Skip to content
2000
Volume 31, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

The increasing use of antibiotics coupled with the lack of innovative and effective antimicrobial agents has increased the development of antimicrobial resistance (AMR) worldwide. To overcome the AMR-associated prolonged disease duration and increased mortality rates, new antimicrobial agents are in high demand. In this context, hydrazone and oxadiazole derivatives are endowed with remarkable biocidal activity, becoming profitable scaffolds in the design of antimicrobial candidates.

Methods

In this study, the antimicrobial effects of N-acyl hydrazones - and 2,5-disubstituted 1,3,4-oxadiazoles - against ATCC 25922, ATCC 29213, ATCC 6633, and clinically isolated , , and were evaluated. For this purpose, Kirby-Bauer disc diffusion and MIC tests were carried out, indicating that most of these compounds were active against tested microorganisms. Particularly, several compounds proved active against , whereas showed higher resistance. The genotoxic potential of most active compounds was determined by alkaline comet assay, and they were found to be non-toxic at studied concentrations.

Results

Finally, molecular docking and dynamics (MD) studies identified four compounds as potential inhibitors of bacterial DNA gyrase B (GyrB).

Conclusion

Further exploration of molecular determinants revealed favourable drug-like properties, highlighting the potential of these molecules for subsequent hit-to-lead optimization studies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128361524250131110036
2025-02-06
2025-10-22
Loading full text...

Full text loading...

References

  1. BasakS. SinghP. RajurkarM. Multidrug resistant and extensively drug resistant bacteria: A study.J. Pathogens201620161510.1155/2016/4065603 26942013
    [Google Scholar]
  2. MagiorakosA.P. SrinivasanA. CareyR.B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance.Clin. Microbiol. Infect.201218326828110.1111/j.1469‑0691.2011.03570.x 21793988
    [Google Scholar]
  3. De OliveiraD.M.P. FordeB.M. KiddT.J. Antimicrobial re- sistance in ESKAPE pathogens.Clin. Microbiol. Rev.2020333e00181e1910.1128/CMR.00181‑19 32404435
    [Google Scholar]
  4. GajdácsM. UrbánE. StájerA. BaráthZ. Antimicrobial resistance in the context of the sustainable development goals: A brief re- view.Eur. J. Investig. Health Psychol. Educ.2021111718210.3390/ejihpe11010006 34542450
    [Google Scholar]
  5. DenissenJ. ReynekeB. Waso-ReynekeM. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health.Int. J. Hyg. Environ. Health202224411400610.1016/j.ijheh.2022.114006 35841823
    [Google Scholar]
  6. ZamanS.B. HussainM.A. NyeR. MehtaV. MamunK.T. HossainN. A review on antibiotic resistance: Alarm bells are ringing.Cureus201796e140310.7759/cureus.1403 28852600
    [Google Scholar]
  7. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations.Available from: review.org/sites/default/files/AMR%20Review%20Paper%20- 2014
  8. DevauxS.C. MestrovicT. ArtsJ.J. Solving the antibacterial resistance in Europe: The multipronged approach of the cost action CA21145 EURESTOP.Drug Res Updates Rev Comment Antimicrob Anticanc Chemoth20247410106910.1016/j.drup.2024.101069
    [Google Scholar]
  9. MerlaniM. NadaraiaN. AmiranashviliL. Antimicrobial activity of some steroidal hydrazones.Molecules2023283116710.3390/molecules28031167 36770834
    [Google Scholar]
  10. MulaniM.S. KambleE.E. KumkarS.N. TawreM.S. PardesiK.R. Emerging strategies to combat ESKAPE pathogens in the Era of antimicrobial resistance: A review.Front. Microbiol.20191053910.3389/fmicb.2019.00539 30988669
    [Google Scholar]
  11. MillerW.R. AriasC.A. ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics.Nat. Rev. Microbiol.2024221059861610.1038/s41579‑024‑01054‑w 38831030
