Skip to content
2000
Volume 31, Issue 34
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Eprosartan is an effective blood pressure medication that blocks the Angiotensin Type 1 (AT1) receptor. The studies conducted on Eprosartan showed anti-oxidative stress effects and modulating inflammatory mechanisms. The current research is designed to clarify and examine the possible advantageous impacts of Eprosartan against chronic ethanol-induced hepatic damage.

Methods

Twenty-four male Sprague-Dawley rats were haphazardly separated into four groups. The control group received normal saline 1 g/kg for 35 days (group 1). The EtOH group received 7 g/kg of 40% ethanol orally for 35 days (group 2). The EtOH+ EP group was pretreated with 60 mg/kg of Eprosartan dissolved in normal saline orally and, after 60 minutes, received 7 g/kg of 40% ethanol orally for 35 days (group 3). The EP group received only Eprosartan 60 mg/kg dissolved in normal saline for 35 days (group 4). The levels of biochemical parameters, oxidative stress markers, pro-inflammatory cytokines, and histopathological staining were evaluated in serum and liver tissue. The interactive behavior of Eprosartan with Tumor Necrosis Factor-α (TNF-α) protein was also explained by molecular docking.

Results

Pre-treatment with Eprosartan (60 mg/kg) notably diminished the elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and Gamma-Glutamyl Transferase (GGT) enzymes, total triglyceride, cholesterol, total bilirubin, and inflammatory cytokines including TNF-α, Interleukin-1β (IL-1β) and Interleukin-6 (IL-6) levels, which were induced by alcohol administration (-value ≤ 0.05). In the Eprosartan pre-treated group, malondialdehyde and protein carbonyl content of liver tissue were remarkably diminished, as compared to the ethanol-induced rats. In addition, histopathological results approved the indicated finding. Molecular docking research gives insights into potential interactions of Eprosartan with TNF-α protein.

Conclusion

Our results revealed that the pre-treatment with Eprosartan (60 mg/kg) preserves against chronic alcohol-induced hepatic damage.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128342059250122060526
2025-02-12
2025-09-06
Loading full text...

Full text loading...

