Skip to content
2000
Volume 31, Issue 34
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Hypertension is considered to be a crucial factor in the development of chronic diseases like obesity, diabetes, and Cardiovascular Disease (CVD). Several conventional medications are frequently used to manage hypertension. However, they have certain adverse effects that limit their use. Therefore, alternative medications, including bioactive peptides, could be valuable in managing CVD because they are safer, less expensive, and more effective. In light of this, this article aimed to explore the potential application of plant-derived peptides for their efficient role in ameliorating hypertension. In particular, the authors summarise the current understanding of the anti-hypertensive function of plant-derived bioactive peptides, focusing on the source, isolation technique, purification process, and potential CVD applications. The potential antihypertensive peptides are highlighted in particular, and their molecular mechanisms, such as ACE inhibition, renin inhibition, and CCB blockers, are highlighted in terms of , and models. Recent literature evidence revealed that plant peptides with low molecular weight show better potential for inhibiting ACE and renin. Moreover, the molecular structure, solubility, and types of amino acids play an important role in determining antihypertensive activity. This review will improve the understanding of plant-derived bioactive peptides and provide some constructive inspiration for further research and industrial application in cardiovascular disorders.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128386781250415105515
2025-04-25
2025-10-27
Loading full text...

Full text loading...

References

  1. BalwanW.K. KourS. A systematic review of hypertension and stress-the silent killers.Scholars Acad. J. Biosci.20216150154
    [Google Scholar]
  2. DisiA.S.S. AnwarM.A. EidA.H. Anti-hypertensive herbs and their mechanisms of action: Part I.Front. Pharmacol.20166323 26834637
    [Google Scholar]
  3. BoimaV. TettehJ. YorkeE. Older adults with hypertension have increased risk of depression compared to their younger counterparts: Evidence from the World Health Organization study of Global Ageing and Adult Health Wave 2 in Ghana.J. Affect. Disord.202027732933610.1016/j.jad.2020.08.033 32858314
    [Google Scholar]
  4. AraujoF.G. RamosR.R. Antagonistic atrial natriuretic peptide with the renin-angiotensin-aldosterone system and effects on systemic blood pressure regulation.J Mod Med Chem2022102022132210.12970/2308‑8044.2022.10.02
    [Google Scholar]
  5. LuX. YangH. XiaX. Interactive mobile health intervention and blood pressure management in adults: A meta-analysis of randomized controlled trials.Hypertension201974369770410.1161/HYPERTENSIONAHA.119.13273 31327259
    [Google Scholar]
  6. MishraA. VijayaraghavaluS. KumarM. Cardiovascular disorders and herbal medicines in India.In: Herbal Medicines.Elsevier, Amsterdam, Netherlands:2022525555
    [Google Scholar]
  7. PatilS.P. GoswamiA. KaliaK. KateA.S. Therapeutics, Plant-derived bioactive peptides: A treatment to cure diabetes.Int. J. Pept. Res. Ther.2020262955968 32435169
    [Google Scholar]
  8. PatilP.J. SutarS.S. UsmanM. Exploring bioactive peptides as potential therapeutic and biotechnology treasures: A contemporary perspective.Life Sci.202230112063710.1016/j.lfs.2022.120637 35568229
    [Google Scholar]
  9. RamlalA. NautiyalA. BawejaP. Angiotensin-converting enzyme inhibitory peptides and isoflavonoids from soybean [Glycine max (L.) Merr.Front. Nutr.202291068388 36505231
    [Google Scholar]
  10. ChoonaraB.F. ChoonaraY.E. KumarP. BijukumarD. ToitD.L.C. PillayV. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules.Biotechnol. Adv.20143271269128210.1016/j.biotechadv.2014.07.006 25099657
    [Google Scholar]
  11. XueL. YinR. HowellK. ZhangP. SafetyF. Activity and bioavailability of food protein‐derived angiotensin‐I‐converting enzyme–inhibitory peptides.Compr. Rev. Food Sci. Food Saf.20212021150118710.1111/1541‑4337.12711 33527706
    [Google Scholar]
  12. RezvankhahA. YarmandM.S. GhanbarzadehB. MirzaeeH. Development of lentil peptides with potent antioxidant, antihypertensive, and antidiabetic activities along with umami taste.Food Sci. Nutr.202311629742989 37324857
    [Google Scholar]
