Skip to content
2000
image of Salvianolic Acid B-Loaded Albumin Nanoparticles Reduce Portal Hypertension in Cirrhotic Mice and Inhibit the Proliferation and Contraction of Hepatic Stellate Cells

Abstract

Introduction

Salvianolic acid B (SAB), as one of the major water-soluble compounds of , has proved to effectively reduce elevated portal pressure in cirrhotic rats. However, the short half-life and retention time of SAB affect its pharmacodynamics. Therefore, in this study, we prepared albumin nanoparticles loaded with SAB (SAB-ALB-NPs) to improve the retention time of the drug and enhance bioavailability.

Methods

We prepared and characterized SAB-ALB-NPs, including particle size, polydispersity index (PDI), zeta potential, stability, EE, release, and pharmacokinetics. Subsequently, we investigated the effects and potential mechanisms of SAB-ALB-NPs in CCl-induced portal hypertension (PHT) mice models, and it was found that angiotensin-II (Ang-II) induced proliferation and contraction in hepatic stellate cells (HSCs). The CCl (0.3:1 in corn oil, 1mL/kg) was injected repeatedly, leading to the PHT mice model. The effect of SAB-ALB-NPs on PHT mice was evaluated by hematoxylin-eosin, Sirius red staining, immunohistochemistry, and Western blot.

Results

We successfully prepared SAB-loaded albumin nanoparticles with smaller-sized particles, lower PDI and zeta potential with stable properties, and higher EE. Importantly, the SAB-ALB-NPs notably prolonged the release of SAB. SAB-ALB-NPs significantly reduced portal pressure, inhibited inflammation (decrease the concentration of TNF-α and IL-6) and hepatotoxicity of the liver (down-regulated the level of ALT and AST) against fibrous tissue hyperplasia, and reduced collagen deposition in the liver. Afterward, we used Ang-II to facilitate the proliferation of HSCs and induce HSC cell contraction. Cotreatment of SAB-ALB-NPs markedly inhibited Ang II-induced effects on cell proliferation and contraction and improved apoptosis. Importantly, SAB-ALB-NPs were preliminarily found to inhibit the expression of RhoA and ROCK II in Ang-II-treated HSC and CCl-induced PHT mice, suggesting that SAB-ALB-NPs may participate in the regulation of RhoA/ROCK II pathway.

Conclusion

SAB-ALB-NPs improved portal hypertension by suppressing inflammation and inhibiting HSCs activation and proliferation to attenuate liver fibrosis. This therapeutic function of SAB-ALB-NPs may be owing to SAB-ALB-NPs regulating the RhoA/ROCK2 pathway, which may be one of its molecular mechanisms for reducing portal hypertension.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128364560250124055417
2025-09-29
2025-10-19
Loading full text...

Full text loading...

