Skip to content
2000
Volume 31, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Benzothiazole derivatives have garnered considerable attention owing to their versatile chemical scaffold and remarkable biological activities. The article provides an in-depth analysis of the diverse structural modifications and strategies employed to enhance the anticancer potential of these compounds from the period of 2020 to 2024. It discusses the role of structure-activity relationships (SAR) and computational approaches in optimizing benzothiazole derivatives for selective and effective cancer treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128355783250212043621
2025-03-05
2025-09-03
Loading full text...

Full text loading...

References

  1. MeachamC.E. MorrisonS.J. Tumour heterogeneity and cancer cell plasticity.Nature2013501746732833710.1038/nature1262424048065
    [Google Scholar]
  2. FisherR. PusztaiL. SwantonC. Cancer heterogeneity: Implications for targeted therapeutics.Br. J. Cancer2013108347948510.1038/bjc.2012.58123299535
    [Google Scholar]
  3. SrivastavaV. NegiA.S. KumarJ.K. GuptaM.M. KhanujaS.P.S. Plant-based anticancer molecules: A chemical and biological profile of some important leads.Bioorg. Med. Chem.200513215892590810.1016/j.bmc.2005.05.06616129603
    [Google Scholar]
  4. BegerH.G. RauB. GansaugeF. LederG. SchwarzM. PochB. Pancreatic cancer--Low survival rates.Dtsch. Arztebl. Int.20081051425526219629206
    [Google Scholar]
  5. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  6. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834
    [Google Scholar]
  7. ParkS.K. KimY. KangD. JungE.J. YooK.Y. Risk factors and control strategies for the rapidly rising rate of breast cancer in Korea.J. Breast Cancer2011142798710.4048/jbc.2011.14.2.7921847401
    [Google Scholar]
  8. ParkinD.M. The global health burden of infection‐associated cancers in the year 2002.Int. J. Cancer2006118123030304410.1002/ijc.2173116404738
    [Google Scholar]
  9. FerlayJ. SoerjomataramI. DikshitR. EserS. MathersC. RebeloM. ParkinD.M. FormanD. BrayF. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.2921025220842
    [Google Scholar]
  10. PortelaA. EstellerM. Epigenetic modifications and human disease.Nat. Biotechnol.201028101057106810.1038/nbt.168520944598
    [Google Scholar]
  11. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  12. ElgemeieG.H. AzzamR.A. ZagharyW.A. KhedrM.A. ElsherifG.E. Medicinal chemistry of pyrazolopyrimidine scaffolds substituted with different heterocyclic nuclei.Curr. Pharm. Des.202228413374340310.2174/138161282966622110216200036330628
    [Google Scholar]
  13. HanahanD. Hallmarks of cancer: New dimensions.Cancer Discov.2022121314610.1158/2159‑8290.CD‑21‑105935022204
    [Google Scholar]
  14. MengX. ZhongJ. LiuS. MurrayM. Gonzalez-AnguloA.M. A new hypothesis for the cancer mechanism.Cancer Metastasis Rev.2012311-224726810.1007/s10555‑011‑9342‑822179983
    [Google Scholar]
  15. HaitW.N. Anticancer drug development: The grand challenges.Nat. Rev. Drug Discov.20109425325410.1038/nrd314420369394
    [Google Scholar]
  16. AlfaroukK.O. StockC.M. TaylorS. WalshM. MuddathirA.K. VerduzcoD. BashirA.H.H. MohammedO.Y. ElhassanG.O. HarguindeyS. ReshkinS.J. IbrahimM.E. RauchC. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp.Cancer Cell Int.20151517110.1186/s12935‑015‑0221‑126180516
    [Google Scholar]
  17. WuQ. QianW. SunX. JiangS. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021.J. Hematol. Oncol.202215114310.1186/s13045‑022‑01362‑936209184
    [Google Scholar]
  18. HamptonT. Cancer prevention efforts stalled.JAMA200829919226410.1001/jama.299.19.2264
    [Google Scholar]
  19. SharmaP.C. SinhmarA. SharmaA. RajakH. PathakD.P. Medicinal significance of benzothiazole scaffold: An insight view.J. Enzyme Inhib. Med. Chem.201328224026610.3109/14756366.2012.72057223030043
    [Google Scholar]
  20. HenaryM. ParanjpeS. OwensE.A. Substituted benzothiazoles: Synthesis and medicinal characteristics.Heterocycl. Commun.20131928999
    [Google Scholar]
  21. Mendieta-WejebeJ.E. Rosales-HernándezM.C. Padilla-MartínezI.I. García-BáezE.V. CruzA. Design, synthesis and biological activities of (Thio)urea benzothiazole derivatives.Int. J. Mol. Sci.20232411948810.3390/ijms2411948837298442
    [Google Scholar]
  22. AnandK. Synthesis, biological activity and recent advancement of benzothiazoles: A classical review.World J. Pharm. Pharm. Sci.2018201718421869