  13. SongY. YuJ. SongJ. The antihypertensive effect and mechanisms of bioactive peptides from Ruditapes philippinarum fermented with Bacillus natto in spontaneously hypertensive rats.J. Funct. Foods20217910441110.1016/j.jff.2021.104411
    [Google Scholar]
  14. AbdelhediO. NasriM. Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability.Trends Food Sci. Technol.20198854355710.1016/j.tifs.2019.04.002
    [Google Scholar]
  15. KeresztA. MergaertP. MontielJ. EndreG. KondorosiÉ. Impact of plant peptides on symbiotic nodule development and functioning.Front Plant Sci20189102610.3389/fpls.2018.01026 30065740
    [Google Scholar]
  16. Daskaya-DikmenC. YucetepeA. Karbancioglu-GulerF. DaskayaH. OzcelikB. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants.Nutrients20179431610.3390/nu9040316 28333109
    [Google Scholar]
  17. VallabhaS.V. TikuP.K. Antihypertensive peptides derived from soy protein by fermentation.Int. J. Pept. Res. Ther.201420216116810.1007/s10989‑013‑9377‑5
    [Google Scholar]
  18. PuchalskaP. GarcíaM.C. MarinaM.L. Development of a capillary high performance liquid chromatography-ion trap-mass spectrometry method for the determination of VLIVP antihypertensive peptide in soybean crops.J. Chromatogr. A20141338859110.1016/j.chroma.2014.02.059 24630980
    [Google Scholar]
  19. YamasakiY. TagaS. KishiokaM. KawanoS. A metabolic profile in Ruditapes philippinarum associated with growth-promoting effects of alginate hydrolysates.Sci. Rep.2016612992310.1038/srep29923 27436591
    [Google Scholar]
  20. YuJ. MikiashviliN. BonkuR. SmithI.N. Allergenicity, antioxidant activity and ACE-inhibitory activity of protease hydrolyzed peanut flour.Food Chem.202136012999210.1016/j.foodchem.2021.129992
    [Google Scholar]
  21. WangX. ChenH. FuX. LiS. WeiJ. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study.Lebensm. Wiss. Technol.201775939910.1016/j.lwt.2016.08.047
    [Google Scholar]
  22. ZhangP. RoytrakulS. SutheerawattananondaM. Production and purification of glucosamine and angiotensin-I converting enzyme (ACE) inhibitory peptides from mushroom hydrolysates.J. Funct. Foods201736728310.1016/j.jff.2017.06.049
    [Google Scholar]
  23. OkoyeC.O. EzeorbaT.P.C. OkekeE.S. OkaguI.U. Recent findings on the isolation, identification and quantification of bioactive peptides, applied.Food Res.20222100065
    [Google Scholar]
  24. FadimuG.J. LeT.T. GillH. FarahnakyA. OlatundeO.O. TruongT. Enhancing the biological activities of food protein-derived peptides using non-thermal technologies: A review.Foods20221113182310.3390/foods11131823 35804638
    [Google Scholar]
  25. López-TrujilloJ. Mellado-BosqueM. Ascacio-ValdésJ.A. Prado-BarragánL.A. Hernández-HerreraJ.A. Aguilera-CarbóA.F. Temperature and pH optimization for protease production fermented by Yarrowia lipolytica from agro-industrial waste.Fermentation (Basel)20239981910.3390/fermentation9090819
    [Google Scholar]
  26. AgyeiD. TsopmoA. UdenigweC.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides.Anal. Bioanal. Chem.2018410153463347210.1007/s00216‑018‑0974‑1 29516135
    [Google Scholar]
  27. WenQ. ZhangL. ZhaoF. Production technology and functionality of bioactive peptides.Curr. Pharm. Des.202329965267410.2174/1381612829666230201121353 36725828
    [Google Scholar]
  28. NingrumS. SutrisnoA. HsuJ.L. An exploration of angiotensin-converting enzyme (ACE) inhibitory peptides derived from gastrointestinal protease hydrolysate of milk using a modified bioassay-guided fractionation approach coupled with in silico analysis.J. Dairy Sci.202210531913192810.3168/jds.2021‑21112 35086704
    [Google Scholar]
  29. KammakakamI. LaiZ. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges.Chemosphere202331613766910.1016/j.chemosphere.2022.137669 36623590
    [Google Scholar]
  30. AgyeiD. OngkudonC.M. WeiC.Y. ChanA.S. DanquahM.K. Bioprocess challenges to the isolation and purification of bioactive peptides.Food Bioprod. Process.20169824425610.1016/j.fbp.2016.02.003
    [Google Scholar]
  31. WenC. ZhangJ. ZhangH. DuanY. MaH. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review.Trends Food Sci. Technol.202010530832210.1016/j.tifs.2020.09.019
    [Google Scholar]
  32. LiuW. ChenX. LiH. ZhangJ. AnJ. LiuX. Anti-inflammatory function of plant-derived bioactive peptides: A review.Foods20221115236110.3390/foods11152361 35954128
    [Google Scholar]
  33. ThompsonJ.E. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in veterinary medicine: Recent advances (2019-present).Vet. World202215112623265710.14202/vetworld.2022.2623‑2657 36590115