References

  1. Kondo R. Furukawa N. Deguchi A. Kawata N. Suzuki Y. Imaizumi Y. Yamamura H. Downregulation of Ca2+-activated Cl- channel TMEM16A mediated by angiotensin II in Cirrhotic portal hypertensive mice. Front. Pharmacol. 2022 13 831311 10.3389/fphar.2022.831311 35370660
    [Google Scholar]
  2. Rockey D.C. Hepatic fibrosis, stellate cells, and portal hypertension. Clin. Liver Dis. 2006 10 3 459 479 10.1016/j.cld.2006.08.017 17162223
    [Google Scholar]
  3. Kurikawa N. Suga M. Kuroda S. Yamada K. Ishikawa H. An angiotensin II type 1 receptor antagonist, olmesartan medoxomil, improves experimental liver fibrosis by suppression of proliferation and collagen synthesis in activated hepatic stellate cells. Br. J. Pharmacol. 2003 139 6 1085 1094 10.1038/sj.bjp.0705339 12871826
    [Google Scholar]
  4. Wu H.T. Chuang Y.W. Huang C.P. Chang M.H. Loss of angiotensin converting enzyme II (ACE2) accelerates the development of liver injury induced by thioacetamide. Exp. Anim. 2018 67 1 41 49 10.1538/expanim.17‑0053 28845018
    [Google Scholar]
  5. Klein S. Van Beuge M.M. Granzow M. Beljaars L. Schierwagen R. Kilic S. Heidari I. Huss S. Sauerbruch T. Poelstra K. Trebicka J. HSC-specific inhibition of Rho-kinase reduces portal pressure in cirrhotic rats without major systemic effects. J. Hepatol. 2012 57 6 1220 1227 10.1016/j.jhep.2012.07.033 22878469
    [Google Scholar]
  6. Wu Y. Li Z. Wang S. Xiu A. Zhang C. Carvedilol inhibits angiotensin II-induced proliferation and contraction in hepatic stellate cells through the RhoA/Rho-Kinase pathway. BioMed Res. Int. 2019 2019 7932046 10.1155/2019/7932046 31828132
    [Google Scholar]
  7. Xu W. Lu C. Zhang F. Shao J. Yao S. Zheng S. Dihydroartemisinin counteracts fibrotic portal hypertension via farnesoid X receptor-dependent inhibition of hepatic stellate cell contraction. FEBS J. 2017 284 1 114 133 10.1111/febs.13956 27896916
    [Google Scholar]
  8. Xu H. Zhou Y. Lu C. Ping J. Xu L.M. Salvianolic acid B lowers portal pressure in cirrhotic rats and attenuates contraction of rat hepatic stellate cells by inhibiting RhoA signaling pathway. Lab. Invest. 2012 92 12 1738 1748 10.1038/labinvest.2012.113 22986787
    [Google Scholar]
  9. Zhang L. Han L. Sun X. Gao D. Qin J. Wang J. The use of PEGylated liposomes to prolong the circulation lifetime of salvianolic acid B. Fitoterapia 2012 83 4 678 689 10.1016/j.fitote.2012.02.004 22391022
    [Google Scholar]
  10. Sofias A.M. Dunne M. Storm G. Allen C. The battle of “nano” paclitaxel. Adv. Drug Deliv. Rev. 2017 122 20 30 10.1016/j.addr.2017.02.003 28257998
    [Google Scholar]
  11. Zhang Y. Ye Z. He R. Li Y. Xiong B. Yi M. Chen Y. Liu J. Lu B. Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy. Colloids Surf. B Biointerfaces 2023 224 113201 10.1016/j.colsurfb.2023.113201 36822117
    [Google Scholar]
  12. Chen Y. Yao M. Peng S. Fang Y. Wan L. Shang W. Xiang D. Zhang W. Development of protein-polyphenol particles to stabilize high internal phase Pickering emulsions by polyphenols’ structure. Food Chem. 2023 428 136773 10.1016/j.foodchem.2023.136773 37423104
    [Google Scholar]
  13. Zhao X. Deng B. Xu X-Y. Yang S-J. Zhang T. Song Y-J. Liu X-T. Wang Y-Q. Cai D-Y. Glycyrrhizinate reduces portal hypertension in isolated perfused rat livers with chronic hepatitis. World J. Gastroenterol. 2013 19 36 6069 6076 10.3748/wjg.v19.i36.6069 24106408
    [Google Scholar]
  14. Steib C.J. Hennenberg M. Beitinger F. Hartmann A.C. Bystron M. De Toni E.N. Gerbes A.L. Amiloride reduces portal hypertension in rat liver cirrhosis. Gut 2010 59 6 827 836 10.1136/gut.2009.197756 20551467
    [Google Scholar]
  15. Xu C. Dong W. Role of hypoxia-inducible factor-1α in pathogenesis and disease evaluation of ulcerative colitis. Exp. Ther. Med. 2016 11 4 1330 1334 10.3892/etm.2016.3030 27073444
    [Google Scholar]
  16. Xu W. Lu C. Zhang F. Shao J. Zheng S. Dihydroartemisinin restricts hepatic stellate cell contraction via an FXR-S1PR2-dependent mechanism. IUBMB Life 2016 68 5 376 387 10.1002/iub.1492 27027402
    [Google Scholar]
  17. Moreno A.H. Burchell A.R. Rousselot L.M. Panke W.F. Slafsky F. Burke J.H. Portal blood flow in cirrhosis of the liver. J. Clin. Invest. 1967 46 3 436 445 10.1172/JCI105545 6023778
    [Google Scholar]
  18. Wang X. Gu H. Li K. Lin J. Zhu Y. Deng W. DPP4 inhibitor reduces portal hypertension in cirrhotic rats by normalizing arterial hypocontractility. Life Sci. 2021 284 119895 10.1016/j.lfs.2021.119895 34450166
    [Google Scholar]
  19. Pérez Tamayo R. Is cirrhosis of the liver experimentally produced by CCl4 and adequate model of human cirrhosis? Hepatology 1983 3 1 112 120 10.1002/hep.1840030118 6337081
    [Google Scholar]
  20. Bali A. Jaggi A.S. Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev. Neurosci. 2016 27 3 301 315 10.1515/revneuro‑2015‑0041 26574890
    [Google Scholar]
  21. Higashi T. Friedman S.L. Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev. 2017 121 27 42 10.1016/j.addr.2017.05.007 28506744
    [Google Scholar]
  22. Gracia-Sancho J. Marrone G. Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat. Rev. Gastroenterol. Hepatol. 2019 16 4 221 234 10.1038/s41575‑018‑0097‑3 30568278
    [Google Scholar]
  23. Mak K. Y. Chin R. Cunningham S. C. Habib M. R. Torresi J. Sharland A. F. Alexander I. E. Angus P. W. Herath C. B. ACE2 therapy using adeno-associated viral vector inhibits liver fibrosis in mice. Mol Ther 2015 23 9 1434 1443
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128364560250124055417
Loading
/content/journals/cpd/10.2174/0113816128364560250124055417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test