    [Google Scholar]
  23. YadavK.P. RahmanM.A. NishadS. MauryaS.K. AnasM. MujahidM. Synthesis and biological activities of benzothiazole derivatives: A review.Intelligent Pharmacy20231312213210.1016/j.ipha.2023.06.001
    [Google Scholar]
  24. PadiPR ChagantiSR SatyanarayanaB GantaMR ChagantiR AkulaR Process for preparing riluzole.Patent US 2008/0108827 A1,2008
  25. HeiligM.L. Stereoscopic-television apparatus for individual use.Patent US 29551561994
  26. ThongchotS. DuangkaewS. YotchaiW. MaungsomboonS. PhimolsarntiR. AsavamongkolkulA. ThuwajitP. ThuwajitC. ChandhanayingyongC. Novel CSF1R-positive tenosynovial giant cell tumor cell lines and their pexidartinib (PLX3397) and sotuletinib (BLZ945)-induced apoptosis.Hum. Cell202236145646710.1007/s13577‑022‑00823‑036456782
    [Google Scholar]
  27. WiahS RoperA ZhaoP ShekarabiA WatsonMN FarkasDJ Troriluzole inhibits methamphetamine place preference in rats and normalizes methamphetamine-evoked glutamate carboxypeptidase II (GCPII) protein levels in the mesolimbic pathwayDrug Alcohol Depend.202324210971910.1016/j.drugalcdep.2022.109719
    [Google Scholar]
  28. CorvaroM. GollapudiB.B. MehtaJ. A critical assessment of the genotoxicity profile of the fungicide tricyclazole.Environ. Mol. Mutagen.202061330031510.1002/em.2234431633836
    [Google Scholar]
  29. LiuF.T. LuJ.Y. LiX.Y. LiangX.N. JiaoF.Y. GeJ.J. WuP. LiG. ShenB. WuB. SunY.M. ZhuY.H. LuoJ.F. YenT.C. WuJ.J. ZuoC.T. WangJ. 18F-Florzolotau PET imaging captures the distribution patterns and regional vulnerability of tau pathology in progressive supranuclear palsy.Eur. J. Nucl. Med. Mol. Imaging20235051395140510.1007/s00259‑022‑06104‑036627498
    [Google Scholar]
  30. MøllerhøjM.B. VeidalS.S. ThraneK.T. OróD. OvergaardA. SalinasC.G. MadsenM.R. PfistererL. VybergM. SimonE. BroermannA. VrangN. JelsingJ. FeighM. HansenH.H. Hepatoprotective effects of semaglutide, lanifibranor and dietary intervention in the GAN diet‐induced obese and biopsy‐confirmed mouse model of NASH.Clin. Transl. Sci.20221551167118610.1111/cts.1323535143711
    [Google Scholar]
  31. PalmerS.S. AltanM. DenisD. TosE.G. GottelandJ.P. OsteenK.G. Bruner-TranK.L. NatarajaS.G. Bentamapimod (JNK Inhibitor AS602801) induces regression of endometriotic lesions in animal models.Reprod. Sci.2016231112310.1177/193371911560055326335175
    [Google Scholar]
  32. MartínezG. VernooijR.W. PadillaP.F. ZamoraJ. FlickerL. Bonfill CospX. 18F PET with florbetaben for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).Cochrane Database Syst Rev.20171111CD012883
    [Google Scholar]
  33. BarretO. HannestadJ. AlagilleD. ValaC. TavaresA. PapinC. MorleyT. FowlesK. LeeH. SeibylJ. TytgatD. LaruelleM. TamagnanG. Adenosine 2A receptor occupancy by tozadenant and preladenant in rhesus monkeys.J. Nucl. Med.201455101712171810.2967/jnumed.114.14206725082853
    [Google Scholar]
  34. NohH.L. HuY. ParkT.S. DiCioccioT. NicholsA.J. OkajimaK. HommaS. GoldbergI.J. Regulation of plasma fructose and mortality in mice by the aldose reductase inhibitor lidorestat.J. Pharmacol. Exp. Ther.2009328249650310.1124/jpet.108.13628318974362
    [Google Scholar]
  35. AngevinE. SpitaleriG. RodonJ. DottiK. IsambertN. SalvagniS. MorenoV. AssadourianS. GomezC. HarnoisM. HollebecqueA. AzaroA. HervieuA. RihawiK. De MarinisF. A first-in-human phase I study of SAR125844, a selective MET tyrosine kinase inhibitor, in patients with advanced solid tumours with MET amplification.Eur. J. Cancer20178713113910.1016/j.ejca.2017.10.01629145039
    [Google Scholar]
  36. WilliamsR. Discontinued in 2013: Oncology drugs.Expert Opin. Investig. Drugs20152419511010.1517/13543784.2015.97115425315907
    [Google Scholar]
  37. XuH. HurleyL.H. A first-in-class clinical G-quadruplex-targeting drug. The bench-to-bedside translation of the fluoroquinolone QQ58 to CX-5461 (Pidnarulex).Bioorg. Med. Chem. Lett.20227712901610.1016/j.bmcl.2022.12901636195286
    [Google Scholar]
  38. SewellK.R. Rainey-SmithS.R. VillemagneV.L. PeifferJ. SohrabiH.R. TaddeiK. The interaction between physical activity and sleep on cognitive function and brain beta-amyloid in older adults.Behav Brain Res.2023437114108
    [Google Scholar]
  39. LeeB.C. KimJ.S. KimB.S. SonJ.Y. HongS.K. ParkH.S. MoonB.S. JungJ.H. JeongJ.M. KimS.E. Aromatic radiofluorination and biological evaluation of 2-aryl-6-[18F]fluorobenzothiazoles as a potential positron emission tomography imaging probe for β-amyloid plaques.Bioorg. Med. Chem.20111992980299010.1016/j.bmc.2011.03.02921478020
