Skip to content
2000
Volume 31, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The Blood-Brain Barrier (BBB), a dynamic and highly selective interface, regulates the exchange of molecules between the circulatory system and the Central Nervous System (CNS). While it protects the brain from toxins and pathogens, it also restricts the delivery of therapeutic agents, posing a significant challenge in treating CNS disorders such as Alzheimer’s disease, Parkinson’s disease, and glioblastoma. This manuscript explores the structural and functional complexity of the BBB, including the roles of tight junctions, adherens junctions, astrocytes, pericytes, and endothelial cells. It highlights the influence of drug physicochemical properties, such as lipophilicity, molecular weight, and hydrogen bonding, on BBB penetration. Current strategies to enhance drug delivery include nanotechnology-based carriers (liposomes, solid lipid nanoparticles, polymer-based carriers), receptor-mediated transcytosis, and cell-penetrating peptides. Emerging approaches like focused ultrasound with microbubbles, intranasal delivery, and exosome-mediated transport demonstrate significant potential for bypassing BBB constraints. Gene therapy, employing both viral and non-viral vectors, offers promise for addressing genetic CNS disorders. Despite advances, limitations, such as off-target effects, limited delivery efficiency, and potential toxicity, remain critical barriers to clinical translation. Future research must prioritize multidisciplinary approaches integrating nanotechnology, personalized medicine, and enhanced understanding of BBB biology. Innovations in non-invasive, targeted delivery systems are essential to overcoming existing challenges and enabling effective treatment of CNS disorders. This review underscores the need for further exploration of these technologies to achieve sustained, site-specific drug delivery, thereby advancing therapeutic interventions for neurological diseases. The blood-brain barrier (BBB) is a critical interface that protects the brain but limits drug delivery, posing challenges in treating CNS disorders. Advancing multidisciplinary approaches and innovative delivery systems is essential to overcome these limitations and enable effective therapies for neurological diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128386983250410092649
2025-04-21
2025-10-22
Loading full text...

Full text loading...

References

  1. AcharA. MyersR. GhoshC. Drug delivery challenges in brain disorders across the blood-brain barrier: Novel methods and future considerations for improved therapy.Biomedicines2021912138410.3390/biomedicines9121834 34944650
    [Google Scholar]
  2. JainS. ChauhanN. Exploring non-canonical targets in Alzheimer’s disease: A departure from the norm.Egypt. J. Neurol. Psychiatry. Neurosurg.2024601p. 13510.1186/s41983‑024‑00908‑7
    [Google Scholar]
  3. IsabelU.V. de la RieraM. BelénA. DoloresR.S. ElenaG.B. A new frontier in neuropharmacology: Recent progress in natural products research for blood-brain barrier crossing.Curr. Res. Biotechnol.2024810023510.1016/j.crbiot.2024.100235
    [Google Scholar]
  4. ZhaS. LiuH. LiH. LiH. WongK.L. AllA.H. Functionalized nanomaterials capable of crossing the blood-brain barrier.ACS Nano20241831820184510.1021/acsnano.3c10674 38193927
    [Google Scholar]
  5. López-EspinosaJ. ParkP. HolcombM. GodinB. VillapolS. Nanotechnology-driven therapies for neurodegenerative diseases: A comprehensive review.Ther. Deliv.20241512997102410.1080/20415990.2024.2401307 39297726
    [Google Scholar]
  6. KumarR. KaurC. KaurK. KhuranaN. SinghG. Prodrugs: Harnessing chemical modifications for improved therapeutics.J. Drug Deliv. Sci. Technol.20239010510310.1016/j.jddst.2023.105103
    [Google Scholar]
  7. YangH. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis.Pharm. Res.20102791759177110.1007/s11095‑010‑0141‑7 20593303
    [Google Scholar]
  8. WangZ. GonzalezK.M. CordovaL.E. LuJ. Nanotechnology‐empowered therapeutics targeting neurodegenerative diseases.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023155e190710.1002/wnan.1907 37248794
