kun S. Sheng-Di C. Current advances in the treatment of Alzheimer’s disease: Focused on considerations targeting Aβ and tau. Transl. Neurodegener. 2012 1 1 21 10.1186/2047‑9158‑1‑21 23210837
    [Google Scholar]
  71. Orgogozo J.M. Gilman S. Dartigues J.F. Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 2003 61 1 46 54 10.1212/01.WNL.0000073623.84147.A8 12847155
    [Google Scholar]
  72. Holmes C. Boche D. Wilkinson D. Long-term effects of Aβ42 immunisation in Alzheimer’s disease: Follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008 372 9634 216 223 10.1016/S0140‑6736(08)61075‑2 18640458
    [Google Scholar]
  73. Yadav R.K. Shah K. Dewangan H.K. Intranasal drug delivery of sumatriptan succinate-loaded polymeric solid lipid nanoparticles for brain targeting. Drug Dev. Ind. Pharm. 2022 48 1 21 28 10.1080/03639045.2022.2090575 35703403
    [Google Scholar]
  74. Endo A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res. 2004 45 9 1583 1593 10.1194/jlr.R400004‑JLR200 15102877
    [Google Scholar]
  75. Youdim M.B.H. Edmondson D. Tipton K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 2006 7 4 295 309 10.1038/nrn1883 16552415
    [Google Scholar]
  76. Tipton K.F. Youdim M.B.H. Monoamine oxidase inhibitors: Pharmacology and therapeutic use. CNS Drugs 2001 15 8 617 631 10.2165/00023210‑200115080‑00004
    [Google Scholar]
  77. Youdim MBH Bakhle YS Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 2006 147 S1 S287 96.(Suppl. 1) 10.1038/sj.bjp.0706464 16402116
    [Google Scholar]
  78. Deepmala. Monoamine oxidase inhibitors for the treatment of depression: A review of safety and tolerability. Psychiatry Res. 2014 219 3 687 693 10.1016/j.psychres.2014.05.005 25041984
    [Google Scholar]
  79. Deepika D. Dewangan H.K. Maurya L. Singh S. Intranasal drug delivery of frovatriptan succinate-loaded polymeric nanoparticles for brain targeting. J. Pharm. Sci. 2019 108 2 851 859 10.1016/j.xphs.2018.07.013 30053555
    [Google Scholar]
  80. Weinreb O. Amit T. Bar-Am O. Youdim M.B. Ladostigil: A novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr. Drug Targets 2012 13 4 483 494 10.2174/138945012799499794 22280345
    [Google Scholar]
  81. Szekely C.A. Thorne J.E. Zandi P.P. Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: A systematic review. Neuroepidemiology 2004 23 4 159 169 10.1159/000078501 15279021
    [Google Scholar]
  82. Frick K.M. Estrogens and age-related memory decline in rodents: What have we learned and where do we go from here? Horm. Behav. 2009 55 1 2 23 10.1016/j.yhbeh.2008.08.015 18835561
    [Google Scholar]
  83. Daniel J.M. Effects of oestrogen on cognition: What have we learned from basic research? J. Neuroendocrinol. 2006 18 10 787 795 10.1111/j.1365‑2826.2006.01471.x 16965297
    [Google Scholar]
  84. Merlo S. Sortino M.A. Estrogen activates matrix metalloproteinases-2 and -9 to increase beta amyloid degradation. Mol. Cell. Neurosci. 2012 49 4 423 429 10.1016/j.mcn.2012.02.005 22402435
    [Google Scholar]
  85. Henderson V.W. Estrogen-containing hormone therapy and Alzheimer’s disease risk: Understanding discrepant inferences from observational and experimental research. Neuroscience 2006 138 3 1031 1039 10.1016/j.neuroscience.2005.06.017 16310963
    [Google Scholar]
  86. Wharton W. Baker L.D. Gleason C.E. Short-term hormone therapy with transdermal estradiol improves cognition for postmenopausal women with Alzheimer’s disease: Results of a randomized controlled trial. J. Alzheimers Dis. 2011 26 3 495 505 10.3233/JAD‑2011‑110341 21694454
    [Google Scholar]
  87. Graham A. Martin-Ruiz C. Teaktong T. Ray M. Court J. Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders. Curr. Drug Targets CNS Neurol. Disord. 2002 1 4 387 397 10.2174/1568007023339283 12769611
    [Google Scholar]
  88. Rangani R.J. Upadhya M.A. Nakhate K.T. Kokare D.M. Subhedar N.K. Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer’s disease. Peptides 2012 33 2 317 328 10.1016/j.peptides.2012.01.004 22266216
    [Google Scholar]