    [Google Scholar]
  40. KumarS. DubeyB. A review on emerging benzothiazoles: Biological aspects.J. Drug Deliv. Ther.2022124-S27027410.22270/jddt.v12i4‑S.5549
    [Google Scholar]
  41. AzzamR.A. GadN.M. ElgemeieG.H. Novel thiophene thioglycosides substituted with the benzothiazole moiety: Synthesis, characterization, antiviral and anticancer evaluations, and NS3/4A and USP7 enzyme inhibitions.ACS Omega2022740356563566710.1021/acsomega.2c0344436249371
    [Google Scholar]
  42. KhedrM.A. ZagharyW.A. ElsherifG.E. AzzamR.A. ElgemeieG.H. Purine analogs: Synthesis, evaluation and molecular dynamics of pyrazolopyrimidines based benzothiazole as anticancer and antimicrobial CDK inhibitors.Nucleosides Nucleotides Nucleic Acids.20234217710410.1080/15257770.2022.210916935949161
    [Google Scholar]
  43. AliR. SiddiquiN. Biological aspects of emerging benzothiazoles: A short review.J. Chem.20132013134519810.1155/2013/345198
    [Google Scholar]
  44. KumarA. UddinK. SinghL.R. Biological potential of benzothiazole derivatives: Bench to bed side.J. Pharm. Negative Results.202313851005112
    [Google Scholar]
  45. KamalA. SyedM.A.H. MohammedS.M. Therapeutic potential of benzothiazoles: A patent review (2010 - 2014).Expert Opin Ther Pat.2015253335349
    [Google Scholar]
  46. AzzamR.A. ElgemeieG.H. OsmanR.R. Synthesis of novel pyrido[2,1-b]benzothiazole and N-substituted 2-pyridylbenzothiazole derivatives showing remarkable fluorescence and biological activities.J. Mol. Struct.2020120112719410.1016/j.molstruc.2019.127194
    [Google Scholar]
  47. Chander SharmaP. SharmaD. SharmaA. BansalK.K. RajakH. SharmaS. ThakurV.K. New horizons in benzothiazole scaffold for cancer therapy: Advances in bioactivity, functionality, and chemistry.Appl. Mater. Today20202010078310.1016/j.apmt.2020.100783
    [Google Scholar]
  48. KeriR.S. PatilM.R. PatilS.A. BudagumpiS. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry.Eur. J. Med. Chem.20158920725110.1016/j.ejmech.2014.10.05925462241
    [Google Scholar]
  49. GillR.K. RawalR.K. BariwalJ. Recent advances in the chemistry and biology of benzothiazoles.Arch. Pharm.2015348315517810.1002/ardp.20140034025682746
    [Google Scholar]
  50. PopliJ.V. KumbhareM.R. SuranaA.R. BhaleraoM.R. AgrawalP.A. Benzothiazole analogues and their biological aspects: A review.Indian J. Chem. Sect. B2021601216591669
    [Google Scholar]
  51. HaiderK ShrivastavaN PathakA Prasad DewanganR YahyaS Shahar YarM. Recent advances and SAR study of 2-substituted benzothiazole scaffold based potent chemotherapeutic agents.Results Chem..2022410025810.1016/j.rechem.2021.100258
    [Google Scholar]
  52. SinghM. SinghS. Benzothiazoles: How relevant in cancer drug design strategy?Anticancer. Agents Med. Chem.201414112714610.2174/1871520611313999031223869774
    [Google Scholar]
  53. PathakN. RathiE. KumarN. KiniS.G. RaoC.M. A review on anticancer potentials of benzothiazole derivatives.Mini-Rev. Med. Chem.2020201122310.2174/1389557519666190617153213
    [Google Scholar]
  54. IrfanA. BatoolF. Zahra NaqviS.A. IslamA. OsmanS.M. NocentiniA. AlissaS.A. SupuranC.T. Benzothiazole derivatives as anticancer agents.J. Enzyme Inhib. Med. Chem.202035126527910.1080/14756366.2019.169803631790602
    [Google Scholar]
  55. DhaddaS. RaigarA.K. SainiK. Manju GuleriaA. Benzothiazoles: From recent advances in green synthesis to anti-cancer potential.Sustain. Chem. Pharm.20212410052110.1016/j.scp.2021.100521
    [Google Scholar]
  56. PathakA.K. SarojR. Clinical efficacy of benzothiazole in antitumor activity: A recent trends.World J. Pharm. Pharm. Sci.202095796836
    [Google Scholar]
  57. HonoreS. PasquierE. BraguerD. Understanding microtubule dynamics for improved cancer therapy.Cell Mol Life Sci.2005622430393056
    [Google Scholar]
  58. PellegriniF. BudmanD.R. Review: Tubulin function, action of antitubulin drugs, and new drug development.Cancer Invest.200523326427310.1081/CNV‑20005597015948296
    [Google Scholar]
  59. KaurR. KaurG. GillR.K. SoniR. BariwalJ. Recent developments in tubulin polymerization inhibitors: An overview.Eur. J. Med. Chem.2014878912410.1016/j.ejmech.2014.09.05125240869
    [Google Scholar]
  60. Ems-McClungS.C. WalczakC.E. Kinesin-13s in mitosis: Key players in the spatial and temporal organization of spindle microtubules.Semin. Cell Dev. Biol.201021327628210.1016/j.semcdb.2010.01.01620109574