    [Google Scholar]
  9. ChenK.T. WeiK.C. LiuH.L. Focused ultrasound combined with microbubbles in central nervous system applications.Pharmaceutics2021137108410.3390/pharmaceutics13071084 34371774
    [Google Scholar]
  10. HaqqaniA.S. BélangerK. StanimirovicD.B. Receptor-mediated transcytosis for brain delivery of therapeutics: Receptor classes and criteria.Front. Drug Deliv.20244136030210.3389/fddev.2024.1360302
    [Google Scholar]
  11. MuolokwuC.E. ChaulagainB. GothwalA. Functionalized nanoparticles to deliver nucleic acids to the brain for the treatment of Alzheimer’s disease.Front. Pharmacol.202415140542310.3389/fphar.2024.1405423 38855744
    [Google Scholar]
  12. WangQ. DongX. HuT. Constitutive activity of serotonin receptor 6 regulates human cerebral organoids formation and depression-like behaviors.Stem Cell Reports2021161758810.1016/j.stemcr.2020.11.015 33357407
    [Google Scholar]
  13. JainS. BhushanB. MishraA.K. SinghR. Unlocking therapeutic potential of siRNA-based drug delivery system for treatment of Alzheimer’s disease.J. Drug Deliv. Sci. Technol.202410210641310.1016/j.jddst.2024.106413
    [Google Scholar]
  14. JaegerL.B. DohguS. HwangM.C. Testing the neurovascular hypothesis of Alzheimer’s disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-β protein, and impairs cognition.J. Alzheimers Dis.200917355357010.3233/JAD‑2009‑1074 19433890
    [Google Scholar]
  15. KadryH. NooraniB. CuculloL. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  16. Castro DiasM. MapundaJ.A. VladymyrovM. EngelhardtB. Structure and junctional complexes of endothelial, epithelial and glial brain barriers.Int. J. Mol. Sci.20192021537210.3390/ijms20215372 31671721
    [Google Scholar]
  17. DotiwalaA.K. McCauslandC. SamraN.S. Anatomy, Head and Neck: Blood Brain Barrier.Treasure Island (FL)StatPearls2024
    [Google Scholar]
  18. SugiyamaS. SasakiT. TanakaH. The tight junction protein occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice.Sci. Rep.2023131289210.1038/s41598‑023‑29894‑1 36806348
    [Google Scholar]
  19. ZhaoB. YinQ. FeiY. Research progress of mechanisms for tight junction damage on blood-brain barrier inflammation.Arch. Physiol. Biochem.202212861579159010.1080/13813455.2020.1784952 32608276
    [Google Scholar]
  20. GreeneC. CampbellM. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules.Tissue Barriers201641e113801710.1080/21688370.2015.1138017 27141420
    [Google Scholar]
  21. TietzS. EngelhardtB. Brain barriers: Crosstalk between complex tight junctions and adherens junctions.J. Cell Biol.2015209449350610.1083/jcb.201412147 26008742
    [Google Scholar]
  22. ReedM.J. DamodarasamyM. BanksW.A. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer’s disease.Tissue Barriers201974165115710.1080/21688370.2019.1651157 31505997
    [Google Scholar]
  23. BellettatoC.M. ScarpaM. Possible strategies to cross the blood-brain barrier.Ital. J. Pediatr.201844S213110.1186/s13052‑018‑0563‑0 30442184
    [Google Scholar]
  24. Sanchez-CovarrubiasL. SloskyL. ThompsonB. DavisT. RonaldsonP. Transporters at CNS barrier sites: Obstacles or opportunities for drug delivery?Curr. Pharm. Des.201420101422144910.2174/13816128113199990463 23789948
    [Google Scholar]
  25. RonaldsonP.T. DavisT.P. Targeted drug delivery to treat pain and cerebral hypoxia.Pharmacol. Rev.201365129131410.1124/pr.112.005991 23343976
    [Google Scholar]
  26. MuldoonL.L. AlvarezJ.I. BegleyD.J. Immunologic privilege in the central nervous system and the blood-brain barrier.J. Cereb. Blood Flow Metab.2013331132110.1038/jcbfm.2012.153 23072749
    [Google Scholar]
  27. EilamR. SegalM. MalachR. SelaM. ArnonR. AharoniR. A strocyte disruption of neurovascular communication is linked to cortical damage in an animal model of multiple sclerosis.Glia20186651098111710.1002/glia.23304 29424049
    [Google Scholar]
  28. BegumG. SongS. WangS. Selective knockout of astrocytic Na+/H+ exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke.Glia201866112614410.1002/glia.23232 28925083