References

  1. OhashiK. PimientaM. SekiE. Alcoholic liver disease: A current molecular and clinical perspective.Liver Res.20182416117210.1016/j.livres.2018.11.00231214376
    [Google Scholar]
  2. HosseiniN. ShorJ. SzaboG. Alcoholic hepatitis: A review.Alcohol Alcohol.201954440841610.1093/alcalc/agz03631219169
    [Google Scholar]
  3. SeitzH.K. BatallerR. Cortez-PintoH. GaoB. GualA. LacknerC. MathurinP. MuellerS. SzaboG. TsukamotoH. Alcoholic liver disease.Nat. Rev. Dis. Primers2018411610.1038/s41572‑018‑0014‑730115921
    [Google Scholar]
  4. CeniE. MelloT. GalliA. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism.World J. Gastroenterol.20142047177561777210.3748/wjg.v20.i47.1775625548474
    [Google Scholar]
  5. HyunJ. HanJ. LeeC. YoonM. JungY. Pathophysiological aspects of alcohol metabolism in the liver.Int. J. Mol. Sci.20212211571710.3390/ijms2211571734071962
    [Google Scholar]
  6. LeungT.M. NietoN. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease.J. Hepatol.201358239539810.1016/j.jhep.2012.08.01822940046
    [Google Scholar]
  7. LinhartK. BartschH. SeitzH.K. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts.Redox Biol.20143566210.1016/j.redox.2014.08.00925462066
    [Google Scholar]
  8. AlbanoE. ClotP. MorimotoM. TomasiA. Ingelman-SundbergM. FrenchS.W. Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol.Hepatology199623115516310.1002/hep.5102301218550035
    [Google Scholar]
  9. WangY. MillonigG. NairJ. PatsenkerE. StickelF. MuellerS. BartschH. SeitzH.K. Ethanol-induced cytochrome P4502E1 causes carcinogenic etheno-DNA lesions in alcoholic liver disease.Hepatology200950245346110.1002/hep.2297819489076
    [Google Scholar]
  10. MuellerS. PeccerellaT. QinH. GlassenK. WaldherrR. FlechtenmacherC. StraubB.K. MillonigG. StickelF. BrucknerT. BartschH. SeitzH.K. Carcinogenic etheno DNA adducts in alcoholic liver disease: Correlation with cytochrome P-4502E1 and fibrosis.Alcohol. Clin. Exp. Res.201842225225910.1111/acer.1354629120493
    [Google Scholar]
  11. DeshpandeN. KandiS. Venkata Bharath KumarP. V RamanaK. MuddeshwarM. Effect of alcohol consumption on oxidative stress markers and its role in the pathogenesis and progression of liver cirrhosis.Am. J. Med. Biol. Res.2013149910210.12691/ajmbr‑1‑4‑3
    [Google Scholar]
  12. WangH.J. GaoB. ZakhariS. NagyL.E. Inflammation in alcoholic liver disease.Annu. Rev. Nutr.201232134336810.1146/annurev‑nutr‑072610‑14513822524187
    [Google Scholar]
  13. Iracheta-VellveA. PetrasekJ. SatishchandranA. GyongyosiB. SahaB. KodysK. FitzgeraldK.A. Kurt-JonesE.A. SzaboG. Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice.J. Hepatol.20156351147115510.1016/j.jhep.2015.06.01326100496
    [Google Scholar]
  14. GaoB. AhmadM.F. NagyL.E. TsukamotoH. Inflammatory pathways in alcoholic steatohepatitis.J. Hepatol.201970224925910.1016/j.jhep.2018.10.02330658726
    [Google Scholar]
  15. PloskerG.L. Eprosartan: A review of its use in hypertension. Drugs200969172477249910.2165/11203980‑000000000‑0000019911859
    [Google Scholar]
  16. LabiósM. MartínezM. GabrielF. GuiralV. DasiF. BeltránB. MuñozA. Superoxide dismutase and catalase anti-oxidant activity in leucocyte lysates from hypertensive patients: Effects of eprosartan treatment.J. Renin Angiotensin Aldosterone Syst.2009101243010.1177/147032030910406719286755
    [Google Scholar]
  17. SaadM.A.E. FahmyM.I.M. SayedR.H. El-YamanyM.F. El-NaggarR. HegazyA.A.E. Al-ShorbagyM. Eprosartan: A closer insight into its neuroprotective activity in rats with focal cerebral ischemia–reperfusion injury.J. Biochem. Mol. Toxicol.2021357e2279610.1002/jbt.2279633942446
    [Google Scholar]
  18. Al-SultanyH.H.A. AltimimiM.L. HadiN.R. Protective effect of eprosartan in renal ischemia reperfusion injury by regulating oxidative stress, inflammation, and apoptotic cascades in a bilateral rat model.Wiad Lek.20237671576158537622500
    [Google Scholar]
  19. PalL.C. AgrawalS. GautamA. ChauhanJ.K. RaoC.V. Hepatoprotective and antioxidant potential of phenolics-enriched fraction of Anogeissus acuminata leaf against alcohol-induced hepatotoxicity in rats.Med. Sci.20221011710.3390/medsci1001001735323216
    [Google Scholar]
  20. DoustimotlaghA.H. SadeghiH. JahanbaziF. SadeghiH. OmidifarN. AlipoorB. KokhdanE.P. MousavipoorS.M. Mousavi-FardS.H. Metformin attenuates oxidative stress and liver damage after bile duct ligation in rats.Res. Pharm. Sci.201914212212910.4103/1735‑5362.25335931620188
    [Google Scholar]
  21. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑336810
    [Google Scholar]
  22. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.02928660627
    [Google Scholar]