    [Google Scholar]
  61. SongJ. GaoQ.L. WuB.W. ZhuT. CuiX.X. JinC.J. WangS.Y. WangS.H. FuD.J. LiuH.M. ZhangS.Y. ZhangY.B. LiY.C. Discovery of tertiary amide derivatives incorporating benzothiazole moiety as anti-gastric cancer agents in vitro via inhibiting tubulin polymerization and activating the Hippo signaling pathway.Eur. J. Med. Chem.202020311261810.1016/j.ejmech.2020.11261832682200
    [Google Scholar]
  62. FuD.J. LiuS.M. LiF.H. YangJ.J. LiJ. Antiproliferative benzothiazoles incorporating a trimethoxyphenyl scaffold as novel colchicine site tubulin polymerisation inhibitors.J. Enzyme Inhib. Med. Chem.20203511050105910.1080/14756366.2020.175372132299262
    [Google Scholar]
  63. KomuraiahB. RenY. XueM. ChengB. LiuJ. LiuY. ChenJ. Design, synthesis and biological evaluation of benz‐fused five‐membered heterocyclic compounds as tubulin polymerization inhibitors with anticancer activities.Chem. Biol. Drug Des.20219751109111610.1111/cbdd.1383233638903
    [Google Scholar]
  64. Kumar NM. NukalaS.K. Swamy TN. RavinderM. KrishnaT.M. NarsimhaS. Benzothiazole-[1,2,3]triazolo[5,1-a]isoindoles: Synthesis, anticancer activity, bioavailability and in silico studies against Gama-Tubulin protein.J. Mol. Struct.2022125013172210.1016/j.molstruc.2021.131722
    [Google Scholar]
  65. BarmanS. GhoshS. RoyR. GuptaV. GhoshS. GhoshS. A potent estrogen receptor and microtubule specific purine-benzothiazole-based fluorescent molecular probe induces apoptotic death of breast cancer cells.Sci. Rep.20221211077210.1038/s41598‑022‑12933‑835750870
    [Google Scholar]
  66. Gallego-YergaL. CeñaV. PeláezR. Potent and selective benzothiazole-based antimitotics with improved water solubility: Design, synthesis, and evaluation as novel anticancer agents.Pharmaceutics2023156169810.3390/pharmaceutics1506169837376146
    [Google Scholar]
  67. WuB-W HuangW-J LiuY-H LiuQ-G SongJ HuT Design, synthesis and biological evaluation of 1,2,3-triazole benzothiazole derivatives as tubulin polymerization inhibitors with potent anti-esophageal cancer activities.Eur. J. Med. Chem.202426511611810.1016/j.ejmech.2023.116118
    [Google Scholar]
  68. OtrockZ.K. MakaremJ.A. ShamseddineA.I. Vascular endothelial growth factor family of ligands and receptors: Review.Blood Cells Mol. Dis.200738325826810.1016/j.bcmd.2006.12.00317344076
    [Google Scholar]
  69. GotinkK.J. VerheulH.M.W. Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action?Angiogenesis201013111410.1007/s10456‑009‑9160‑620012482
    [Google Scholar]
  70. FarghalyT.A. Al-HasaniW.A. AbdulwahabH.G. An updated patent review of VEGFR-2 inhibitors (2017-present).Expert Opin. Ther. Pat.20213111989100710.1080/13543776.2021.193587234043477
    [Google Scholar]
  71. HicklinD.J. EllisL.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.J. Clin. Oncol.20052351011102710.1200/JCO.2005.06.08115585754
    [Google Scholar]
  72. HusainA. BediS. ParveenS. KhanS.A. AhmadA. IqbalM.A. FarooqA. AhmedA. Furanone-functionalized benzothiazole derivatives: Synthesis, in vitro cytotoxicity, ADME, and molecular docking studies.Z. Naturforsch. B. J. Chem. Sci.2022771415310.1515/znb‑2021‑0146
    [Google Scholar]
  73. Al-SaneaM.M. HamdiA. MohamedA.A.B. El-ShafeyH.W. MoustafaM. ElgazarA.A. EldehnaW.M. Ur RahmanH. ParambiD.G.T. ElbargisyR.M. SelimS. BukhariS.N.A. Magdy HendawyO. TawfikS.S. New benzothiazole hybrids as potential VEGFR-2 inhibitors: Design, synthesis, anticancer evaluation, and in silico study.J. Enzyme Inhib. Med. Chem.2023381216603610.1080/14756366.2023.216603636691927
    [Google Scholar]
  74. YuanT.L. CantleyL.C. PI3K pathway alterations in cancer: Variations on a theme.Oncogene200827415497551010.1038/onc.2008.24518794884
    [Google Scholar]
  75. VogtP.K. GymnopoulosM. HartJ.R.Jr PI 3-kinase and cancer: Changing accents.Curr. Opin. Genet. Dev.2009191121710.1016/j.gde.2008.11.01119185485
    [Google Scholar]
  76. CuiJ. HuY.F. FengX.M. TianT. GuoY.H. MaJ.W. NanK.J. ZhangH.Y. EGFR inhibitors and autophagy in cancer treatment.Tumour Biol.20143512117011170910.1007/s13277‑014‑2660‑z25293518
    [Google Scholar]
  77. WellsA. EGF receptor.Int. J. Biochem. Cell Biol.199931663764310.1016/S1357‑2725(99)00015‑110404636
    [Google Scholar]
  78. BiancoR. GelardiT. DamianoV. CiardielloF. TortoraG. Mechanisms of resistance to EGFR inhibitors.Target. Oncol.200721313710.1007/s11523‑006‑0038‑x18045190