    [Google Scholar]
  29. ChiuC.D. YaoN.W. GuoJ.H. Inhibition of astrocytic activity alleviates sequela in acute stages of intracerebral hemorrhage.Oncotarget2017855948509486110.18632/oncotarget.22022 29212271
    [Google Scholar]
  30. MichinagaS. KoyamaY. Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage.Int. J. Mol. Sci.201920357110.3390/ijms20030571 30699952
    [Google Scholar]
  31. ColonnaM. ButovskyO. Microglia function in the central nervous system during health and neurodegeneration.Annu. Rev. Immunol.201735144146810.1146/annurev‑immunol‑051116‑052358 28226226
    [Google Scholar]
  32. LiQ. BarresB.A. Microglia and macrophages in brain homeostasis and disease.Nat. Rev. Immunol.201818422524210.1038/nri.2017.125 29151590
    [Google Scholar]
  33. GaoC. JiangJ. TanY. ChenS. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets.Signal Transduct. Target. Ther.20238135910.1038/s41392‑023‑01588‑0 37735487
    [Google Scholar]
  34. AttwellD. MishraA. HallC.N. O’FarrellF.M. DalkaraT. What is a pericyte?J. Cereb. Blood Flow Metab.201636245145510.1177/0271678X15610340 26661200
    [Google Scholar]
  35. ShulyatnikovaT HaydenMR Why are perivascular spaces important?Med202359791710.3390/MEDICINA59050917
    [Google Scholar]
  36. ZhangY. MuB.R. RanZ. Pericytes in Alzheimer’s disease: Key players and therapeutic targets.Exp. Neurol.202437911482510.1016/j.expneurol.2024.114825 38777251
    [Google Scholar]
  37. TakataF. NakagawaS. MatsumotoJ. DohguS. Blood-brain barrier dysfunction amplifies the development of neuroinflammation: understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction.Front. Cell. Neurosci.20211566183810.3389/fncel.2021.661838 34588955
    [Google Scholar]
  38. YazdaniS. Jaldin-FincatiJ.R. PereiraR.V.S. KlipA. Endothelial cell barriers: Transport of molecules between blood and tissues.Traffic201920639040310.1111/tra.12645 30950163
    [Google Scholar]
  39. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood-brain barrier: Structure, regulation, and drug delivery.Signal Transduct. Target. Ther.20238110.1038/s41392‑023‑01481‑w 37231000
    [Google Scholar]
  40. SweeneyM.D. KislerK. MontagneA. TogaA.W. ZlokovicB.V. The role of brain vasculature in neurodegenerative disorders.Nat. Neurosci.201821101318133110.1038/s41593‑018‑0234‑x 30250261
    [Google Scholar]
  41. LanG. WangP. ChanR.B. Astrocytic VEGFA: An essential mediator in blood-brain‐barrier disruption in Parkinson’s disease.Glia202270233735310.1002/glia.24109 34713920
    [Google Scholar]
  42. EdwardsD.N. BixG.J. Roles of blood-brain barrier integrins and extracellular matrix in stroke.Am. J. Physiol. Cell Physiol.20193162C252C26310.1152/ajpcell.00151.2018 30462535
    [Google Scholar]
  43. SharmaB. LuhachK. KulkarniG.T. In vitro and in vivo models of BBB to evaluate brain targeting drug deliveryBrain Targeted Drug Delivery System.Cambridge, MassachusettsAcademic Press20195310110.1016/B978‑0‑12‑814001‑7.00004‑4
    [Google Scholar]
  44. KaplanL. ChowB.W. GuC. Neuronal regulation of the blood-brain barrier and neurovascular coupling.Nat. Rev. Neurosci.202021841643210.1038/s41583‑020‑0322‑2 32636528
    [Google Scholar]
  45. JainS. MurmuA. PatelS. Elucidating the therapeutic mechanism of betanin in Alzheimer’s disease treatment through network pharmacology and bioinformatics analysis.Metab. Brain Dis.20243961175118710.1007/s11011‑024‑01385‑w 38995496
    [Google Scholar]
  46. ShuklaR. SrivastavaV. SethiA. RuwaliM. Nanomaterial-based drug delivery systems as tools for targeted therapy of neurodegenerative diseases.In: Nanomedical Drug Delivery for Neurodegenerative Diseases.Cambridge, MassachusettsAcademic Press202224325910.1016/B978‑0‑323‑85544‑0.00003‑4
    [Google Scholar]
  47. HosoyaK. HoriS. OhtsukiS. TerasakiT. A new in vitro model for blood?cerebrospinal fluid barrier transport studies: An immortalized choroid plexus epithelial cell line derived from the tsA58 SV40 large T-antigen gene transgenic rat.Adv. Drug Deliv. Rev.200456121875188510.1016/j.addr.2004.07.013 15381338