  89. Chen K.S. Nishimura M.C. Armanini M.P. Crowley C. Spencer S.D. Phillips H.S. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J. Neurosci. 1997 17 19 7288 7296 10.1523/JNEUROSCI.17‑19‑07288.1997 9295375
    [Google Scholar]
  90. Rosenberg R.N. Translational research on the way to effective therapy for Alzheimer disease. Arch. Gen. Psychiatry 2005 62 11 1186 1192 10.1001/archpsyc.62.11.1186 16275806
    [Google Scholar]
  91. Goyal M. Singh S. Sibinga E.M.S. Meditation programs for psychological stress and well-being: A systematic review and meta-analysis. JAMA Intern. Med. 2014 174 3 357 368 10.1001/jamainternmed.2013.13018 24395196
    [Google Scholar]
  92. Kabat-Zinn J. Mindfulness-based interventions in context: Past, present, and future. Clin. Psychol. Sci. Pract. 2003 10 2 144 156 10.1093/clipsy.bpg016
    [Google Scholar]
  93. Posadzki P. Tai Chi for the prevention of falls in older adults: Systematic review and meta-analysis. Prev. Med. 2012 55 5 222 228 10.1016/j.ypmed.2012.07.022
    [Google Scholar]
  94. Gaul C. Evaluation of a holistic integrative therapy concept in chronic headache: A randomized controlled trial. J. Headache Pain 2011 12 4 455 462 10.1007/s10194‑011‑0347‑7 21544647
    [Google Scholar]
  95. Liu X. Effects of music therapy on depression: A meta-analysis of randomized controlled trials. Psychiatr. Q. 2019 90 569 582 10.1007/s11126‑019‑09670‑0
    [Google Scholar]
  96. Wang T. Wang C.Y. Shan Z.Y. Teng W.P. Wang Z.Y. Clioquinol reduces zinc accumulation in neuritic plaques and inhibits the amyloidogenic pathway in AβPP/PS1 transgenic mouse brain. J. Alzheimers Dis. 2012 29 3 549 559 10.3233/JAD‑2011‑111874 22269164
    [Google Scholar]
  97. Cuijpers P. van Straten A. Bohlmeijer E. Hollon S.D. Andersson G. The effects of psychotherapy for adult depression are overestimated: A meta-analysis of study quality and effect size. Psychol. Med. 2010 40 2 211 223 10.1017/S0033291709006114 19490745
    [Google Scholar]
  98. DeRubeis R.J. Siegle G.J. Hollon S.D. Cognitive therapy versus medication for depression: Treatment outcomes and neural mechanisms. Nat. Rev. Neurosci. 2008 9 10 788 796 10.1038/nrn2345 18784657
    [Google Scholar]
  99. Fonagy P. Allison E. The role of mentalizing and epistemic trust in the therapeutic relationship. Psychotherapy 2014 51 3 372 380 10.1037/a0036505 24773092
    [Google Scholar]
  100. Clinical practice guidelines for the psychological treatment of depression 2020 Available from: https://www.apa.org/depression-guideline
  101. Wampold B.E. How important are the common factors in psychotherapy? An update. World Psychiatry 2015 14 3 270 277 10.1002/wps.20238 26407772
    [Google Scholar]
  102. Insel T.R. Digital phenotyping: A global tool for psychiatry. World Psychiatry 2018 17 3 276 277 10.1002/wps.20550 30192103
    [Google Scholar]
  103. Gonzalez-Castro T.B. Precision medicine in mental disorders: Current status and future perspectives. World J. Psychiatry 2022 12 1 22 36 10.5498/wjp.v12.i1.22
    [Google Scholar]
  104. Reardon S. Psychedelic therapy draws interest from a new generation of psychotherapists. Nature 2020 586 7828 658 659 10.1038/d41586‑020‑02986‑y 33110258
    [Google Scholar]
  105. Bourla A. Telepsychiatry and the transformation of mental health care. Transl. Psychiatry 2018 8 240 10.1038/s41398‑018‑0287‑x
    [Google Scholar]
  106. Levine B. Advances in regenerative medicine for brain repair. Brain 2021 144 9 2722 2734 10.1093/brain/awab215 34581780
    [Google Scholar]
  107. Wirth T. Parker N. Ylä-Herttuala S. History of gene therapy. Gene 2013 525 2 162 169 10.1016/j.gene.2013.03.137 23618815
    [Google Scholar]
  108. Bennett C.F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 2019 70 1 307 321 10.1146/annurev‑med‑041217‑010829 30691367
    [Google Scholar]
  109. George M.S. Lisanby S.H. Avery D. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: A sham-controlled randomized trial. Arch. Gen. Psychiatry 2010 67 5 507 516 10.1001/archgenpsychiatry.2010.46 20439832
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128387875250805042824
Loading
/content/journals/cpd/10.2174/0113816128387875250805042824
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test