    [Google Scholar]
  79. SucharithaE.R. NukalaS.K. Swamy ThirukovelaN. PalabindelaR. SreeramaR. NarsimhaS. Synthesis and biological evaluation of Benzo[d] thiazolyl‐Sulfonyl‐Benzo[4,5]isothiazolo [2,3‐c][1,2,3] triazole derivatives as EGFR targeting anticancer agents.ChemistrySelect202386e20220425610.1002/slct.202204256
    [Google Scholar]
  80. AhmadI. IwataT. LeungH.Y. Mechanisms of FGFR-mediated carcinogenesis.Biochim. Biophys. Acta Mol. Cell Res.20121823485086010.1016/j.bbamcr.2012.01.00422273505
    [Google Scholar]
  81. BeenkenA. MohammadiM. The FGF family: Biology, pathophysiology and therapy.Nat. Rev. Drug Discov.20098323525310.1038/nrd279219247306
    [Google Scholar]
  82. AlabedS.J. KhanfarM. TahaM.O. Computer-aided discovery of new FGFR-1 inhibitors followed by in vitro validation.Future Med Chem201681518416910.4155/fmc‑2016‑005627643626
    [Google Scholar]
  83. HaugstenE.M. WiedlochaA. OlsnesS. WescheJ. Roles of fibroblast growth factor receptors in carcinogenesis.Mol. Cancer Res.20108111439145210.1158/1541‑7786.MCR‑10‑016821047773
    [Google Scholar]
  84. Abd El-MeguidEA Mohi El-DeenEM MoustafaGO AwadHM NossierES Synthesis, anticancer evaluation and molecular docking of new benzothiazole scaffolds targeting FGFR-1.Bioorg Chem.202211910550410.1016/j.bioorg.2021.105504
    [Google Scholar]
  85. Abdel-MohsenH.T. Abd El-MeguidE.A. El KerdawyA.M. MahmoudA.E.E. AliM.M. Design, synthesis, and molecular docking of novel 2‐arylbenzothiazole multiangiokinase inhibitors targeting breast cancer.Arch. Pharm. 20203534190034010.1002/ardp.20190034032045054
    [Google Scholar]
  86. Abd El-MeguidEA NaglahAM MoustafaGO AwadHM El KerdawyAM Novel benzothiazole-based dual VEGFR-2/EGFR inhibitors targeting breast and liver cancers: Synthesis, cytotoxic activity, QSAR and molecular docking studies.Bioorg Med Chem Lett.20225812852910.1016/j.bmcl.2022.128529
    [Google Scholar]
  87. WeisbergE. ManleyP.W. Cowan-JacobS.W. HochhausA. GriffinJ.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia.Nat. Rev. Cancer20077534535610.1038/nrc212617457302
    [Google Scholar]
  88. GroffenJ. StephensonJ. HeisterkampN. DekleinA. BartramC. GrosveldG. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22.Cell1984361939910.1016/0092‑8674(84)90077‑16319012
    [Google Scholar]
  89. LiuJ. ZhangY. HuangH. LeiX. TangG. CaoX. PengJ. Recent advances in Bcr‐Abl tyrosine kinase inhibitors for overriding T315I mutation.Chem. Biol. Drug Des.202197364966410.1111/cbdd.1380133034143
    [Google Scholar]
  90. TauchiT. OhyashikiK. The second generation of BCR-ABL tyrosine kinase inhibitors.Int. J. Hematol.200683429430010.1532/IJH97.0602516757427
    [Google Scholar]
  91. MunikrishnappaC.S. PuranikS.B. KumarG.V.S. PrasadY.R. Part-1: Design, synthesis and biological evaluation of novel bromo-pyrimidine analogs as tyrosine kinase inhibitors.Eur. J. Med. Chem.2016119708210.1016/j.ejmech.2016.04.05627155464
    [Google Scholar]
  92. El-DamasyA.K. JinH. ParkJ.W. KimH.J. KhojahH. SeoS.H. LeeJ.H. BangE.K. KeumG. Overcoming the imatinib-resistant BCR-ABL mutants with new ureidobenzothiazole chemotypes endowed with potent and broad-spectrum anticancer activity.J. Enzyme Inhib. Med. Chem.2023381218909710.1080/14756366.2023.218909736927348
    [Google Scholar]
  93. YanoK. ShiotaniB. Emerging strategies for cancer therapy by ATR inhibitors.Cancer Sci.202311472709272110.1111/cas.1584537189251
    [Google Scholar]
  94. QiuZ. OleinickN.L. ZhangJ. ATR/CHK1 inhibitors and cancer therapy.Radiother. Oncol.2018126345046410.1016/j.radonc.2017.09.04329054375
    [Google Scholar]
  95. LuY. KnappM. CrawfordK. WarneR. EllingR. YanK. DoyleM. PardeeG. ZhangL. MaS. MamoM. OrnelasE. PanY. BussiereD. JansenJ. ZarorI. LaiA. BarsantiP. SimJ. Rationally designed PI3Kα mutants to mimic ATR and their use to understand binding specificity of ATR inhibitors.J. Mol. Biol.2017429111684170410.1016/j.jmb.2017.04.00628433539
    [Google Scholar]
  96. WagnerJ.M. KaufmannS.H. Prospects for the use of ATR inhibitors to treat cancer.Pharmaceuticals2010351311133410.3390/ph305131127713304
    [Google Scholar]
  97. FrasinyukM. ChhabriaD. KartsevV. DilipH. SirakanyanS.N. KirubakaranS. PetrouA. GeronikakiA. SpinelliD. Benzothiazole and chromone derivatives as potential ATR kinase inhibitors and anticancer agents.Molecules20222714463710.3390/molecules2714463735889508