    [Google Scholar]
  48. BanksW.A. GreigN.H. Small molecules as central nervous system therapeutics: Old challenges, new directions, and a philosophic divide.Future Med. Chem.201911648949310.4155/fmc‑2018‑0436 30912980
    [Google Scholar]
  49. WangL. WangN. ZhangW. Therapeutic peptides: Current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  50. CornelissenF.M.G. MarkertG. DeutschG. Explaining blood-brain barrier permeability of small molecules by integrated analysis of different transport mechanisms.J. Med. Chem.202366117253726710.1021/acs.jmedchem.2c01824 37217193
    [Google Scholar]
  51. RamapriyanR. SunJ. CurryA. The role of antibody-based therapies in neuro-oncology.Antibodies20231247410.3390/antib12040074 37987252
    [Google Scholar]
  52. ZhouX. SmithQ.R. LiuX. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021134e169510.1002/wnan.1695 33470550
    [Google Scholar]
  53. KouhiA. PachipulusuV. KapensteinT. HuP. EpsteinA.L. KhawliL.A. Brain disposition of antibody-based therapeutics: Dogma, approaches and perspectives.Int. J. Mol. Sci.20212212644210.3390/ijms22126442 34208575
    [Google Scholar]
  54. SunJ.M. YenT.L. JanJ.S. Advances in antibody-based therapeutics for cerebral ischemia.Pharmaceutics202215114510.3390/pharmaceutics15010145 36678774
    [Google Scholar]
  55. HuangX. ShiS. WangH. Advances in antibody-based drugs and their delivery through the blood-brain barrier for targeted therapy and immunotherapy of gliomas.Int. Immunopharmacol.202311710999010.1016/j.intimp.2023.109990 37012874
    [Google Scholar]
  56. PardridgeW.M. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier.Front. Drug Deliv.20233122781610.3389/fddev.2023.1227816 37583474
    [Google Scholar]
  57. IngusciS. VerlengiaG. SoukupovaM. ZucchiniS. SimonatoM. Gene therapy tools for brain diseases.Front. Pharmacol.20191072410.3389/fphar.2019.00724 31312139
    [Google Scholar]
  58. MeadB.P. MastorakosP. SukJ.S. KlibanovA.L. HanesJ. PriceR.J. Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound.J. Control. Release201622310911710.1016/j.jconrel.2015.12.034 26732553
    [Google Scholar]
  59. NdemazieN.B. InkoomA. MorfawE.F. Multi-disciplinary approach for drug and gene delivery systems to the brain.AAPS PharmSciTech20222311110.1208/s12249‑021‑02144‑1 34862567
    [Google Scholar]
  60. PardridgeW.M. Brain gene therapy with Trojan horse lipid nanoparticles.Trends Mol. Med.202329534335310.1016/j.molmed.2023.02.004 36907687
    [Google Scholar]
  61. XieR. WangY. BurgerJ.C. LiD. ZhuM. GongS. Non-viral approaches for gene therapy and therapeutic genome editing across the blood-brain barrier.Med-X202311610.1007/s44258‑023‑00004‑0 37485250
    [Google Scholar]
  62. PardridgeW.M. Blood-brain barrier and delivery of protein and gene therapeutics to brain.Front. Aging Neurosci.20201137310.3389/fnagi.2019.00373 31998120
    [Google Scholar]
  63. JainS. SinghR. PaliwalT. Discovery of novel fatty acid amide hydrolase (FAAH) inhibitors as anti-alzheimer agents via in-silico-based drug design, virtual screening, molecular docking, molecular dynamics simulation, DFT, and non-clinical studies.Pharmacol. Biochem. Behav.202524717394310.1016/j.pbb.2024.173943 39667582
    [Google Scholar]
  64. DooleyJ. HughesJ.G. NeedhamE.J. PaliosK.A. ListonA. The potential of gene delivery for the treatment of traumatic brain injury.J. Neuroinflammation202421118310.1186/s12974‑024‑03156‑x 39069631
    [Google Scholar]
  65. HershD.S. WadajkarA.S. RobertsN. Evolving drug delivery strategies to overcome the blood brain barrier.Curr. Pharm. Des.20162291177119310.2174/1381612822666151221150733 26685681
    [Google Scholar]
  66. MondalS. GhoshS. Liposome-mediated anti-viral drug delivery across blood-brain barrier: Can lipid droplet target be game changers?Cell. Mol. Neurobiol.2024441910.1007/s10571‑023‑01443‑4 38123863
    [Google Scholar]
  67. RautioJ. LaineK. GyntherM. SavolainenJ. Prodrug approaches for CNS delivery.AAPS J.20081019210210.1208/s12248‑008‑9009‑8 18446509