    [Google Scholar]
  12. PrinciottoS. CasciaroB, G TempranoA. The antimicrobial potential of adarotene derivatives against Staphylococcus aureus strains.Bioorg. Chem.202414510722710.1016/j.bioorg.2024.107227 38387400
    [Google Scholar]
  13. CasciaroB. CalcaterraA. CappielloF. Nigritanine as a new potential antimicrobial alkaloid for the treatment of Staphylococ- cus aureus-induced infections.Toxins201911951110.3390/toxins11090511 31480508
    [Google Scholar]
  14. CasciaroB. GhirgaF. CappielloF. The triprenylated an- thranoid ferruginin A, a promising scaffold for the development of novel antibiotics against gram-positive bacteria.Antibiotics20221118410.3390/antibiotics11010084 35052961
    [Google Scholar]
  15. GhirgaF. StefanelliR. CavinatoL. A novel colistin adjuvant identified by virtual screening for ArnT inhibitors.J. Antimicrob. Chemother.20207592564257210.1093/jac/dkaa200 32514531
    [Google Scholar]
  16. QuaglioD. MangoniM.L. StefanelliR. Ent -beyerane diter- penes as a key platform for the development of ArnT-mediated colistin resistance inhibitors.J. Org. Chem.20208516108911090110.1021/acs.joc.0c01459 32806095
    [Google Scholar]
  17. CollaltoD. FortunaA. ViscaP. ImperiF. RampioniG. LeoniL. Synergistic activity of colistin in combination with clofoctol against colistin resistant gram-negative pathogens.Microbiol. Spectr.2023112e04275e2210.1128/spectrum.04275‑22 36802038
    [Google Scholar]
  18. LiJ. HanN. LiY. ZhaoF. XiongW. ZengZ. The synergistic antibacterial activity and mechanism of colistin-oxethazaine combination against gram-negative pathogens.Front. Pharmacol.202415136344110.3389/fphar.2024.1363441 38576480
    [Google Scholar]
  19. FarhadiK. RajabiE. VarpaeiH.A. IranzadaslM. KhodaparastS. SalehiM. Thymol and carvacrol against Klebsiella: Anti-bacterial, anti-biofilm, and synergistic activities—a systematic review.Front. Pharmacol.202415148708310.3389/fphar.2024.1487083 39512827
    [Google Scholar]
  20. PakzadI. YarkaramiF. KalaniB.S. ShafieianM. HematianA. Inhibitory effects of carvacrol on biofilm formation in colistin heteroresistant Acinetobacter baumannii clinical isolates.Curr. Drug Discov. Technol.2024211e28092322154210.2174/0115701638253395230919112548 37779401
    [Google Scholar]
  21. HoferU. Novel metallo-β-lactamase inhibitors.Nat. Rev. Microbiol.2022203125510.1038/s41579‑021‑00680‑y 34921242
    [Google Scholar]
  22. ShiC. ChenJ. KangX. ShenX. LaoX. ZhengH. Approaches for the discovery of metallo‐β‐lactamase inhibitors: A review.Chem. Biol. Drug Des.20199421427144010.1111/cbdd.13526 30925023
    [Google Scholar]
  23. KangS.J. KimD.H. LeeB.J. Metallo-β-lactamase inhibitors: A continuing challenge for combating antibiotic resistance.Biophys. Chem.202430910722810.1016/j.bpc.2024.107228 38552402
    [Google Scholar]
  24. KaurB. GuptaJ. SharmaS. SharmaD. SharmaS. Focused review on dual inhibition of quorum sensing and efflux pumps: A potential way to combat multi drug resistant Staphylococcus aureus infections.Int. J. Biol. Macromol.2021190334310.1016/j.ijbiomac.2021.08.199 34480904
    [Google Scholar]
  25. DiasK.J.S.D.O. MirandaG.M. BessaJ.R. Terpenes as bacterial efflux pump inhibitors: A systematic review.Front. Pharmacol.20221395398210.3389/fphar.2022.953982 36313340
    [Google Scholar]
  26. FelicettiT. CedraroN. AstolfiA. New C-6 functionalized quinoline NorA inhibitors strongly synergize with ciprofloxacin against planktonic and biofilm growing resistant Staphylococcus aureus strains.Eur. J. Med. Chem.202224111465610.1016/j.ejmech.2022.114656 35963131
    [Google Scholar]