    [Google Scholar]
  98. BoludaJ.C.H. GómezM. PérezA. Inhibidores de JAK2.Med. Clín.20161472707510.1016/j.medcli.2016.02.01427033437
    [Google Scholar]
  99. MesaR. GaleR.P. Hypothesis: How do JAK2-inhibitors work in myelofibrosis.Leuk. Res.20093391156115710.1016/j.leukres.2009.04.01119450878
    [Google Scholar]
  100. JamesC. UgoV. Le CouédicJ.P. StaerkJ. DelhommeauF. LacoutC. GarçonL. RaslovaH. BergerR. Bennaceur-GriscelliA. VillevalJ.L. ConstantinescuS.N. CasadevallN. VainchenkerW. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera.Nature200543470371144114810.1038/nature0354615793561
    [Google Scholar]
  101. PardananiA. JAK2 inhibitor therapy in myeloproliferative disorders: Rationale, preclinical studies and ongoing clinical trials.Leukemia2008221233010.1038/sj.leu.240494817882282
    [Google Scholar]
  102. GranchiC. BertiniS. MacchiaM. MinutoloF. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials.Curr. Med. Chem.201017767269710.2174/09298671079041626320088761
    [Google Scholar]
  103. NilovD.K. KulikovA.V. ProkhorovaE.A. ŠvedasV.K. Identification of new structural fragments for the design of lactate dehydrogenase A inhibitors.Acta Nat. 20168311812210.32607/20758251‑2016‑8‑3‑118‑12227795851
    [Google Scholar]
  104. TangP. XuJ. OliveiraC.L. LiZ.J. LiuS. A mechanistic kinetic description of lactate dehydrogenase elucidating cancer diagnosis and inhibitor evaluation.J. Enzyme Inhib. Med. Chem.201732156457110.1080/14756366.2016.127560628114833
    [Google Scholar]
  105. NilovD.K. ProkhorovaE.A. ŠvedasV.K.I Search for human lactate dehydrogenase a inhibitors using structure-based modeling.Acta Nat.2015725763http://actanaturae.ru/2075-8251/article/view/1049610.32607/20758251‑2015‑7‑2‑57‑6326085945
    [Google Scholar]
  106. JawalePatilP.D. BhamidipatiK. DamaleM.G. SangshettiJ.N. PuvvadaN. BhosaleR.S. IngleR.D. PawarR.P. BhosaleS.V. BhosaleS.V. Synthesis of naphthalimide derivatives bearing benzothiazole and thiazole moieties: In vitro anticancer and in silico ADMET study.J. Mol. Struct.2022126313317310.1016/j.molstruc.2022.133173
    [Google Scholar]
  107. ArtuncT. MenzekA. TaslimiP. GulcinI. KazazC. SahinE. Synthesis and antioxidant activities of phenol derivatives from 1,6-bis(dimethoxyphenyl)hexane-1,6-dione.Bioorg. Chem.202010010388410.1016/j.bioorg.2020.10388432388430
    [Google Scholar]
  108. CaglayanC. TaslimiP. TürkC. Gulcinİ. KandemirF.M. DemirY. BeydemirŞ. Inhibition effects of some pesticides and heavy metals on carbonic anhydrase enzyme activity purified from horse mackerel (Trachurus trachurus) gill tissues.Environ. Sci. Pollut. Res. Int.20202710106071061610.1007/s11356‑020‑07611‑z31942715
    [Google Scholar]
  109. CapassoC. SupuranC.T. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: Can bacterial carbonic anhydrases shed new light on evolution of bacteria?J. Enzyme Inhib. Med. Chem.201530232533210.3109/14756366.2014.91020224766661
    [Google Scholar]
  110. KumarS. RulhaniaS. JaswalS. MongaV. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors.Eur. J. Med. Chem.202120911292310.1016/j.ejmech.2020.11292333121862
    [Google Scholar]
  111. Al-WarhiT. ElbadawiM.M. BonardiA. NocentiniA. Al-KarmalawyA.A. AljaeedN. AlotaibiO.J. Abdel-AzizH.A. SupuranC.T. EldehnaW.M. Design and synthesis of benzothiazole-based SLC-0111 analogues as new inhibitors for the cancer-associated carbonic anhydrase isoforms IX and XII.J. Enzyme Inhib. Med. Chem.20223712635264310.1080/14756366.2022.212440936146927
    [Google Scholar]
  112. ReedJ.C. Apoptosis-based therapies.Nat. Rev. Drug Discov.20021211112110.1038/nrd72612120092
    [Google Scholar]
  113. LimB. GreerY. LipkowitzS. TakebeN. Novel apoptosis-inducing agents for the treatment of cancer, a new arsenal in the toolbox.Cancers 2019118108710.3390/cancers1108108731370269
    [Google Scholar]
