Skip to content
2000
image of Nasal Microbiota as a Potential Therapeutic Target for Allergic Rhinitis: An Emerging Perspective

Abstract

Allergic Rhinitis (AR) represents a significant global health challenge with extensive prevalence and profound impacts, necessitating the development of novel therapeutic approaches beyond conventional symptomatic treatment. Emerging research has elucidated the crucial role of nasal microbiota dysbiosis in both the pathogenesis and progression of AR. Although the dominant microbial phyla remain largely consistent, significant changes in microbial abundance, composition, and diversity are often observed. In addition, studies have shown a correlation between changes in nasal microbiota and immune markers such as immunoglobulin E levels, suggesting that microbiota changes can reflect the severity of AR. Therefore, targeted modulation of the aberrant nasal microbiota may offer a promising therapeutic approach for this disease. However, further research is crucial for elucidating the causal relationships between specific microbial characteristics, disease severity, and potential comorbidities. This article summarizes recent studies examining the pathogenic role of nasal microbiota dysbiosis, the differential microbial composition across nasal mucosal sites, and potential therapeutic targets in AR. The ultimate goal is to develop precision medicine-based therapeutic interventions that target the underlying pathophysiological mechanisms of AR through specific modulation of dysbiotic nasal microbiota, thereby potentially preventing disease progression and reducing the risk of associated comorbidities.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128388496250812102820
2025-09-11
2025-10-27
Loading full text...

Full text loading...

References

  1. Brożek J.L. Bousquet J. Agache I. Allergic rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision. J. Allergy Clin. Immunol. 2017 140 4 950 958 10.1016/j.jaci.2017.03.050 28602936
    [Google Scholar]
  2. Yuan Y. Wang C. Wang G. Airway microbiome and serum metabolomics analysis identify differential candidate biomarkers in allergic rhinitis. Front. Immunol. 2022 12 771136 10.3389/fimmu.2021.771136 35069544
    [Google Scholar]
  3. Sharma K. Akre S. Chakole S. Wanjari M.B. Allergic rhinitis and treatment modalities: A review of literature. Cureus 2022 14 8 e28501 10.7759/cureus.28501 36185919
    [Google Scholar]
  4. Bousquet J. Anto J.M. Bachert C. Allergic rhinitis. Nat. Rev. Dis. Primers 2020 6 1 95 10.1038/s41572‑020‑00227‑0 33273461
    [Google Scholar]
  5. Seidman M.D. Gurgel R.K. Lin S.Y. Clinical practice guideline: Allergic rhinitis. Otolaryngol. Head Neck Surg. 2015 152 1 S1 S43 25644617
    [Google Scholar]
  6. Sahoyama Y. Hamazato F. Shiozawa M. Multiple nutritional and gut microbial factors associated with allergic rhinitis: The Hitachi Health Study. Sci. Rep. 2022 12 1 3359 10.1038/s41598‑022‑07398‑8 35233003
    [Google Scholar]
  7. Roberts G. Ollert M. Aalberse R. A new framework for the interpretation of IgE sensitization tests. Allergy 2016 71 11 1540 1551 10.1111/all.12939 27224838
    [Google Scholar]
  8. Han X. Krempski J.W. Nadeau K. Advances and novel developments in mechanisms of allergic inflammation. Allergy 2020 75 12 3100 3111 10.1111/all.14632 33068299
    [Google Scholar]