  27. RezaA. SuttonJ.M. RahmanK.M. Effectiveness of efflux pump inhibitors as biofilm disruptors and resistance breakers in gram-negative (ESKAPEE) bacteria.Antibiotics20198422910.3390/antibiotics8040229 31752382
    [Google Scholar]
  28. Vieira Da CruzA. Jiménez-CastellanosJ.C. BörnsenC. Pyridylpiperazine efflux pump inhibitor boosts in vivo antibiotic efficacy against K. pneumoniae.EMBO Mol. Med.20231619311110.1038/s44321‑023‑00007‑9 38177534
    [Google Scholar]
  29. UrbanskiL.J. BuaS. AngeliA. Sulphonamide inhibition profile of Staphylococcus aureus β-carbonic anhydrase.J. Enzyme Inhib. Med. Chem.20203511834183910.1080/14756366.2020.1826942 32972256
    [Google Scholar]
  30. ColquhounJ.M. HaL. BeckleyA. MeyersB. FlahertyD.P. DunmanP.M. Identification of small molecule inhibitors of Staphylococcus aureus RnpA.Antibiotics2019824810.3390/antibiotics8020048 31035380
    [Google Scholar]
  31. VolynetsG.P. BarthelsF. HammerschmidtS.J. Identification of novel small-molecular inhibitors of Staphylococcus aureus sortase A using hybrid virtual screening.J. Antibiot.202275632133210.1038/s41429‑022‑00524‑8 35440771
    [Google Scholar]
  32. SoceaL.I. BarbuceanuS.F. PahontuE.M. Acylhydrazones and their biological activity: A review.Molecules20222724871910.3390/molecules27248719 36557851
    [Google Scholar]
  33. BelyaevaE.R. MyasoedovaY.V. IshmuratovaN.M. IshmuratovG.Y. Synthesis and biological activity of N-acylhydrazones.Russ. J. Bioorganic Chem.20224861123115010.1134/S1068162022060085
    [Google Scholar]
  34. GaoH. LiJ.Q. KangP.W. N-acylhydrazones confer inhibitory efficacy against New Delhi metallo-β-lactamase-1.Bioorg. Chem.202111410513810.1016/j.bioorg.2021.105138 34229201
    [Google Scholar]
  35. NiW. SongH. WangL. LiuY. WangQ. Design, synthesis and various bioactivity of acylhydrazone-containing matrine analogues.Molecules20232810416310.3390/molecules28104163 37241904
    [Google Scholar]
  36. LuczynskiM. KudelkoA. Synthesis and biological activity of 1, 3, 4-oxadiazoles used in medicine and agriculture.Appl. Sci.2022128375610.3390/app12083756
    [Google Scholar]
  37. TokF. KayaM. KaracaH. Koçyiğit-KaymakçıoğluB. Synthesis of some novel 1,3,4-oxadiazole derivatives and evaluation of their antimicrobial activity.Synth. Commun.202252692693510.1080/00397911.2022.2060751
    [Google Scholar]
  38. AsifM. Abida A mini review on biological potential of 1,3,4-oxadiazole derivatives.Int J Pharm Chem Anal20205417918710.18231/2394‑2797.2018.0028
    [Google Scholar]
  39. GandhiB. JhansiM. DeshpandeS.S. VinayT. MisraS. Shanker KakiS. Design, synthesis and biological activity of novel oxadiazole containing monoacylglycerols as potential bioactive lipids.J. Mol. Struct.2023128413542410.1016/j.molstruc.2023.135424
    [Google Scholar]
  40. KrátkýM. BőszeS. BaranyaiZ. StolaříkováJ. VinšováJ. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide.Bioorg. Med. Chem. Lett.201727235185518910.1016/j.bmcl.2017.10.050 29097168
    [Google Scholar]
  41. PopiołekŁ. Hydrazide-hydrazones as potential antimicrobial agents: Overview of the literature since 2010.Med. Chem. Res.201726228730110.1007/s00044‑016‑1756‑y 28163562
    [Google Scholar]
  42. AydınE. ŞentürkA.M. KüçükH.B. GüzelM. Cytotoxic activity and docking studies of 2-arenoxybenzaldehyde N-acyl hydrazone and 1,3,4-oxadiazole derivatives against various cancer cell lines.Molecules20222721730910.3390/molecules27217309 36364134
    [Google Scholar]
  43. Başpınar KüçükH. AlhonaishA. YıldızT. GüzelM. An efficient approach to access 2,5‐disubstituted 1,3,4‐oxadiazoles by oxidation of 2‐arenoxybenzaldehyde N‐ acyl hydrazones with molecular iodine.ChemistrySelect2022726e20220139110.1002/slct.202201391
    [Google Scholar]