    [Google Scholar]
  68. ZeiadehI. NajjarA. KaramanR. Strategies for enhancing the permeation of CNS-active drugs through the blood-brain barrier: A review.Molecules2018236128910.3390/molecules23061289 29843371
    [Google Scholar]
  69. PoudelP. ParkS. Recent advances in the treatment of Alzheimer’s disease using nanoparticle-based drug delivery systems.Pharmaceutics202214483510.3390/pharmaceutics14040835 35456671
    [Google Scholar]
  70. SaffariP.M. AlijanpourS. TakzareeN. Metformin loaded phosphatidylserine nanoliposomes improve memory deficit and reduce neuroinflammation in streptozotocin-induced Alzheimer’s disease model.Life Sci.202025511786110.1016/j.lfs.2020.117861 32473247
    [Google Scholar]
  71. LiW. ZhouY. ZhaoN. HaoB. WangX. KongP. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes.Environ. Toxicol. Pharmacol.201234227227910.1016/j.etap.2012.04.012 22613079
    [Google Scholar]
  72. UllahZ. Al-AsmariA. TariqM. FataniA. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil.Drug Des. Devel. Ther.20161020521510.2147/DDDT.S93937 26834457
    [Google Scholar]
  73. YangZ.Z. ZhangY.Q. WangZ.Z. WuK. LouJ.N. QiX.R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration.Int. J. Pharm.20134521-234435410.1016/j.ijpharm.2013.05.009 23680731
    [Google Scholar]
  74. YangP. ShengD. GuoQ. Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer’s disease.Biomaterials202023811984410.1016/j.biomaterials.2020.119844 32062148
    [Google Scholar]
  75. LuY. GuoZ. ZhangY. Microenvironment remodeling micelles for Alzheimer’s disease therapy by early modulation of activated microglia.Adv. Sci.201964180158610.1002/advs.201801586 30828531
    [Google Scholar]
  76. MisraS. ChopraK. SinhaV.R. MedhiB. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: Preparation, characterization, in vitro and in vivo evaluations.Drug Deliv.20162341434144310.3109/10717544.2015.1089956 26405825
    [Google Scholar]
  77. ShahB. KhuntD. BhattH. MisraM. PadhH. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters.Eur. J. Pharm. Sci.201578546610.1016/j.ejps.2015.07.002 26143262
    [Google Scholar]
  78. MendesI.T. RuelaA.L.M. CarvalhoF.C. FreitasJ.T.J. BonfilioR. PereiraG.R. Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil.Colloids Surf. B Biointerfaces201917727428110.1016/j.colsurfb.2019.02.007 30763792
    [Google Scholar]
  79. ChauhanM.K. SharmaP.K. Optimization and characterization of rivastigmine nanolipid carrier loaded transdermal patches for the treatment of dementia.Chem. Phys. Lipids201922410479410.1016/j.chemphyslip.2019.104794 31361985
    [Google Scholar]
  80. DaraT. VatanaraA. SharifzadehM. Improvement of memory deficits in the rat model of Alzheimer’s disease by erythropoietin-loaded solid lipid nanoparticles.Neurobiol. Learn. Mem.201916610708210.1016/j.nlm.2019.107082 31493483
    [Google Scholar]
  81. VakilinezhadM.A. AminiA. Akbari JavarH. Baha’addini Beigi ZarandiB.F. MontaseriH. DinarvandR. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation.Daru201826216517710.1007/s40199‑018‑0221‑5 30386982
    [Google Scholar]
  82. YadavA. SunkariaA. SinghalN. SandhirR. Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway.Neurochem. Int.201811223925410.1016/j.neuint.2017.08.001 28782592
    [Google Scholar]
  83. LoureiroJ. AndradeS. DuarteA. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease.Molecules201722227710.3390/molecules22020277 28208831
    [Google Scholar]
  84. DhawanS. KapilR. SinghB. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery.J. Pharm. Pharmacol.201163334235110.1111/j.2042‑7158.2010.01225.x 21749381
    [Google Scholar]
  85. MengF. AsgharS. GaoS. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease.Colloids Surf. B Biointerfaces2015134889710.1016/j.colsurfb.2015.06.025 26162977
    [Google Scholar]
  86. NanakiS.G. SpyrouK. BekiariC. Hierarchical porous carbon—PLLA and PLGA hybrid nanoparticles for intranasal delivery of galantamine for Alzheimer’s disease therapy.Pharmaceutics202012322710.3390/pharmaceutics12030227 32143505