  9. Zhang Y. Lan F. Zhang L. Advances and highlights in allergic rhinitis. Allergy 2021 76 11 3383 3389 10.1111/all.15044 34379805
    [Google Scholar]
  10. Cho I. Blaser M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 2012 13 4 260 270 10.1038/nrg3182 22411464
    [Google Scholar]
  11. Spor A. Koren O. Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 2011 9 4 279 290 10.1038/nrmicro2540 21407244
    [Google Scholar]
  12. Turnbaugh P.J. Quince C. Faith J.J. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl. Acad. Sci. USA 2010 107 16 7503 7508 10.1073/pnas.1002355107 20363958
    [Google Scholar]
  13. Mottawea W. Chiang C.K. Mühlbauer M. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat. Commun. 2016 7 1 13419 10.1038/ncomms13419 27876802
    [Google Scholar]
  14. Luo W. Zhao M. Dwidar M. Microbial assimilatory sulfate reduction-mediated H2S: An overlooked role in Crohn’s disease development. Microbiome 2024 12 1 152 10.1186/s40168‑024‑01873‑2 39152482
    [Google Scholar]
  15. Chen W. Liu F. Ling Z. Tong X. Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 2012 7 6 e39743 10.1371/journal.pone.0039743 22761885
    [Google Scholar]
  16. Bartolini I. Risaliti M. Ringressi M.N. Role of gut microbiota-immunity axis in patients undergoing surgery for colorectal cancer: Focus on short and long-term outcomes. World J. Gastroenterol. 2020 26 20 2498 2513 10.3748/wjg.v26.i20.2498 32523307
    [Google Scholar]
  17. Siqueira J.F. Rôças I.N. The oral microbiota in health and disease: An overview of molecular findings. Methods Mol. Biol. 2023 2588 61 73 10.1007/978‑1‑0716‑2780‑8_5 36418682
    [Google Scholar]
  18. Di Stefano M. Polizzi A. Santonocito S. Romano A. Lombardi T. Isola G. Impact of oral microbiome in periodontal health and periodontitis: A critical review on prevention and treatment. Int. J. Mol. Sci. 2022 23 9 5142 10.3390/ijms23095142 35563531
    [Google Scholar]
  19. Abusleme L. Hoare A. Hong B.Y. Diaz P.I. Microbial signatures of health, gingivitis, and periodontitis. Periodontol. 2000 2021 86 1 57 78 10.1111/prd.12362 33690899
    [Google Scholar]
  20. Li Z. Li J. Fu R. Liu J. Wen X. Zhang L. Halitosis: etiology, prevention, and the role of microbiota. Clin. Oral Investig. 2023 27 11 6383 6393 10.1007/s00784‑023‑05292‑9 37843633
    [Google Scholar]
  21. Byrd A.L. Deming C. Cassidy S.K.B. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med. 2017 9 397 eaal4651 10.1126/scitranslmed.aal4651 28679656
    [Google Scholar]
  22. Grogan M.D. Bartow-McKenney C. Flowers L. Knight S.A.B. Uberoi A. Grice E.A. Research techniques made simple: Profiling the skin microbiota. J. Invest. Dermatol. 2019 139 4 747 752.e1 10.1016/j.jid.2019.01.024 30904077
    [Google Scholar]
  23. Huang C. Zhuo F. Han B. The updates and implications of cutaneous microbiota in acne. Cell Biosci. 2023 13 1 113 10.1186/s13578‑023‑01072‑w 37344849
    [Google Scholar]
  24. Turnbaugh P.J. Ley R.E. Mahowald M.A. Magrini V. Mardis E.R. Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006 444 7122 1027 1031 10.1038/nature05414 17183312
    [Google Scholar]
  25. Le Chatelier E. Nielsen T. Qin J. Richness of human gut microbiome correlates with metabolic markers. Nature 2013 500 7464 541 546 10.1038/nature12506 23985870
    [Google Scholar]