    [Google Scholar]
  34. AlvesT.O. D’AlmeidaC.T.S. ScherfK.A. FerreiraM.S.L. Modern approaches in the identification and quantification of immunogenic peptides in cereals by LC-MS/MS.Front Plant Sci2019101470 31798614
    [Google Scholar]
  35. HongJ.F. SongY.F. LiuZ. ZhengZ.C. ChenH.J. WangS.S. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration.Mol. Med. Rep.202123646110.3892/mmr.2021.12100 33876628
    [Google Scholar]
  36. AdamsC. SawhF. Green-JohnsonJ.M. TaggartJ.H. StrapJ.L. Characterization of casein-derived peptide bioactivity: Differential effects on angiotensin-converting enzyme inhibition and cytokine and nitric oxide production.J. Dairy Sci.202010375805581510.3168/jds.2019‑17976 32448573
    [Google Scholar]
  37. SitanggangA.B. PutriJ.E. PalupiN.S. HatzakisE. SyamsirE. BudijantoS. Enzymatic preparation of bioactive peptides exhibiting ace inhibitory activity from soybean and velvet bean: A systematic review.Molecules20212613382210.3390/molecules26133822 34201554
    [Google Scholar]
  38. HanafiM.A. HashimS.N. ChayS.Y. High angiotensin-I converting enzyme (ACE) inhibitory activity of Alcalase-digested green soybean (Glycine max) hydrolysates.Food Res. Int.201810658959710.1016/j.foodres.2018.01.030 29579964
    [Google Scholar]
  39. ShaoB. HuangX. XuM. ChengD. LiX. LiM. Peptides isolated from black soybean synergistically inhibit the activity of angiotensin converting enzyme (ACE).J. Funct. Foods202310610560410.1016/j.jff.2023.105604
    [Google Scholar]
  40. TsaiB.C.K. KuoW.W. DayC.H. The soybean bioactive peptide VHVV alleviates hypertension-induced renal damage in hypertensive rats via the SIRT1-PGC1α/Nrf2 pathway.J. Funct. Foods20207510425510.1016/j.jff.2020.104255
    [Google Scholar]
  41. KwakJ.H. KimM. LeeE. LeeS.H. AhnC.W. LeeJ.H. Effects of black soy peptide supplementation on blood pressure and oxidative stress: A randomized controlled trial.Hypertens. Res.201336121060106610.1038/hr.2013.79 23924691
    [Google Scholar]
  42. SamsamikorM. MackayD.S. MollardR.C. AlashiA.M. AlukoR.E. Hemp seed protein and its hydrolysate compared with casein protein consumption in adults with hypertension: A double-blind crossover study.Am. J. Clin. Nutr.20241201566510.1016/j.ajcnut.2024.05.001 38710445
    [Google Scholar]
  43. KwakS.M. MyungS-K. LeeY.J. SeoH.G. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: A meta-analysis of randomized, double-blind, placebo-controlled trials.Arch. Intern. Med.2012172968669410.1001/archinternmed.2012.262 22493407
    [Google Scholar]
  44. LammiC. AielloG. DellafioraL. Assessment of the multifunctional behavior of lupin peptide p7 and its metabolite using an integrated strategy.J. Agric. Food Chem.20206846131791318810.1021/acs.jafc.0c00130 32223157
    [Google Scholar]
  45. LuY. WangY. HuangD. Inhibitory mechanism of angiotensin-converting enzyme inhibitory peptides from black tea.J. Zhejiang Univ. Sci. B202122757558910.1631/jzus.B2000520 34269010
    [Google Scholar]
  46. LiuX. LiG. WangH. Identification, characterization and antihypertensive effect in vivo of a novel ACE-inhibitory heptapeptide from defatted areca nut kernel globulin hydrolysates.Molecules20212611330810.3390/molecules26113308 34072901
    [Google Scholar]
  47. LiJ. SuJ. ChenM. Two novel potent ACEI peptides isolated from Pinctada fucata meat hydrolysates using in silico analysis: Identification, screening and inhibitory mechanisms.RSC Advances20211120121721218210.1039/D0RA10476K 35423777
    [Google Scholar]
  48. ZareiM. GhanbariR. ZainalN. OvissipourR. SaariN. Inhibition kinetics, molecular docking, and stability studies of the effect of papain-generated peptides from palm kernel cake proteins on angiotensin-converting enzyme (ACE).Food Chemistry: Molecular Sciences20225100147 36573107
    [Google Scholar]
  49. UdenigweC.C. MohanA. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition.J. Funct. Foods20148455210.1016/j.jff.2014.03.002
    [Google Scholar]
  50. SongT. ZhangT. CaiQ. DingY.Y. GuZ. A novel angiotensin I-converting enzyme inhibitory peptide APPLRP from Grifola frondosa ameliorated the Ang II-induced vascular modeling in zebrafish model by mediating smooth muscle cells.Int. J. Biol. Macromol.2024278Pt 413499810.1016/j.ijbiomac.2024.134998 39181368
    [Google Scholar]