  44. dos Santos FilhoJ.M. de Souza CastroM.V.B. Synthesis, structural characterization, and antimicrobial activity of novel ferrocene-N-acyl hydrazones designed by means of molecular simplification strategy Celebrating the 100th anniversary of the birth of Professor Paulo Freire.J. Organomet. Chem.202297912248810.1016/j.jorganchem.2022.122488
    [Google Scholar]
  45. FarshoriN.N. RaufA. SiddiquiM.A. Al-SheddiE.S. Al-OqailM.M. A facile one-pot synthesis of novel 2,5-disubstituted-1,3,4-oxadiazoles under conventional and microwave conditions and evaluation of their in vitro antimicrobial activities.Arab. J. Chem.201710S2853S286110.1016/j.arabjc.2013.11.010
    [Google Scholar]
  46. JafariE. MohammadiT. Jahanian-NajafabadiA. HassanzadehF. Synthesis and antimicrobial evaluation of some 2,5 disubstituted 1,3,4-oxadiazole derivatives.Res. Pharm. Sci.201712433033610.4103/1735‑5362.212051
    [Google Scholar]
  47. PhamE.C. TruongT.N. DongN.H. VoD.D. Hong DoT.T. Synthesis of a series of novel 2-Amino-5-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as potential anticancer, antifungal and antibacterial agents.Med. Chem.202218555857310.2174/1573406417666210803170637 34344293
    [Google Scholar]
  48. SterleM. DurcikM. StevensonC.E.M. Exploring the 5-substituted 2-aminobenzothiazole-based DNA gyrase B inhibitors active against ESKAPE pathogens.ACS Omega2023827243872439510.1021/acsomega.3c01930 37457471
    [Google Scholar]
  49. McAuleyS. HuynhA. HowellsA. WalpoleC. MaxwellA. NodwellJ.R. Discovery of a novel DNA gyrase-targeting antibiotic through the chemical perturbation of Streptomyces venezuelae sporulation.Cell Chem. Biol.201926912741282.e410.1016/j.chembiol.2019.06.002 31279606
    [Google Scholar]
  50. SridharP. AlagumuthuM. ArumugamS. ReddyS.R. Synthesis of quinoline acetohydrazide-hydrazone derivatives evaluated as DNA gyrase inhibitors and potent antimicrobial agents.RSC Advances2016669644606446810.1039/C6RA09891F
    [Google Scholar]
  51. Dammene DebbihO. MazouzW. BenslamaO. Hydrazone analogs as DNA gyrase inhibitors and antioxidant agents: Structure-activity relationship and pharmacophore modeling.J. Chem. Sci.20241363210.1007/s12039‑024‑02264‑8
    [Google Scholar]
  52. GomathiG. GopalakrishnanR. A hydrazone Schiff base single crystal (E)-Methyl N′-(3,4,5-trimethoxybenzylidene) hydrazine carboxylate: Physicochemical, in vitro investigation of antimicrobial activities and molecular docking with DNA gyrase protein.Mater. Sci. Eng. C20166413313810.1016/j.msec.2016.03.084 27127037
    [Google Scholar]
  53. JakopinŽ. IlašJ. BarančokováM. Discovery of substituted oxadiazoles as a novel scaffold for DNA gyrase inhibitors.Eur. J. Med. Chem.201713017118410.1016/j.ejmech.2017.02.046 28246042
    [Google Scholar]
  54. DurgadasheemiN.N. KolageriS.N. Novel 1,3,4-Oxadiazole-pyridine hybrids as potential DNA gyrase B inhibitors (5D7R): ADMET prediction and molecular docking study.J. Drug Deliv. Ther.2023133121910.22270/jddt.v13i3.5749
    [Google Scholar]
  55. AlparslanL. GirayB. GulecM. KayaN. UveyD. OlgunA. Antibacterial and anthelmintic effect of the combination of pomegranate peel and olive leaf extracts.ACTA Pharmaceutica Sciencia202361437038410.23893/1307‑2080.APS6124
    [Google Scholar]
  56. AzquetaA. CollinsA.R. The essential comet assay: A comprehensive guide to measuring DNA damage and repair.Arch. Toxicol.201387694996810.1007/s00204‑013‑1070‑0 23685795
    [Google Scholar]
  57. CollinsA.R. The comet assay for DNA damage and repair: Principles, applications, and limitations.Mol. Biotechnol.200426324926110.1385/MB:26:3:249
    [Google Scholar]
  58. BauerAW KirbyWMM SherrisJC TurckM Antibiotic susceptibility testing by a standardized single disk method.Am J Clin Pathol1966454_ts493610.1093/ajcp/45.4_ts.4935325707
    [Google Scholar]