  26. Gabriel C.L. Ferguson J.F. Gut microbiota and microbial metabolism in early risk of cardiometabolic disease. Circ. Res. 2023 132 12 1674 1691 10.1161/CIRCRESAHA.123.322055 37289901
    [Google Scholar]
  27. Zhu Y. Dwidar M. Nemet I. Two distinct gut microbial pathways contribute to meta-organismal production of phenylacetylglutamine with links to cardiovascular disease. Cell Host Microbe 2023 31 1 18 32.e9 10.1016/j.chom.2022.11.015 36549300
    [Google Scholar]
  28. Xue W. Li J.J. Zou Y. Zou B. Wei L. Microbiota and ocular diseases. Front. Cell. Infect. Microbiol. 2021 11 759333 10.3389/fcimb.2021.759333 34746029
    [Google Scholar]
  29. Li H.B. Zhou J.L. Xie P.P. Pathogenetic and therapeutic role of gut microbiome in immunoglobin a nephropathy. Curr. Pharm. Des. 2023 29 6 468 473 10.2174/1381612829666230224092657 36825697
    [Google Scholar]
  30. Cryan J.F. O’Riordan K.J. Cowan C.S.M. The microbiota-gut-brain axis. Physiol. Rev. 2019 99 4 1877 2013 10.1152/physrev.00018.2018 31460832
    [Google Scholar]
  31. Vuong H.E. Hsiao E.Y. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry 2017 81 5 411 423 10.1016/j.biopsych.2016.08.024 27773355
    [Google Scholar]
  32. Cho D.Y. Hunter R.C. Ramakrishnan V.R. The microbiome and chronic rhinosinusitis. Immunol. Allergy Clin. North Am. 2020 40 2 251 263 10.1016/j.iac.2019.12.009 32278449
    [Google Scholar]
  33. Vásquez-Pérez J.M. González-Guevara E. Gutiérrez-Buenabad D. Martínez-Gopar P.E. Martinez-Lazcano J.C. Cárdenas G. Is nasal dysbiosis a required component for neuroinflammation in major depressive disorder? Mol. Neurobiol. 2025 62 2 2459 2469 10.1007/s12035‑024‑04375‑2 39120823
    [Google Scholar]
  34. Lazarini F. Roze E. Lannuzel A. Lledo P.M. The microbiome-nose-brain axis in health and disease. Trends Neurosci. 2022 45 10 718 721 10.1016/j.tins.2022.08.003 36055893
    [Google Scholar]
  35. Yan M. Pamp S.J. Fukuyama J. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe 2013 14 6 631 640 10.1016/j.chom.2013.11.005 24331461
    [Google Scholar]
  36. Frank D.N. Feazel L.M. Bessesen M.T. Price C.S. Janoff E.N. Pace N.R. The human nasal microbiota and Staphylococcus aureus carriage. PLoS One 2010 5 5 e10598 10.1371/journal.pone.0010598 20498722
    [Google Scholar]
  37. Wang Y. Li X. Gu S. Fu J. Characterization of dysbiosis of the conjunctival microbiome and nasal microbiome associated with allergic rhinoconjunctivitis and allergic rhinitis. Front. Immunol. 2023 14 1079154 10.3389/fimmu.2023.1079154 37020561
    [Google Scholar]
  38. Pérez-Losada M. Castro-Nallar E. García-Huidobro J. The nasal mycobiome of individuals with allergic rhinitis and asthma differs from that of healthy controls in composition, structure and function. Front. Microbiol. 2024 15 1464257 10.3389/fmicb.2024.1464257 39741585
    [Google Scholar]
  39. Eifan A.O. Durham S.R. Pathogenesis of rhinitis. Clin. Exp. Allergy 2016 46 9 1139 1151 10.1111/cea.12780 27434218
    [Google Scholar]
  40. Schleimer R.P. Immunopathogenesis of chronic rhinosinusitis and Nasal polyposis. Annu. Rev. Pathol. 2017 12 1 331 357 10.1146/annurev‑pathol‑052016‑100401 27959637
    [Google Scholar]
  41. Broide D.H. Allergic rhinitis: Pathophysiology. Allergy Asthma Proc. 2010 31 5 370 374 10.2500/aap.2010.31.3388 20929602
    [Google Scholar]