  51. Ribeiro-OliveiraR. Rodríguez-RodríguezP. SousaJ.B. FerreiraI.M.P.L.V.O. ArribasS.M. DinizC. Managing hypertension using brewing bioactive peptides as angiotensin-converting enzyme inhibitors: Impact on vascular tone through ex vivo assays.PharmaNutrition20242810038910.1016/j.phanu.2024.100389
    [Google Scholar]
  52. TamargoJ. RuilopeL.M. Investigational calcium channel blockers for the treatment of hypertension.Expert Opin. Investig. Drugs201625111295130910.1080/13543784.2016.1241764 27696904
    [Google Scholar]
  53. LiuZ. KhalilR.A. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease.Biochem. Pharmacol.20181539112210.1016/j.bcp.2018.02.012 29452094
    [Google Scholar]
  54. JonesK.E. HaydenS.L. MeyerH.R. The evolving role of calcium channel blockers in hypertension management: Pharmacological and clinical considerations.Curr. Issues Mol. Biol.20244676315632710.3390/cimb46070377 39057019
    [Google Scholar]
  55. YangJ. Sun-WaterhouseD. ZhouW. CuiC. WangW. Glutaminase-catalyzed γ-glutamylation to produce CCK secretion-stimulatory γ-[Glu]n-Trp peptides superior to tryptophan.J. Funct. Foods20196010341810.1016/j.jff.2019.103418
    [Google Scholar]
  56. OzayC. AksoyalpZ.S. ErdoganB.R. Plant phenolic acids modulating the renin-angiotensin system in the management of cardiovascular diseases.In: Studies in Natural Products Chemistry. Amsterdam, Atta R, Ed. Elsevier, Netherlands:2024285314
    [Google Scholar]
  57. PimentelF.B. AlvesR.C. HarnedyP.A. FitzGeraldR.J. OliveiraM.B.P. Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties.Trends in Food Science201993106124
    [Google Scholar]
  58. UdenigweC.C. AlukoR.E. Multifunctional cationic peptide fractions from flaxseed protein hydrolysates.Plant Foods Hum. Nutr.201267119 22327315
    [Google Scholar]
  59. GirgihA.T. NwachukwuI.D. HasanF. FagbemiT.N. GillT. AlukoR.E. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by cod (Gadus morhua) protein hydrolysates and their antihypertensive effects in spontaneously hypertensive rats.Food Nutr. Res.2015592978810.3402/fnr.v59.29788 26715103
    [Google Scholar]
  60. FitzgeraldC. Mora-SolerL. GallagherE. Isolation and characterization of bioactive pro-peptides with in vitro renin inhibitory activities from the macroalga Palmaria palmata.J. Agric. Food Chem.2012603074217427 22747312
    [Google Scholar]
  61. AlfaddaghA. MartinS.S. LeuckerT.M. Inflammation and cardiovascular disease: From mechanisms to therapeutics.Am. J. Prev. Cardiol.2020410013010.1016/j.ajpc.2020.100130
    [Google Scholar]
  62. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood-brain barrier: Structure, regulation, and drug delivery.Signal Transduct. Target. Ther.20238121710.1038/s41392‑023‑01481‑w 37231000
    [Google Scholar]
  63. BieleckaM. CichoszG. CzeczotH. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review.Int. Dairy J.202212710520810.1016/j.idairyj.2021.105208
    [Google Scholar]
  64. MalomoS.A. AlukoR.E. In vitro acetylcholinesterase-inhibitory properties of enzymatic hemp seed protein hydrolysates.J. Am. Oil Chem. Soc.20169341142010.1007/s11746‑015‑2779‑0
    [Google Scholar]
  65. BhandariD. RafiqS. GatY. GatP. WaghmareR. KumarV. A review on bioactive peptides: Physiological functions, bioavailability and safety.Int. J. Pept. Res. Ther.20202613915010.1007/s10989‑019‑09823‑5
    [Google Scholar]
  66. FélétouM. KöhlerR. VanhoutteP.M. Nitric oxide: Orchestrator of endothelium-dependent responses.Ann. Med.201244769471610.3109/07853890.2011.585658 21895549
    [Google Scholar]
  67. ChanE.A. BuckleyB. FarrajA.K. ThompsonL.C. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction.Pharmacol. Ther.2016165637810.1016/j.pharmthera.2016.05.006
    [Google Scholar]
  68. GallegoM. MoraL. ToldráF. Health relevance of antihypertensive peptides in foods.Curr. Opin. Food Sci.20181981410.1016/j.cofs.2017.12.004
    [Google Scholar]
  69. VoT.S. KimS.K. Down-regulation of histamine-induced endothelial cell activation as potential anti-atherosclerotic activity of peptides from Spirulina maxima.Eur. J. Pharm. Sci.201350219820710.1016/j.ejps.2013.07.001 23856417
    [Google Scholar]
  70. BondonnoC.P. CroftK.D. HodgsonJ.M. Dietary nitrate, nitric oxide, and cardiovascular health.Crit. Rev. Food Sci. Nutr.201656122036205210.1080/10408398.2013.811212 25976309
    [Google Scholar]
  71. LiQ. YounJ.Y. CaiH. Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension.J. Hypertens.20153361128113610.1097/HJH.0000000000000587 25882860
    [Google Scholar]