  59. M07-A9: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.Available from: www.clsi.org 2012
  60. PICTO version 4.4.0.4, OpenEye, Cadence Molecular Sciences, Santa Fe, NM.
    [Google Scholar]
  61. OMEGA 3.1.0.3 OpenEye, Cadence Molecular Sciences, Santa Fe, NM.
    [Google Scholar]
  62. HawkinsP.C.D. SkillmanA.G. WarrenG.L. EllingsonB.A. StahlM.T. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database.J. Chem. Inf. Model.201050457258410.1021/ci100031x 20235588
    [Google Scholar]
  63. QUACPAC version 2.0.0.3, OpenEye Cadence Molecular Sciences, Santa Fe, NM.
    [Google Scholar]
  64. SZYBKI version 1.10.0.3, OpenEye Cadence Molecular Sciences, Santa Fe, NM.
    [Google Scholar]
  65. RonkinS.M. BadiaM. BellonS. Discovery of pyrazolthiazoles as novel and potent inhibitors of bacterial gyrase.Bioorg. Med. Chem. Lett.20102092828283110.1016/j.bmcl.2010.03.052 20356737
    [Google Scholar]
  66. McGannM. FRED and HYBRID docking performance on standardized datasets.J. Comput. Aided Mol. Des.201226889790610.1007/s10822‑012‑9584‑8 22669221
    [Google Scholar]
  67. McGannM. FRED pose prediction and virtual screening accuracy.J. Chem. Inf. Model.201151357859610.1021/ci100436p 21323318
    [Google Scholar]
  68. SchrodingerL. The PyMOL molecular graphics system, version 1.3r1.Available from: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1571978 2010
  69. ReleaseS. 2023-4: QikProp.New York, NYSchrödinger, LLC2023
    [Google Scholar]
  70. Salomon-FerrerR. CaseD.A. WalkerR.C. An overview of the Amber biomolecular simulation package.Wiley Interdiscip. Rev. Comput. Mol. Sci.20133219821010.1002/wcms.1121
    [Google Scholar]
  71. PicarazziF. ZuanonM. PasqualettoG. Identification of small molecular chaperones binding P23H mutant opsin through an in silico structure-based approach.J. Chem. Inf. Model.202262225794580510.1021/acs.jcim.2c01040 36367985
    [Google Scholar]
  72. PlatellaC. GhirgaF. MusumeciD. Selective targeting of cancer-related G-quadruplex structures by the natural compound dicentrine.Int. J. Mol. Sci.2023244407010.3390/ijms24044070 36835480
    [Google Scholar]
  73. CauY. FiorilloA. MoriM. IlariA. BottaM. LalleM. Molecular dynamics simulations and structural analysis of Giardia duodenalis 14-3-3 protein-protein interactions.J. Chem. Inf. Model.201555122611262210.1021/acs.jcim.5b00452 26551337
    [Google Scholar]
  74. MoriM. NucciA. LangM.C.D. Functional and structural characterization of 2-amino-4-phenylthiazole inhibitors of the HIV-1 nucleocapsid protein with antiviral activity.ACS Chem. Biol.2014991950195510.1021/cb500316h 24988251
    [Google Scholar]
  75. DragoniF. BoccutoA. PicarazziF. Evaluation of sofosbuvir activity and resistance profile against West Nile virus in vitro.Antiviral Res.202017510470810.1016/j.antiviral.2020.104708 31931104
    [Google Scholar]
  76. KuchlyanJ. Martinez-FernandezL. MoriM. What makes thienoguanosine an outstanding fluorescent DNA probe?J. Am. Chem. Soc.202014240169991701410.1021/jacs.0c06165 32915558
    [Google Scholar]
  77. RoeD.R. CheathamT.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data.J. Chem. Theory Comput.2013973084309510.1021/ct400341p 26583988