  42. Lyu J. Kou F. Men X. Liu Y. Tang L. Wen S. The changes in bacterial microbiome associated with immune disorder in allergic respiratory disease. Microorganisms 2022 10 10 2066 10.3390/microorganisms10102066 36296340
    [Google Scholar]
  43. Che Y. Wang N. Ma Q. Microbial characterization of the nasal cavity in patients with allergic rhinitis and non-allergic rhinitis. Front. Cell. Infect. Microbiol. 2023 13 1166389 10.3389/fcimb.2023.1166389 37180436
    [Google Scholar]
  44. Hu J. Deng F. Zhao B. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling. Microbiome 2022 10 1 38 10.1186/s40168‑022‑01227‑w 35241180
    [Google Scholar]
  45. Weise C. Zhu Y. Ernst D. Kühl A.A. Worm M. Oral administration of Escherichia coli Nissle 1917 prevents allergen-induced dermatitis in mice. Exp. Dermatol. 2011 20 10 805 809 10.1111/j.1600‑0625.2011.01326.x 21740462
    [Google Scholar]
  46. Hyun D.W. Min H.J. Kim M.S. Dysbiosis of inferior turbinate microbiota is associated with high total IgE levels in patients with allergic rhinitis. Infect. Immun. 2018 86 4 e00934 e17 10.1128/IAI.00934‑17 29426044
    [Google Scholar]
  47. Zhang H. Wang X. Zhang J. Crosstalk between gut microbiota and gut resident macrophages in inflammatory bowel disease. J. Transl. Int. Med. 2023 11 4 382 392 10.2478/jtim‑2023‑0123 38130639
    [Google Scholar]
  48. Zou Y. Zhang H. Liu F. Chen Z.S. Tang H. Intratumoral microbiota in orchestrating cancer immunotherapy response. J. Transl. Int. Med. 2025 12 6 540 542 10.1515/jtim‑2024‑0038 39802449
    [Google Scholar]
  49. Marazzato M. Zicari A.M. Aleandri M. 16S metagenomics reveals dysbiosis of nasal core microbiota in children with chronic nasal inflammation: Role of adenoid hypertrophy and allergic rhinitis. Front. Cell. Infect. Microbiol. 2020 10 458 10.3389/fcimb.2020.00458 32984078
    [Google Scholar]
  50. Choi C.H. Poroyko V. Watanabe S. Seasonal allergic rhinitis affects sinonasal microbiota. Am. J. Rhinol. Allergy 2014 28 4 281 286 10.2500/ajra.2014.28.4050 25197913
    [Google Scholar]
  51. Morin A. McKennan C.G. Pedersen C.E.T. Epigenetic landscape links upper airway microbiota in infancy with allergic rhinitis at 6 years of age. J. Allergy Clin. Immunol. 2020 146 6 1358 1366 10.1016/j.jaci.2020.07.005 32693091
    [Google Scholar]
  52. Brugger S.D. Bomar L. Lemon K.P. Commensal-pathogen interactions along the human nasal passages. PLoS Pathog. 2016 12 7 e1005633 10.1371/journal.ppat.1005633 27389401
    [Google Scholar]
  53. Sharhan S.S.A. Lee E.J. Hwang C.S. Radiological comparison of inferior turbinate hypertrophy between allergic and non-allergic rhinitis: Does allergy really augment turbinate hypertrophy? Eur. Arch. Otorhinolaryngol. 2018 275 4 923 929 10.1007/s00405‑018‑4893‑8 29417277
    [Google Scholar]
  54. Park S.C. Kim D.H. Jun Y.J. Long-term outcomes of turbinate surgery in patients with allergic rhinitis. JAMA Otolaryngol. Head Neck Surg. 2023 149 1 15 23 10.1001/jamaoto.2022.3567 36394879
    [Google Scholar]
  55. Chhabra N. Houser S.M. Surgery for allergic rhinitis. Int. Forum Allergy Rhinol. 2014 4 Suppl. 2 S79 S83 10.1002/alr.21387 25182362
    [Google Scholar]
  56. Geurkink N. Nasal anatomy, physiology, and function. J. Allergy Clin. Immunol. 1983 72 2 123 128 10.1016/0091‑6749(83)90518‑3 6350406
    [Google Scholar]