  72. GhatageT. GoyalS.G. DharA. BhatA. Novel therapeutics for the treatment of hypertension and its associated complications: Peptide- and nonpeptide-based strategies.Hypertens. Res.202144774075510.1038/s41440‑021‑00643‑z 33731923
    [Google Scholar]
  73. WuS. WangX. QiW. GuoQ. Bioactive protein/peptides of flaxseed: A review.Trends Food Sci. Technol.20199218419310.1016/j.tifs.2019.08.017
    [Google Scholar]
  74. ShobakoN. IshikadoA. OgawaY. Vasorelaxant and antihypertensive effects that are dependent on the endothelial NO system exhibited by rice bran-derived tripeptide.J. Agric. Food Chem.20196751437144210.1021/acs.jafc.8b06341 30609899
    [Google Scholar]
  75. FanH. LiuH. ZhangY. ZhangS. LiuT. WangD. Review on plant-derived bioactive peptides: Biological activities, mechanism of action and utilizations in food development.Journal of Future Foods20222214315910.1016/j.jfutfo.2022.03.003
    [Google Scholar]
  76. HeR. WangY. YangY. WangZ. JuX. YuanJ. Rapeseed protein-derived ACE inhibitory peptides LY, RALP and GHS show antioxidant and anti-inflammatory effects on spontaneously hypertensive rats.J. Funct. Foods20195521121910.1016/j.jff.2019.02.031
    [Google Scholar]
  77. LundbergJ.O. WeitzbergE. GladwinM.T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics.Nat. Rev. Drug Discov.20087215616710.1038/nrd2466 18167491
    [Google Scholar]
  78. Oliveira-PaulaG.H. Tanus-SantosJ.E. Nitrite-stimulated gastric formation of S-nitrosothiols as an antihypertensive therapeutic strategy.Curr. Drug Targets201920443144310.2174/1389450119666180816120816 30112990
    [Google Scholar]
  79. GuimaraesD.A. BatistaR.I.M. Tanus-SantosJ.E.J.B. Nitrate and nitrite-based therapy to attenuate cardiovascular remodelling in arterial hypertension.Basic Clin. Pharmacol. Toxicol.20211281917 32772466
    [Google Scholar]
  80. LinobyA. NurthaqifM. MohamedM.N. Nitrate-rich red spinach extract supplementation increases exhaled nitric oxide levels and enhances high-intensity exercise tolerance in humans.International Conference on Movement, Health and Exercise2019412420
    [Google Scholar]
  81. Barba de la RosaA.P. MontoyaB.A. Martínez-CuevasP. Tryptic amaranth glutelin digests induce endothelial nitric oxide production through inhibition of ACE: Antihypertensive role of amaranth peptides.Nitric Oxide201023210611110.1016/j.niox.2010.04.006 20435155
    [Google Scholar]
  82. OkaguI.U. EzeorbaT.P. AhamE.C. AguchemR.N. NechiR.N. Recent findings on the cellular and molecular mechanisms of action of novel food-derived antihypertensive peptides.Food Chem.2022410007810.1016/j.fochms.2022.100078
    [Google Scholar]
  83. MillerA.J. ArnoldA.C. The renin-angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications.Clin. Auton. Res.201929223124310.1007/s10286‑018‑0572‑5
    [Google Scholar]
  84. VossG.B. OsorioH. ValenteL.M.P. PintadoM.E. Impact of thermal treatment and hydrolysis by Alcalase and Cynara cardunculus enzymes on the functional and nutritional value of Okara.Process Biochem.20198313714710.1016/j.procbio.2019.05.010
    [Google Scholar]
  85. BeccaceceL. AbondioP. BiniC. PelottiS. LuiselliD. The link between prostanoids and cardiovascular diseases.Int. J. Mol. Sci.2023244419310.3390/ijms24044193 36835616
    [Google Scholar]
  86. FakiY. ErA. Different chemical structures and physiological/pathological roles of cyclooxygenases.Rambam Maimonides Med. J.202112112 33245277
    [Google Scholar]
  87. OzenG. AljesriK. AbdelazeemH. Comparative study on the effect of aspirin, TP receptor antagonist and TxA2 synthase inhibitor on the vascular tone of human saphenous vein and internal mammary artery.Life Sci.2021286120073 34688694
    [Google Scholar]
  88. LichotaA. SzewczykE.M. GwozdzinskiK. Factors affecting the formation and treatment of thrombosis by natural and synthetic compounds.Int. J. Mol. Sci.202021217975 33121005
    [Google Scholar]
  89. KollarethD.J.M. ChangC.L. ZirpoliH. DeckelbaumR.J. Molecular mechanisms underlying effects of n- 3 and n- 6 fatty acids in cardiovascular diseases.In: Lipid Signaling and Metabolism.Elsevier, Amsterdam, Netherlands2020427453
    [Google Scholar]
  90. Herrera-ChaléF. Ruiz-RuizJ.C. Betancur-AnconaD. Segura-CamposM.R. Potential therapeutic applications of mucuna pruriens peptide fractions purified by high-performance liquid chromatography as angiotensin-converting enzyme inhibitors, antioxidants, antithrombotic and hypocholesterolemic agents.J. Med. Food2016192187195 26854846