    [Google Scholar]
  87. BaysalI. UcarG. GultekinogluM. UlubayramK. Yabanoglu-CiftciS. Donepezil loaded PLGA-b-PEG nanoparticles: Their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro.J. Neural Transm.20171241334510.1007/s00702‑016‑1527‑4 26911385
    [Google Scholar]
  88. YinH. SiJ. XuH. Resveratrol-loaded nanoparticles reduce oxidative stress induced by radiation or amyloid-beta in transgenic Caenorhabditis elegans.J. Biomed. Nanotechnol.20141081536154410.1166/jbn.2014.1897 25016653
    [Google Scholar]
  89. FanS. ZhengY. LiuX. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease.Drug Deliv.20182511091110210.1080/10717544.2018.1461955 30107760
    [Google Scholar]
  90. CanoA. EttchetoM. ChangJ.H. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model.J. Control. Release2019301627510.1016/j.jconrel.2019.03.010 30876953
    [Google Scholar]
  91. Silva-AbreuM. CalpenaA.C. Andrés-BenitoP. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer’s disease: In vitro and in vivo studies [Corrigendum].Int. J. Nanomedicine2023183641364210.2147/IJN.S421741 37427369
    [Google Scholar]
  92. SunD. LiN. ZhangW. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease.Colloids Surf. B Biointerfaces201614811612910.1016/j.colsurfb.2016.08.052 27591943
    [Google Scholar]
  93. Sunena, Singh SK, Mishra DN. Nose to brain delivery of galantamine loaded nanoparticles: In-vivo pharmacodynamic and biochemical study in mice.Curr. Drug Deliv.2018161515810.2174/1567201815666181004094707
    [Google Scholar]
  94. KaurA. NigamK. BhatnagarI. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: An intranasal approach.Drug Deliv. Transl. Res.20201061862187510.1007/s13346‑020‑00754‑z 32297166
    [Google Scholar]
  95. JiangY. LiuC. ZhaiW. ZhuangN. HanT. DingZ. The optimization design of lactoferrin loaded hupa nanoemulsion for targeted drug transport via intranasal route.Int. J. Nanomedicine2019149217923410.2147/IJN.S214657 31819426
    [Google Scholar]
  96. Enteshari NajafabadiR. KazemipourN. EsmaeiliA. BeheshtiS. NazifiS. Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain.BMC Pharmacol. Toxicol.20181915910.1186/s40360‑018‑0249‑7 30253803
    [Google Scholar]
  97. Lopez-BarbosaN. GarciaJ.G. CifuentesJ. Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer’s.Drug Deliv.202027186487510.1080/10717544.2020.1775724 32515999
    [Google Scholar]
  98. SongJ. LuC. LeszekJ. ZhangJ. Design and development of nanomaterial-based drug carriers to overcome the blood-brain barrier by using different transport mechanisms.Int. J. Mol. Sci.202122181011810.3390/ijms221810118 34576281
    [Google Scholar]
  99. GyntherM. RopponenJ. LaineK. Glucose promoiety enables glucose transporter mediated brain uptake of ketoprofen and indomethacin prodrugs in rats.J. Med. Chem.200952103348335310.1021/jm8015409 19402664
    [Google Scholar]
  100. PurisE. FrickerG. GyntherM. Targeting transporters for drug delivery to the brain: Can we do better?Pharm. Res.20223971415145510.1007/s11095‑022‑03241‑x 35359241
    [Google Scholar]
  101. van den BroekS.L. ShalgunovV. HerthM.M. Transport of nanomedicines across the blood-brain barrier: Challenges and opportunities for imaging and therapy.Biomater. Adv.202214121312510.1016/j.bioadv.2022.213125 36182833
    [Google Scholar]
  102. TsujiA. TamaiI. Carrier-mediated or specialized transport of drugs across the blood-brain barrier.Adv. Drug Deliv. Rev.1999362-327729010.1016/S0169‑409X(98)00084‑2 10837720
    [Google Scholar]
  103. ZhangW. LiuQ.Y. HaqqaniA.S. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human.Fluids Barriers CNS20201714710.1186/s12987‑020‑00209‑0 32698806
    [Google Scholar]
  104. HuC. TaoL. CaoX. ChenL. The solute carrier transporters and the brain: Physiological and pharmacological implications.Asian J. Pharm. Sci.202015213114410.1016/j.jphs.2019.12.008 32373195
    [Google Scholar]
  105. ZhangY. GuoP. MaZ. LuP. KebebeD. LiuZ. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: A review.J. Nanobiotechnology202119125510.1186/s12951‑021‑01002‑3 34425832