  57. Kidoguchi M. Imoto Y. Noguchi E. Middle meatus microbiome in patients with eosinophilic chronic rhinosinusitis in a Japanese population. J. Allergy Clin. Immunol. 2023 152 6 1669 1676.e3 10.1016/j.jaci.2023.06.029 37768238
    [Google Scholar]
  58. Lal D. Keim P. Delisle J. Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int. Forum Allergy Rhinol. 2017 7 6 561 569 10.1002/alr.21934 28481057
    [Google Scholar]
  59. Gan W. Yang F. Meng J. Liu F. Liu S. Xian J. Comparing the nasal bacterial microbiome diversity of allergic rhinitis, chronic rhinosinusitis and control subjects. Eur. Arch. Otorhinolaryngol. 2021 278 3 711 718 10.1007/s00405‑020‑06311‑1 32860131
    [Google Scholar]
  60. Kang H.M. Kang J.H. Effects of nasopharyngeal microbiota in respiratory infections and allergies. Clin Exp Pediatr 2021 64 11 543 551 10.3345/cep.2020.01452 33872488
    [Google Scholar]
  61. García-Rodríguez J.Á. Fresnadillo Martínez M.J. Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J. Antimicrob. Chemother. 2002 50 Suppl. S2 59 73 10.1093/jac/dkf506 12556435
    [Google Scholar]
  62. Andrade D.C. Borges I.C. Bouzas M.L. Antibody responses against Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis in children with acute respiratory infection with or without nasopharyngeal bacterial carriage. Infect. Dis. (Lond.) 2018 50 9 705 713 10.1080/23744235.2018.1463451 29688138
    [Google Scholar]
  63. De Boeck I. Wittouck S. Wuyts S. Comparing the healthy nose and nasopharynx microbiota reveals continuity as well as niche-specificity. Front. Microbiol. 2017 8 2372 10.3389/fmicb.2017.02372 29238339
    [Google Scholar]
  64. Allen E.K. Koeppel A.F. Hendley J.O. Turner S.D. Winther B. Sale M.M. Characterization of the nasopharyngeal microbiota in health and during rhinovirus challenge. Microbiome 2014 2 1 22 10.1186/2049‑2618‑2‑22 25028608
    [Google Scholar]
  65. Geng B. Dilley M. Anterasian C. Biologic therapies for allergic rhinitis and nasal polyposis. Curr. Allergy Asthma Rep. 2021 21 6 36 10.1007/s11882‑021‑01013‑y 34110505
    [Google Scholar]
  66. Ohnmacht C. Park J.H. Cording S. The microbiota regulates type 2 immunity through RORγt+T cells. Science 2015 349 6251 989 993 10.1126/science.aac4263 26160380
    [Google Scholar]
  67. Hill D.A. Siracusa M.C. Abt M.C. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat. Med. 2012 18 4 538 546 10.1038/nm.2657 22447074
    [Google Scholar]
  68. Schwarzer M. Repa A. Daniel C. Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization. Allergy 2011 66 3 368 375 10.1111/j.1398‑9995.2010.02488.x 20880132
    [Google Scholar]
  69. Spacova I. Petrova M.I. Fremau A. Intranasal administration of probiotic Lactobacillus rhamnosus GG prevents birch pollen‐induced allergic asthma in a murine model. Allergy 2019 74 1 100 110 10.1111/all.13502 29888398
    [Google Scholar]
  70. Nakahashi-Ouchida R. Yuki Y. Kiyono H. Cationic pullulan nanogel as a safe and effective nasal vaccine delivery system for respiratory infectious diseases. Hum. Vaccin. Immunother. 2018 14 9 2189 2193 10.1080/21645515.2018.1461298 29624474
    [Google Scholar]
  71. Umemoto S. Nakahashi-Ouchida R. Yuki Y. Cationic-nanogel nasal vaccine containing the ectodomain of RSV-small hydrophobic protein induces protective immunity in rodents. NPJ Vaccines 2023 8 1 106 10.1038/s41541‑023‑00700‑3 37488116
    [Google Scholar]