    [Google Scholar]
  91. LiuW-Y. ZhangJ-T. MiyakawaT. LiG-M. GuR-Z. TanokuraM. Antioxidant properties and inhibition of angiotensin-converting enzyme by highly active peptides from wheat gluten.Sci. Rep.2021111520610.1038/s41598‑021‑84820‑7 33664447
    [Google Scholar]
  92. NardoA.E. SuárezS. QuirogaA.V. AñónM.C. Amaranth as a source of antihypertensive peptides.Front Plant Sci202011578631 33101347
    [Google Scholar]
  93. WeiD. FanW. XuY. In vitro production and identification of angiotensin converting enzyme (ACE) inhibitory peptides derived from distilled spent grain prolamin isolate.Foods201989390 31487872
    [Google Scholar]
  94. MaF.F. WangH. WeiC.K. ThakurK. WeiZ.J. JiangL. Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: Purification, inhibitory kinetic and mechanism.Front. Pharmacol.20199157910.3389/fphar.2018.01579 30697161
    [Google Scholar]
  95. ZhengY. WangX. ZhuangY. Isolation of novel ACE-inhibitory peptide from naked oat globulin hydrolysates in silico approach: Molecular docking, in vivo antihypertension and effects on renin and intracellular endothelin-1.J. Food Sci.202085413281337 32220144
    [Google Scholar]
  96. ZhaoY.Q. ZhangL. TaoJ. ChiC.F. WangB. Eight antihypertensive peptides from the protein hydrolysate of Antarctic krill (Euphausia superba): Isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs).Food Res. Int.201912119720410.1016/j.foodres.2019.03.035 31108740
    [Google Scholar]
  97. LiuP. LanX. YaseenM. Purification, characterization and evaluation of inhibitory mechanism of ACE inhibitory peptides from pearl oyster (Pinctada fucata martensii) meat protein hydrolysate.Mar. Drugs201917846310.3390/md17080463 31398788
    [Google Scholar]
  98. LiaoW. FanH. LiuP. WuJ. Identification of angiotensin converting enzyme 2 (ACE2) up-regulating peptides from pea protein hydrolysate.J. Funct. Foods20196010339510.1016/j.jff.2019.05.051
    [Google Scholar]
  99. WangY. LiY. RuanS. LuF. TianW. MaH. Antihypertensive effect of rapeseed peptides and their potential in improving the effectiveness of captopril.J. Sci. Food Agric.202110173049305510.1002/jsfa.10939 33179311
    [Google Scholar]
  100. BoonlaO. KukongviriyapanU. PakdeechoteP. KukongviriyapanV. PannangpetchP. ThawornchinsombutS. Peptides-derived from Thai rice bran improves endothelial function in 2K-1C renovascular hypertensive rats.Nutrients2015775783579910.3390/nu7075252 26184305
    [Google Scholar]
  101. IshiguroK. SameshimaY. KumeT. IkedaK-i. MatsumotoJ. YoshimotoM. Hypotensive effect of a sweetpotato protein digest in spontaneously hypertensive rats and purification of angiotensin I-converting enzyme inhibitory peptides.Food Chem.2012131774779
    [Google Scholar]
  102. HuangG-J. ChenH-J. SusumuK. Sweet potato storage root thioredoxin h2 and their peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activity in vitro.Bot. Stud.20115211522
    [Google Scholar]
  103. HuangG. ChenH-J. HuangS-H. Sweet potato storage root trypsin inhibitor and their peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activity.Botan Stud200849101108
    [Google Scholar]
  104. LuY.L. ChiaC.Y. LiuY.W. HouW.C. Biological activities and applications of dioscorins, the major tuber storage proteins of yam.J. Tradit. Complement. Med.201221414610.1016/S2225‑4110(16)30069‑4 24716113
    [Google Scholar]
  105. IwaiK. MatsueH. Ingestion of Apios americana Medikus tuber suppresses blood pressure and improves plasma lipids in spontaneously hypertensive rats.Nutr. Res.200727421822410.1016/j.nutres.2007.01.012
    [Google Scholar]
  106. MarczakE.D. OhinataK. LipkowskiA.W. YoshikawaM. Arg-Ile-Tyr (RIY) derived from rapeseed protein decreases food intake and gastric emptying after oral administration in mice.Peptides20062792065206810.1016/j.peptides.2006.03.019 16647789
    [Google Scholar]
  107. WuJ. AlukoR.E. MuirA.D. Purification of angiotensin I-converting enzyme-inhibitory peptides from the enzymatic hydrolysate of defatted canola meal.Food Chem.2008111494295010.1016/j.foodchem.2008.05.009
    [Google Scholar]
  108. HsuG-S.W. LuY-F. ChangS-H. HsuS-Y. Antihypertensive effect of mung bean sprout extracts in spontaneously hypertensive rats.J. Food Biochem.201135127828810.1111/j.1745‑4514.2010.00381.x
    [Google Scholar]
  109. NakaharaT. SanoA. YamaguchiH. Antihypertensive effect of peptide-enriched soy sauce-like seasoning and identification of its angiotensin I-converting enzyme inhibitory substances.J. Agric. Food Chem.201058282182710.1021/jf903261h 19994857