    [Google Scholar]
  106. DerakhshankhahH. JafariS. Cell penetrating peptides: A concise review with emphasis on biomedical applications.Biomed. Pharmacother.20181081090109610.1016/j.biopha.2018.09.097 30372809
    [Google Scholar]
  107. BottensR.A. YamadaT. Cell-penetrating peptides (CPPs) as therapeutic and diagnostic agents for cancer.Cancers20221422554610.3390/cancers14225546 36428639
    [Google Scholar]
  108. GuoY. LeeH. KimC. Ultrasound frequency-controlled microbubble dynamics in brain vessels regulate the enrichment of inflammatory pathways in the blood-brain barrier.Nat. Commun.2024151802110.1038/s41467‑024‑52329‑y 39271721
    [Google Scholar]
  109. LapinN.A. GillK. ShahB.R. ChopraR. Consistent opening of the blood brain barrier using focused ultrasound with constant intravenous infusion of microbubble agent.Sci. Rep.20201011654610.1038/s41598‑020‑73312‑9 33024157
    [Google Scholar]
  110. FanC.H. YehC.K. Microbubble-enhanced focused ultrasound-induced blood-brain barrier opening for local and transient drug delivery in central nervous system disease.J. Med. Ultrasound201422418319310.1016/j.jmu.2014.11.001
    [Google Scholar]
  111. DurhamP.G. ButnariuA. AlghoraziR. PintonG. KrishnaV. DaytonP.A. Current clinical investigations of focused ultrasound blood-brain barrier disruption: A review.Neurotherapeutics2024213e0035210.1016/j.neurot.2024.e00352 38636309
    [Google Scholar]
  112. HeC. WuZ. ZhuangM. Focused ultrasound-mediated blood-brain barrier opening combined with magnetic targeting cytomembrane based biomimetic microbubbles for glioblastoma therapy.J. Nanobiotechnology202321129710.1186/s12951‑023‑02074‑z 37626360
    [Google Scholar]
  113. HuangQ. ChenX. YuS. GongG. ShuH. Research progress in brain-targeted nasal drug delivery.Front. Aging Neurosci.202415134129510.3389/fnagi.2023.1341295 38298925
    [Google Scholar]
  114. MarcelloE. ChionoV. Biomaterials-enhanced intranasal delivery of drugs as a direct route for brain targeting.Int. J. Mol. Sci.2023244339010.3390/ijms24043390 36834804
    [Google Scholar]
  115. VeronesiM.C. AlhamamiM. MiedemaS.B. YunY. Ruiz-CardozoM. VannierM.W. Imaging of intranasal drug delivery to the brain.Am. J. Nucl. Med. Mol. Imaging2020101131 32211216
    [Google Scholar]
  116. SuY. SunB. GaoX. Intranasal delivery of targeted nanoparticles loaded with miR-132 to brain for the treatment of neurodegenerative diseases.Front. Pharmacol.202011116510.3389/fphar.2020.01165 32848773
    [Google Scholar]
  117. FormicaM.L. RealD.A. PicchioM.L. CatlinE. DonnellyR.F. ParedesA.J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles.Appl. Mater. Today20222910163110.1016/j.apmt.2022.101631
    [Google Scholar]
  118. KhatamiS.H. KaramiN. Taheri-AnganehM. Exosomes: Promising delivery tools for overcoming blood-brain barrier and glioblastoma therapy.Mol. Neurobiol.20236084659467810.1007/s12035‑023‑03365‑0 37138197
    [Google Scholar]
  119. FatimaS. QaiserA. AndleebS. HashmiA.H. ManzoorS. Navigating the brain: The role of exosomal shuttles in precision therapeutics.Front. Neurol.202414132421610.3389/fneur.2023.1324216 38304326
    [Google Scholar]
  120. RehmanF.U. LiuY. ZhengM. ShiB. Exosomes based strategies for brain drug delivery.Biomaterials202329312194910.1016/j.biomaterials.2022.121949 36525706
    [Google Scholar]
  121. ChoiH. ChoiK. KimD.H. Strategies for targeted delivery of exosomes to the brain: Advantages and challenges.Pharmaceutics202214367210.3390/pharmaceutics14030672 35336049
    [Google Scholar]
  122. HeidarzadehM. Gürsoy-ÖzdemirY. KayaM. Exosomal delivery of therapeutic modulators through the blood-brain barrier; promise and pitfalls.Cell Biosci.202111114210.1186/s13578‑021‑00650‑0 34294165
    [Google Scholar]
  123. LiuY. LiD. LiuZ. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse.Sci. Rep.2015511754310.1038/srep17543 26633001
    [Google Scholar]