  72. Kong I.G. Sato A. Yuki Y. Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect. Immun. 2013 81 5 1625 1634 10.1128/IAI.00240‑13 23460513
    [Google Scholar]
  73. Nakahashi-Ouchida R. Uchida Y. Yuki Y. A nanogel-based trivalent PspA nasal vaccine protects macaques from intratracheal challenge with pneumococci. Vaccine 2021 39 25 3353 3364 10.1016/j.vaccine.2021.04.069 34016473
    [Google Scholar]
  74. Yuki Y. Uchida Y. Sawada S. Characterization and specification of a trivalent protein-based pneumococcal vaccine formulation using an adjuvant-free nanogel nasal delivery system. Mol. Pharm. 2021 18 4 1582 1592 10.1021/acs.molpharmaceut.0c01003 33621107
    [Google Scholar]
  75. Nakahashi-Ouchida R. Mori H. Yuki Y. Induction of mucosal IgA-mediated protective immunity against nontypeable Haemophilus influenzae infection by a cationic nanogel-based P6 nasal vaccine. Front. Immunol. 2022 13 819859 10.3389/fimmu.2022.819859 35874779
    [Google Scholar]
  76. Quan Le M. Ye L. Bernasconi V. Prevention of influenza virus infection and transmission by intranasal administration of a porous maltodextrin nanoparticle-formulated vaccine. Int. J. Pharm. 2020 582 119348 10.1016/j.ijpharm.2020.119348 32325240
    [Google Scholar]
  77. Pinna F de R. Ctenas B. Weber R. Saldiva P.H. Voegels R.L. Olfactory neuroepithelium in the superior and middle turbinates: Which is the optimal biopsy site? Int. Arch. Otorhinolaryngol. 2013 17 2 131 138 25992005
    [Google Scholar]
  78. Bugari R.A. Başchir A.S. Turcin L.A. Adenoidal bacterial biofilm in pediatric rhinosinusitis. Rom. J. Morphol. Embryol. 2022 62 2 481 489 10.47162/RJME.62.2.14 35024736
    [Google Scholar]
  79. Li J. Wei H. Wang N. Concurrent ozone and high temperature exacerbates nasal epithelial barrier damage in allergic rhinitis mice: Insights from the nasal transcriptome and nasal microbiota. J. Hazard. Mater. 2024 480 135800 10.1016/j.jhazmat.2024.135800 39265397
    [Google Scholar]
  80. Ta L.D.H. Yap G.C. Tay C.J.X. Establishment of the nasal microbiota in the first 18 months of life: Correlation with early-onset rhinitis and wheezing. J. Allergy Clin. Immunol. 2018 142 1 86 95 10.1016/j.jaci.2018.01.032 29452199
    [Google Scholar]
  81. Folino F. Di Pasquale D. Marchisio P. Topical administration of S. salivarius 24SMB-S. oralis 89a in children with adenoidal disease: a double-blind controlled trial. Eur. J. Pediatr. 2023 183 1 289 294 10.1007/s00431‑023‑05192‑w 37874401
    [Google Scholar]
  82. La Mantia I. Varricchio A. Ciprandi G. Bacteriotherapy with Streptococcus salivarius 24SMB and Streptococcus oralis 89a nasal spray for preventing recurrent acute otitis media in children: a real-life clinical experience. Int. J. Gen. Med. 2017 10 171 175 10.2147/IJGM.S137614 28684920
    [Google Scholar]
  83. Torretta S. Marchisio P. Drago L. Nasopharyngeal biofilm-producing otopathogens in children with nonsevere recurrent acute otitis media. Otolaryngol. Head Neck Surg. 2012 146 6 991 996 10.1177/0194599812438169 22357644
    [Google Scholar]
  84. Torretta S. Drago L. Marchisio P. Ibba T. Pignataro L. Role of biofilms in children with chronic adenoiditis and middle ear disease. J. Clin. Med. 2019 8 5 671 10.3390/jcm8050671 31086039
    [Google Scholar]