    [Google Scholar]
  78. MillerB.R. McGeeT.D. SwailsJ.M. HomeyerN. GohlkeH. RoitbergA.E. MMPBSA.py: An efficient program for end-state free energy calculations.J. Chem. Theory Comput.2012893314332110.1021/ct300418h 26605738
    [Google Scholar]
  79. SinghN.P. McCoyM.T. TiceR.R. SchneiderE.L. A simple technique for quantitation of low levels of DNA damage in individual cells.Exp. Cell Res.1988175118419110.1016/0014‑4827(88)90265‑0 3345800
    [Google Scholar]
  80. OzcagliE. SardasS. BiriA. Assessment of DNA damage in postmenopausal women under hormone replacement therapy.Maturitas200551328028510.1016/j.maturitas.2004.08.010 15978971
    [Google Scholar]
  81. Evranos AksözB. GürpinarS.S. EryilmazM. Antimicrobial activities of some pyrazoline and hydrazone derivatives.Turk. J. Pharm. Sci.202017550050510.4274/tjps.galenos.2019.42650 33177930
    [Google Scholar]
  82. VasanthaK. BasavarajaswamyG. Vaishali RaiM. Rapid ‘one-pot’ synthesis of a novel benzimidazole-5-carboxylate and its hydrazone derivatives as potential anti-inflammatory and antimicrobial agents.Bioorg. Med. Chem. Lett.20152571420142610.1016/j.bmcl.2015.02.043 25765910
    [Google Scholar]
  83. FrejatF.O.A. CaoY. ZhaiH. Novel 1,2,4-oxadiazole/] pyrrolidine hybrids as DNA gyrase and topoisomerase IV inhibitors with potential antibacterial activity.Arab. J. Chem.202215110353810.1016/j.arabjc.2021.103538
    [Google Scholar]
  84. CotmanA.E. DurcikM. Benedetto TizD. Discovery and hit-to-lead optimization of benzothiazole scaffold-based DNA gyrase inhibitors with potent activity against Acinetobacter baumannii and Pseudomonas aeruginosa.J. Med. Chem.20236621380142510.1021/acs.jmedchem.2c01597 36634346
    [Google Scholar]
  85. HearnshawS.J. ChungT.T.H. StevensonC.E.M. MaxwellA. LawsonD.M. The role of monovalent cations in the ATPase reaction of DNA gyrase.Acta Crystallogr. D Biol. Crystallogr.2015714996100510.1107/S1399004715002916 25849408
    [Google Scholar]
  86. Vanden BroeckA. LotzC. OrtizJ. LamourV. Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex.Nat. Commun.2019101493510.1038/s41467‑019‑12914‑y 31666516
    [Google Scholar]
  87. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  88. OliveP.L. BanáthJ.P. The comet assay: A method to measure DNA damage in individual cells.Nat. Protoc.200611232910.1038/nprot.2006.5 17406208
    [Google Scholar]
  89. CasanovaB. MunizM. De OliveiraT. Synthesis and biological evaluation of hydrazone derivatives as antifungal agents.Molecules20152059229924110.3390/molecules20059229 26007181
    [Google Scholar]
  90. ZhouM. BoulosJ.C. OmerE.A. KlauckS.M. EfferthT. Modes of action of a novel c-MYC inhibiting 1,2,4-oxadiazole derivative in leukemia and breast cancer cells.Molecules20232815565810.3390/molecules28155658 37570631
    [Google Scholar]
  91. SantajitS. IndrawattanaN. Mechanisms of antimicrobial resistance in ESKAPE pathogens.Biomed Res. Int.20162016247506710.1155/2016/2475067
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128361524250131110036
Loading
/content/journals/cpd/10.2174/0113816128361524250131110036
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test