  114. GalluzziL. VitaleI. AaronsonS.A. AbramsJ.M. AdamD. AgostinisP. AlnemriE.S. AltucciL. AmelioI. AndrewsD.W. Annicchiarico-PetruzzelliM. AntonovA.V. AramaE. BaehreckeE.H. BarlevN.A. BazanN.G. BernassolaF. BertrandM.J.M. BianchiK. BlagosklonnyM.V. BlomgrenK. BornerC. BoyaP. BrennerC. CampanellaM. CandiE. Carmona-GutierrezD. CecconiF. ChanF.K.M. ChandelN.S. ChengE.H. ChipukJ.E. CidlowskiJ.A. CiechanoverA. CohenG.M. ConradM. Cubillos-RuizJ.R. CzabotarP.E. D’AngiolellaV. DawsonT.M. DawsonV.L. De LaurenziV. De MariaR. DebatinK.M. DeBerardinisR.J. DeshmukhM. Di DanieleN. Di VirgilioF. DixitV.M. DixonS.J. DuckettC.S. DynlachtB.D. El-DeiryW.S. ElrodJ.W. FimiaG.M. FuldaS. García-SáezA.J. GargA.D. GarridoC. GavathiotisE. GolsteinP. GottliebE. GreenD.R. GreeneL.A. GronemeyerH. GrossA. HajnoczkyG. HardwickJ.M. HarrisI.S. HengartnerM.O. HetzC. IchijoH. JäätteläM. JosephB. JostP.J. JuinP.P. KaiserW.J. KarinM. KaufmannT. KeppO. KimchiA. KitsisR.N. KlionskyD.J. KnightR.A. KumarS. LeeS.W. LemastersJ.J. LevineB. LinkermannA. LiptonS.A. LockshinR.A. López-OtínC. LoweS.W. LueddeT. LugliE. MacFarlaneM. MadeoF. MalewiczM. MalorniW. ManicG. MarineJ.C. MartinS.J. MartinouJ.C. MedemaJ.P. MehlenP. MeierP. MelinoS. MiaoE.A. MolkentinJ.D. MollU.M. Muñoz-PinedoC. NagataS. NuñezG. OberstA. OrenM. OverholtzerM. PaganoM. PanaretakisT. PasparakisM. PenningerJ.M. PereiraD.M. PervaizS. PeterM.E. PiacentiniM. PintonP. PrehnJ.H.M. PuthalakathH. RabinovichG.A. RehmM. RizzutoR. RodriguesC.M.P. RubinszteinD.C. RudelT. RyanK.M. SayanE. ScorranoL. ShaoF. ShiY. SilkeJ. SimonH.U. SistiguA. StockwellB.R. StrasserA. SzabadkaiG. TaitS.W.G. TangD. TavernarakisN. ThorburnA. TsujimotoY. TurkB. Vanden BergheT. VandenabeeleP. Vander HeidenM.G. VillungerA. VirginH.W. VousdenK.H. VucicD. WagnerE.F. WalczakH. WallachD. WangY. WellsJ.A. WoodW. YuanJ. ZakeriZ. ZhivotovskyB. ZitvogelL. MelinoG. KroemerG. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑429362479
    [Google Scholar]
  115. GonzalvezF. AshkenaziA. New insights into apoptosis signaling by Apo2L/TRAIL.Oncogene201029344752476510.1038/onc.2010.22120531300
    [Google Scholar]
  116. BaehreckeE.H. How death shapes life during development.Nat. Rev. Mol. Cell Biol.200231077978710.1038/nrm93112360194
    [Google Scholar]
  117. RanjanA. SharmaD. SrivastavaA.K. VarmaA. JayadevM.S.K. JoshiR.K. Evaluation of anticancer activity of ferrocene based benzothiazole and β-ketooxothioacetal.J. Organomet. Chem.202297912250010.1016/j.jorganchem.2022.122500
    [Google Scholar]
  118. SeverB. CiftciH. Evaluation of anti-glioma effects of benzothiazoles as efficient apoptosis inducers and DNA cleaving agents.Mol. Cell. Biochem.202347851099110810.1007/s11010‑022‑04580‑436219355
    [Google Scholar]
  119. Yu F Xu Y WangH. Design, synthesis and antitumor activity evaluation of 4,6,7-trisubstituted quinazoline derivatives containing benzothiazole moiety.Med Chem Res2023322156216710.1007/s00044‑023‑03117‑8
    [Google Scholar]
  120. DedonP.C. Determination of binding mode: Intercalation.Curr. Protoc. Nucleic Acid Chem.200000111318428878
    [Google Scholar]
  121. LermanL.S. Structural considerations in the interaction of DNA and acridines.J. Mol. Biol.19613118IN1410.1016/S0022‑2836(61)80004‑113761054
    [Google Scholar]
  122. TeraM. TajiZ.H. LuedtkeN.W. Intercalation‐enhanced “Click” Crosslinking of DNA.Angew. Chem. Int. Ed.20185747154051540910.1002/anie.20180805430240107
    [Google Scholar]
  123. BiebricherA.S. HellerI. RoijmansR.F.H. HoekstraT.P. PetermanE.J.G. WuiteG.J.L. The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics.Nat. Commun.201561730410.1038/ncomms830426084388
    [Google Scholar]
  124. ChenZ. WuY. ZhangQ. ZhangY. Biological properties of a benzothiazole-based mononuclear platinum(II) complex as a potential anticancer agent.J. Coord. Chem.202073121817183210.1080/00958972.2020.1793966
    [Google Scholar]
  125. AlmehmadiM.A. AljuhaniA. AlraqaS.Y. AliI. RezkiN. AouadM.R. HagarM. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1,2,3-triazole conjugates.J. Mol. Struct.2021122512914810.1016/j.molstruc.2020.129148
    [Google Scholar]
  126. IslamM.K. BaekA.R. SungB. YangB.W. ChoiG. ParkH.J. KimY.H. KimM. HaS. LeeG.H. KimH.K. ChangY. Synthesis, characterization, and anticancer activity of benzothiazole aniline derivatives and their platinum (II) complexes as new chemotherapy agents.Pharmaceuticals 202114883210.3390/ph1408083234451928
    [Google Scholar]
  127. IslamM.K. HaS. BaekA.R. YangB.W. KimY.H. ParkH.J. KimM. NamS.W. LeeG.H. ChangY. The synthesis, characterization, molecular docking and in vitro antitumor activity of benzothiazole aniline (BTA) conjugated metal-salen complexes as non-platinum chemotherapeutic agents.Pharmaceuticals 202215675110.3390/ph1506075135745670
    [Google Scholar]
  128. AkhterS. RehmanA. AbidiS.M.A. ArjmandF. TabassumS. Synthesis, structural insights, and biological screening of DNA targeted Ru(ii)(η 6 - p -cymene) complexes containing bioactive amino-benzothiazole ligand scaffolds.New J. Chem.20224623114621147310.1039/D2NJ00883A