  85. Hilty M. Qi W. Brugger S.D. Nasopharyngeal microbiota in infants with acute otitis media. J. Infect. Dis. 2012 205 7 1048 1055 10.1093/infdis/jis024 22351941
    [Google Scholar]
  86. Torretta S. Drago L. Marchisio P. Gaffuri M. Clemente I.A. Pignataro L. Topographic distribution of biofilm-producing bacteria in adenoid subsites of children with chronic or recurrent middle ear infections. Ann. Otol. Rhinol. Laryngol. 2013 122 2 109 113 10.1177/000348941312200206 23534125
    [Google Scholar]
  87. Nazzari E. Torretta S. Pignataro L. Marchisio P. Esposito S. Role of biofilm in children with recurrent upper respiratory tract infections. Eur. J. Clin. Microbiol. Infect. Dis. 2015 34 3 421 429 10.1007/s10096‑014‑2261‑1 25318897
    [Google Scholar]
  88. Manti S. Parisi G.F. Papale M. Bacteriotherapy with Streptococcus salivarius 24SMB and Streptococcus oralis 89a nasal spray for treatment of upper respiratory tract infections in children: A pilot study on short-term efficacy. Ital. J. Pediatr. 2020 46 1 42 10.1186/s13052‑020‑0798‑4 32245500
    [Google Scholar]
  89. La Mantia I. Varricchio A. Di Girolamo S. Minni A. Passali G.C. Ciprandi G. The role of bacteriotherapy in the prevention of] adenoidectomy. Eur. Rev. Med. Pharmacol. Sci. 2019 23 1 Suppl. 44 47 30920631
    [Google Scholar]
  90. Andaloro C. Santagati M. Stefani S. La Mantia I. Bacteriotherapy with Streptococcus salivarius 24SMB and Streptococcus oralis 89a oral spray for children with recurrent streptococcal pharyngotonsillitis: A randomized placebo-controlled clinical study. Eur. Arch. Otorhinolaryngol. 2019 276 3 879 887 10.1007/s00405‑019‑05346‑3 30767047
    [Google Scholar]
  91. Tai J. Han M. Lee D. Park I.H. Lee S.H. Kim T.H. Different methods and formulations of drugs and vaccines for nasal administration. Pharmaceutics 2022 14 5 1073 10.3390/pharmaceutics14051073 35631663
    [Google Scholar]
  92. Kumar A. Pandey A.N. Jain S.K. Nasal-nanotechnology: Revolution for efficient therapeutics delivery. Drug Deliv. 2016 23 3 671 683 10.3109/10717544.2014.920431 24901207
    [Google Scholar]
  93. Lobaina Mato Y. Nasal route for vaccine and drug delivery: Features and current opportunities. Int. J. Pharm. 2019 572 118813 10.1016/j.ijpharm.2019.118813 31678521
    [Google Scholar]
  94. Alshweiat A. Ambrus R. Csóka I.I. Intranasal nanoparticulate systems as alternative route of drug delivery. Curr. Med. Chem. 2019 26 35 6459 6492 10.2174/0929867326666190827151741 31453778
    [Google Scholar]
  95. Bourdillon A.T. Edwards H.A. Review of probiotic use in otolaryngology. Am. J. Otolaryngol. 2021 42 2 102883 10.1016/j.amjoto.2020.102883 33453564
    [Google Scholar]
  96. Boyes W.K. van Thriel C. Neurotoxicology of nanomaterials. Chem. Res. Toxicol. 2020 33 5 1121 1144 10.1021/acs.chemrestox.0c00050 32233399
    [Google Scholar]
  97. Bidossi A. De Grandi R. Toscano M. CRISPR-AMRtracer. BMC Infect. Dis. 2018 18 1 653 10.1186/s12879‑018‑3576‑9 30545317
    [Google Scholar]
  98. Li G. Long T.F. Zhou S.Y. CRISPR-AMRtracker: A novel toolkit to monitor the antimicrobial resistance gene transfer in fecal microbiota. Drug Resist. Updat. 2024 77 101142 10.1016/j.drup.2024.101142 39214042
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128388496250812102820
Loading
/content/journals/cpd/10.2174/0113816128388496250812102820
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test