    [Google Scholar]
  110. UdechukwuM.C. TsopmoA. MawhinneyH. HeR. KienesbergerP.C. UdenigweC.C. Inhibition of ADAM17/TACE activity by zinc-chelating rye secalin-derived tripeptides and analogues.RSC Advances2017742263612636910.1039/C6RA26678A
    [Google Scholar]
  111. LeeH.D. KimH.J. ParkS.J. ChoiJ.Y. LeeS.J. Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum.Peptides200425462162710.1016/j.peptides.2004.01.015 15165718
    [Google Scholar]
  112. JangJ.H. JeongS.C. KimJ.H. LeeY.H. JuY.C. LeeJ.S. Characterisation of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae.Food Chem.2011127241241810.1016/j.foodchem.2011.01.010 23140680
    [Google Scholar]
  113. PihlantoA. AkkanenS. KorhonenH.J. ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum).Food Chem.2008109110411210.1016/j.foodchem.2007.12.023 26054270
    [Google Scholar]
  114. ThewissenB.G. PaulyA. CelusI. BrijsK. DelcourJ.A. Inhibition of angiotensin I-converting enzyme by wheat gliadin hydrolysates.Food Chem.201112741653165810.1016/j.foodchem.2010.11.171
    [Google Scholar]
  115. SornwatanaT. BangphoomiK. RoytrakulS. WetprasitN. ChoowongkomonK. RatanapoS. Chebulin: Terminalia chebula Retz. fruit‐derived peptide with angiotensin‐I–converting enzyme inhibitory activity.Biotechnol. Appl. Biochem.201562674675310.1002/bab.1321 25410725
    [Google Scholar]
  116. Garcia-MoraP. PeñasE. FríasJ. GómezR. Martinez-VillaluengaC. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins.Food Chem.201517122423210.1016/j.foodchem.2014.08.116 25308663
    [Google Scholar]
  117. LiuM. DuM. ZhangY. Purification and identification of an ACE inhibitory peptide from walnut protein.J. Agric. Food Chem.201361174097410010.1021/jf4001378 23566262
    [Google Scholar]
  118. MoayediA. MoraL. AristoyM.C. SafariM. HashemiM. ToldráF. Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste proteins fermented using Bacillus subtilis.Food Chem.201825018018710.1016/j.foodchem.2018.01.033 29412909
    [Google Scholar]
  119. ZhuZ. QiuN. YiJ. Production and characterization of angiotensin converting enzyme (ACE) inhibitory peptides from apricot (Prunus armeniaca L.) kernel protein hydrolysate.Eur. Food Res. Technol.20102311131910.1007/s00217‑010‑1235‑5
    [Google Scholar]
  120. AmbigaipalanP. ShahidiF. Date seed flour and hydrolysates affect physicochemical properties of muffin.Food Biosci.201512546010.1016/j.fbio.2015.06.001
    [Google Scholar]
  121. WhiteB.L. SandersT.H. DavisJ.P. Potential ACE-inhibitory activity and nanoLC-MS/MS sequencing of peptides derived from aflatoxin contaminated peanut meal.Lebensm. Wiss. Technol.201456253754210.1016/j.lwt.2013.11.039
    [Google Scholar]
  122. PriyantoA.D. DoerksenR.J. ChangC-I. Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins.J. Proteomics2015128424435 26344130
    [Google Scholar]
  123. JakubczykA. KaraśM. BaraniakB. PietrzakM. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins.Food Chem.2013141437743780 23993548
    [Google Scholar]
  124. GarcíaM.C. EndermannJ. González-GarcíaE. MarinaM.L. HPLC-Q-TOF-MS identification of antioxidant and antihypertensive peptides recovered from cherry (Prunus cerasus L.) subproducts.J. Agric. Food Chem.20156351514152010.1021/jf505037p 25599260
    [Google Scholar]
  125. MalomoS.A. OnuhJ.O. GirgihA.T. AlukoR.E. Structural and antihypertensive properties of enzymatic hemp seed protein hydrolysates.Nutrients20157976167632 26378569
    [Google Scholar]
  126. LiH. AlukoR.E. Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate.J. Agric. Food Chem.20105821114711147610.1021/jf102538g 20929253
    [Google Scholar]
  127. HeR. MalomoS.A. AlashiA. GirgihA.T. JuX. AlukoR.E. Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides.J. Funct. Foods20135781789
    [Google Scholar]
  128. KoderaT. NioN. Identification of an angiotensin I‐converting enzyme inhibitory peptides from protein hydrolysates by a soybean protease and the antihypertensive effects of hydrolysates in 4 spontaneously hypertensive model rats.J. Food Sci.200671C164C173
    [Google Scholar]
  129. ArnoldiA. BoschinG. ZanoniC. LammiC. The health benefits of sweet lupin seed flours and isolated proteins.J. Funct. Foods20151855056310.1016/j.jff.2015.08.012
    [Google Scholar]
  130. SonklinC. AlashiM.A. LaohakunjitN. KerdchoechuenO. AlukoR.E. Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats.J. Funct. Foods20206410363510.1016/j.jff.2019.103635