  124. SaraivaC. PraçaC. FerreiraR. SantosT. FerreiraL. BernardinoL. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases.J. Control. Release2016235344710.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  125. KumarR. WaisbergE. OngJ. Artificial Intelligence-based methodologies for early diagnostic precision and personalized therapeutic strategies in neuro-ophthalmic and neurodegenerative pathologies.Brain Sci.20241412126610.3390/brainsci14121266 39766465
    [Google Scholar]
  126. KhalinI. AlyautdinR. IsmailN.M. HaronM.H. KuznetsovD. Nanoscale drug delivery systems and the blood-brain barrier.Int. J. Nanomedicine2014979581110.2147/IJN.S52236 24550672
    [Google Scholar]
  127. LiuW. LiL. JiangJ. WuM. LinP. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics.Precis. Clin. Med.20214317919110.1093/pcmedi/pbab014 34541453
    [Google Scholar]
  128. PinheiroR.G.R. CoutinhoA.J. PinheiroM. NevesA.R. Nanoparticles for targeted brain drug delivery: What do we know?Int. J. Mol. Sci.202122211165410.3390/ijms222111654 34769082
    [Google Scholar]
  129. GyngellC. DouglasT. SavulescuJ. The ethics of germline gene editing.J. Appl. Philos.201734449851310.1111/japp.12249 28919655
    [Google Scholar]
  130. BhuniaS. KolishettiN. VashistA. Yndart AriasA. BrooksD. NairM. Drug delivery to the brain: Recent advances and unmet challenges.Pharmaceutics2023151210.3390/pharmaceutics15122658 38139999
    [Google Scholar]
  131. FeringaF.M. van der KantR. Cholesterol and Alzheimer’s disease; from risk genes to pathological effects.Front. Aging Neurosci.20211369037210.3389/fnagi.2021.690372 34248607
    [Google Scholar]
  132. GiorgiC. LombardozziG. AmmannitoF. Brain organoids: A game-changer for drug testing.Pharmaceutics202416444310.3390/pharmaceutics16040443 38675104
    [Google Scholar]
  133. BhardwajS. KesariK.K. RachamallaM. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics.J. Adv. Res.20224020722110.1016/j.jare.2021.07.001 36100328
    [Google Scholar]
  134. JiangH. TangM. XuZ. CRISPR/Cas9 system and its applications in nervous system diseases.Genes Dis.202411267568610.1016/j.gendis.2023.03.017 37692518
    [Google Scholar]
  135. BertocchiI. CambiaghiM. HasanM.T. Advances toward precision therapeutics for developmental and epileptic encephalopathies.Front. Neurosci.202317114067910.3389/fnins.2023.1140679 37090807
    [Google Scholar]
  136. PopescuS.M. MansoorS. WaniO.A. Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management.Front. Environ. Sci.202412133608810.3389/fenvs.2024.1336088
    [Google Scholar]
  137. CummingsJ. LeeG. NahedP. Alzheimer’s disease drug development pipeline: 2022.Alzheimers Dement.202281e1229510.1002/trc2.12295 35516416
    [Google Scholar]
  138. SpecchioN. WirrellE.C. SchefferI.E. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE task force on nosology and definitions.Epilepsia20226361398144210.1111/epi.17241 35503717
    [Google Scholar]
  139. Oualikene-GoninW. SautouV. EzanE. Regulatory assessment of nano-enabled health products in public health interest. Position of the scientific advisory board of the French national agency for the safety of medicines and health products.Front. Public Health202311112557710.3389/fpubh.2023.1125577 36935690
    [Google Scholar]
  140. GaoZ. Strategies for enhanced gene delivery to the central nervous system.Nanoscale Adv.20246123009302810.1039/D3NA01125A 38868835
    [Google Scholar]
  141. MhaskeA. ShuklaS. AhirwarK. SinghK.K. ShuklaR. Receptor-assisted nanotherapeutics for overcoming the blood-brain barrier.Mol. Neurobiol.202461118702873810.1007/s12035‑024‑04015‑9 38558360
    [Google Scholar]
  142. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
  143. LavazzaA. ChinaiaA.A. Human brain organoids and their ethical issues.EMBO Rep.2023251131610.1038/s44319‑023‑00007‑3 38177904
    [Google Scholar]
  144. WastiS. LeeI.H. KimS. LeeJ.H. KimH. Ethical and legal challenges in nanomedical innovations: A scoping review.Front. Genet.202314116339210.3389/fgene.2023.1163392 37252668
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128386983250410092649
Loading
/content/journals/cpd/10.2174/0113816128386983250410092649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test