    [Google Scholar]
  129. WuY DingT ZengY LiuR LiuY LiangH. Synthesis, crystal structure, DNA binding, and anticancer activity of the cobalt(II), nickel(II), and copper(II) complexes of 9-benzothiazolanthrahydrazone.J. Mol. Struct.2023129913709910.1016/j.molstruc.2023.137099
    [Google Scholar]
  130. GanapathiR.N. GanapathiM.K. Mechanisms regulating resistance to inhibitors of topoisomerase II.Front. Pharmacol.201348910.3389/fphar.2013.0008923914174
    [Google Scholar]
  131. DennyW. BaguleyB. Dual topoisomerase I/II inhibitors in cancer therapy.Curr. Top. Med. Chem.20033333935310.2174/156802603345255512570767
    [Google Scholar]
  132. BoosG. StopperH. Genotoxicity of several clinically used topoisomerase II inhibitors.Toxicol. Lett.20001161-271610.1016/S0378‑4274(00)00192‑210906417
    [Google Scholar]
  133. LarsenA.K. EscargueilA.E. SkladanowskiA. Catalytic topoisomerase II inhibitors in cancer therapy.Pharmacol. Ther.200399216718110.1016/S0163‑7258(03)00058‑512888111
    [Google Scholar]
  134. TokalaR MahajanS KiranmaiG SigalapalliDK SanaS JohnSE Development of β-carboline-benzothiazole hybrids via carboxamide formation as cytotoxic agents: DNA intercalative topoisomerase IIα inhibition and apoptosis induction.Bioorg. Chem.202010610448110.1016/j.bioorg.2020.104481
    [Google Scholar]
  135. SinghI. LuxamiV. ChoudhuryD. PaulK. Synthesis and photobiological applications of naphthalimide–benzothiazole conjugates: cytotoxicity and topoisomerase IIα inhibition.RSC Advances202112148349710.1039/D1RA04148G35424470
    [Google Scholar]
  136. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.2017201718416763https://www.hindawi.com/journals/omcl/2017/8416763/10.1155/2017/841676328819546
    [Google Scholar]
  137. FormanH.J. ZhangH. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy.Nat. Rev. Drug Discov.202120968970910.1038/s41573‑021‑00233‑134194012
    [Google Scholar]
  138. Losada-BarreiroS. Sezgin-BayindirZ. Paiva-MartinsF. Bravo-DíazC. Biochemistry of antioxidants: Mechanisms and pharmaceutical applications.Biomedicines20221012305110.3390/biomedicines1012305136551806
    [Google Scholar]
  139. RudrapalM. KhairnarS.J. KhanJ. DukhyilA. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of actionFront Pharmacol.202213806470
    [Google Scholar]
  140. RamaiahM.J. KarthikeyanD. MathavanS. YamajalaR.B.R.D. RamachandranS. VasaviP.J. ChandanaN.V. Synthesis, in vitro and structural aspects of benzothiazole analogs as anti-oxidants and potential neuroprotective agents.Environ. Toxicol. Pharmacol.20207910341510.1016/j.etap.2020.10341532470609
    [Google Scholar]
  141. KadamP.R. BodkeY.D. NaikM.D. NagarajaO. ManjunathaB. One-pot three-component synthesis of thioether linked 4-hydroxycoumarin-benzothiazole derivatives under ambient condition and evaluation of their biological activity.Results Chem.2022410030310.1016/j.rechem.2022.100303
    [Google Scholar]
  142. Al-MutairiA.A. HafezH.N. El-GazzarA.R.B.A. MohamedM.Y.A. Synthesis and antimicrobial, anticancer and anti-oxidant activities of novel 2,3-Dihydropyrido[2,3-d]pyrimidine-4-one and Pyrrolo[2,1-b][1,3]benzothiazole derivatives via microwave-assisted synthesis.Molecules2022274124610.3390/molecules2704124635209034
    [Google Scholar]
  143. DjuidjeE.N. BarbariR. BaldisserottoA. DuriniE. SciabicaS. BalzariniJ. LiekensS. VertuaniS. ManfrediniS. Benzothiazole derivatives as multifunctional antioxidant agents for skin damage: Structure–activity relationship of a scaffold bearing a five-membered ring system.Antioxidants202211240710.3390/antiox1102040735204288
    [Google Scholar]
  144. WeiQ.M. WeiZ.Z. ZengJ.J. YangL. QinQ.P. TanM.X. LiangH. Synthesis, structures and anticancer potentials of five platinum(II) complexes with benzothiazole-benzopyran targeting mitochondria.Polyhedron202119611500410.1016/j.poly.2020.115004
    [Google Scholar]
  145. ZhaoD ZhenH XueJ TangZ HanX ChenZ. A novel benzothiazole-based mononuclear platinum(II) complex displaying potent antiproliferative activity in HepG-2 cells via mitochondrial-mediated apoptosis.J Inorg Biochem.202425111243710.1016/j.jinorgbio.2023.112437
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128355783250212043621
Loading
/content/journals/cpd/10.2174/0113816128355783250212043621
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test