    [Google Scholar]
  131. Hernández-LedesmaB. del Mar ContrerasM. RecioI. Antihypertensive peptides: Production, bioavailability and incorporation into foods.Adv. Colloid Interface Sci.201116512335 21185549
    [Google Scholar]
  132. QuirósA. del Mar ContrerasM. RamosM. AmigoL. RecioI. Stability to gastrointestinal enzymes and structure-activity relationship of β-casein-peptides with antihypertensive properties.Peptides2009301018481853 19591889
    [Google Scholar]
  133. PijlV.D.P.C. KiesA.K. HaveT.G.A. DuchateauG.S. DeutzN.E. Pharmacokinetics of proline-rich tripeptides in the pig.Peptides200829122196220210.1016/j.peptides.2008.08.011 18789987
    [Google Scholar]
  134. DentiP. SharpS-K. KrögerW.L. Pharmacokinetic evaluation of lisinopril-tryptophan, a novel C-domain ACE inhibitor.Eur. J. Pharm. Sci.201456113119 24561703
    [Google Scholar]
  135. HathoutR.M. ElshafeeyA.H. Development and characterization of colloidal soft nano-carriers for transdermal delivery and bioavailability enhancement of an angiotensin II receptor blocker.Eur. J. Pharm. Biopharm.201282223024010.1016/j.ejpb.2012.07.002 22820090
    [Google Scholar]
  136. SharmaM. SharmaR. JainD.K. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs.Scientifica (Cairo)2016201611110.1155/2016/8525679 27239378
    [Google Scholar]
  137. PihlantoA. MäkinenS. The function of renin and the role of food-derived peptides as direct renin inhibitors.In: Renin-Angiotensin System-Past, Present and Future.UKInTech Open London2017241258
    [Google Scholar]
  138. RamyaK. SureshR. KumarH.Y. KumarB.R.P. MurthyN.B.S. Decades-old renin inhibitors are still struggling to find a niche in antihypertensive therapy. A fleeting look at the old and the promising new molecules.Bioorg. Med. Chem.2020281011546610.1016/j.bmc.2020.115466 32247750
    [Google Scholar]
  139. BorovacJ.A. D’AmarioD. BozicJ. GlavasD. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers.World J. Cardiol.202012837340810.4330/wjc.v12.i8.373 32879702
    [Google Scholar]
  140. WittK.A. GillespieT.J. HuberJ.D. EgletonR.D. DavisT.P. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability.Peptides200122122329234310.1016/S0196‑9781(01)00537‑X 11786210
    [Google Scholar]
  141. XuQ. HongH. WuJ. YanX. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review.Trends Food Sci. Technol.20198639941110.1016/j.tifs.2019.02.050
    [Google Scholar]
  142. MoraL. GallegoM. ToldráF. ACEI-inhibitory peptides naturally generated in meat and meat products and their health relevance.Nutrients2018109125910.3390/nu10091259 30205453
    [Google Scholar]
  143. DuZ. LiY. Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities.J. Agricult Food Res.2022910035310.1016/j.jafr.2022.100353
    [Google Scholar]
  144. DuZ. ComerJ. LiY. Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives.Trends Analyt. Chem.202316211705110.1016/j.trac.2023.117051
    [Google Scholar]
  145. MignaniS. KazzouliE.S. BousminaM. MajoralJ.P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview.Adv. Drug Deliv. Rev.201365101316133010.1016/j.addr.2013.01.001 23415951
    [Google Scholar]
  146. JiD. XuM. UdenigweC.C. AgyeiD. Physicochemical characterisation, molecular docking, and drug-likeness evaluation of hypotensive peptides encrypted in flaxseed proteome.Curr. Res. Food Sci.20203415010.1016/j.crfs.2020.03.001
    [Google Scholar]
  147. Li-ChanE.C.Y. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients.Curr. Opin. Food Sci.20151283710.1016/j.cofs.2014.09.005
    [Google Scholar]
  148. ParvezA.K. JubydaF.T. AyazM. Microbial‐ and plant‐derived bioactive peptides and their applications against foodborne pathogens: Current status and future prospects.Int. J. Microbiol.202420241997803310.1155/2024/9978033 38716460
    [Google Scholar]
  149. WangR. ZhaoH. PanX. OrfilaC. LuW. MaY. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α‐glucosidase inhibitory peptides from soy protein.Food Sci. Nutr.2019751848185610.1002/fsn3.1038 31139399
    [Google Scholar]
  150. FosgerauK. HoffmannT. Peptide therapeutics: Current status and future directions.Drug Discov. Today201520112212810.1016/j.drudis.2014.10.003 25450771
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128386781250415105515
Loading
/content/journals/cpd/10.2174/0113816128386781250415105515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test