  23. GolestaniA. DoustimotlaghA.H. DehpourA.R. Etemad-MoghadamS. AlaeddiniM. OstadhadiS. A study on OPG/RANK/RANKL axis in osteoporotic bile duct-ligated rats and the involvement of nitrergic and opioidergic systems.Res. Pharm. Sci.201813323924910.4103/1735‑5362.22895429853933
    [Google Scholar]
  24. AggarwalB.B. GuptaS.C. KimJ.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey.Blood2012119365166510.1182/blood‑2011‑04‑32522522053109
    [Google Scholar]
  25. HeM.M. SmithA.S. OslobJ.D. FlanaganW.M. BraistedA.C. WhittyA. CancillaM.T. WangJ. LugovskoyA.A. YoburnJ.C. FungA.D. FarringtonG. EldredgeJ.K. DayE.S. CruzL.A. CacheroT.G. MillerS.K. FriedmanJ.E. ChoongI.C. CunninghamB.C. Small-molecule inhibition of TNF-α.Science200531057501022102510.1126/science.111630416284179
    [Google Scholar]
  26. FassihiA. MahnamK. MoeinifardB. BahmanziariM. AliabadiH.S. ZarghiA. SabetR. SalimiM. MansourianM. Synthesis, calcium-channel blocking activity, and conformational analysis of some novel 1,4-dihydropyridines: Application of PM3 and DFT computational methods.Med. Chem. Res.201221102749276110.1007/s00044‑011‑9807‑x
    [Google Scholar]
  27. MansourianM. SaghaieL. FassihiA. Madadkar-SobhaniA. MahnamK. Linear and nonlinear QSAR modeling of 1,3,8-substituted-9-deazaxanthines as potential selective A2BAR antagonists.Med. Chem. Res.201322104549456710.1007/s00044‑012‑0453‑8
    [Google Scholar]
  28. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  29. ZiaK. AshrafS. JabeenA. SaeedM. Nur-e-AlamM. AhmedS. Al-RehailyA.J. Ul-HaqZ. Identification of potential TNF-α inhibitors: From in silico to in vitro studies.Sci. Rep.20201012097410.1038/s41598‑020‑77750‑333262408
    [Google Scholar]
  30. HassanzadehF. NasabR.R. MansourianM. Synthesis, antimicrobial evaluation and docking studies of some novel quinazolinone Schiff base derivatives.Res. Pharm. Sci.201813321322110.4103/1735‑5362.22894229853931
    [Google Scholar]
  31. MorrisG.M. GoodsellD.S. HallidayR.S. HueyR. HartW.E. BelewR.K. OlsonA.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function.J. Comput. Chem.199819141639166210.1002/(SICI)1096‑987X(19981115)19:14<1639::AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  32. MansourianM. MahnamK. Madadkar-SobhaniA. FassihiA. SaghaieL. Insights into the human A1 adenosine receptor from molecular dynamics simulation: Structural study in the presence of lipid membrane.Med. Chem. Res.201524103645365910.1007/s00044‑015‑1409‑6
    [Google Scholar]
  33. WallaceA.C. LaskowskiR.A. ThorntonJ.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions.Protein Eng. Des. Sel.19958212713410.1093/protein/8.2.1277630882
    [Google Scholar]
  34. HumphreyW. DalkeA. SchultenK. VMD: Visual molecular dynamics.J. Mol. Graph.19961413338, 27-2810.1016/0263‑7855(96)00018‑58744570
    [Google Scholar]
  35. KoopD.R. Oxidative and reductive metabolism by cytochrome P450 2E1.FASEB J.19926272473010.1096/fasebj.6.2.15374621537462
    [Google Scholar]
  36. YuH.S. OyamaT. IsseT. KitagawaK. PhamT.T.P. TanakaM. KawamotoT. Formation of acetaldehyde-derived DNA adducts due to alcohol exposure.Chem. Biol. Interact.2010188336737510.1016/j.cbi.2010.08.00520813101
    [Google Scholar]
  37. BourogaaE. JarrayaR.M. NciriR. DamakM. ElfekiA. Protective effects of aqueous extract of Hammada scoparia against hepatotoxicity induced by ethanol in the rat.Toxicol. Ind. Health201430211312210.1177/074823371245260222778112
    [Google Scholar]
  38. ManiV. ArivalaganS. SiddiqueA.I. NamasivayamN. Antioxidant and anti-inflammatory role of zingerone in ethanol-induced hepatotoxicity.Mol. Cell. Biochem.20164211-216918110.1007/s11010‑016‑2798‑727544404
    [Google Scholar]
  39. MaimaitiminK. JiangZ. AierkenA. ShayibuzhatiM. ZhangX. Hepatoprotective effect of Alhagi sparsifolia against alcoholic liver injury in mice.Braz. J. Pharm. Sci.20185435410.1590/s2175‑97902018000317732
    [Google Scholar]
  40. ThabrewM. JoiceP. RajatissaW. A comparative study of the efficacy of Pavetta indica and Osbeckia octandra in the treatment of liver dysfunction.Planta Med.198753323924110.1055/s‑2006‑9626913628555
    [Google Scholar]
  41. WangZ. YaoT. SongZ. Chronic alcohol consumption disrupted cholesterol homeostasis in rats: Down-regulation of low-density lipoprotein receptor and enhancement of cholesterol biosynthesis pathway in the liver.Alcohol. Clin. Exp. Res.201034347147810.1111/j.1530‑0277.2009.01111.x20028367
    [Google Scholar]
  42. ParkH. KimK. Relationship between alcohol consumption and serum lipid levels in elderly Korean men.Arch. Gerontol. Geriatr.201255222623010.1016/j.archger.2011.08.01421925744
    [Google Scholar]
  43. KlopB. RegoA.T. CabezasM.C. Alcohol and plasma triglycerides.Curr. Opin. Lipidol.201324432132610.1097/MOL.0b013e328360684523511381
    [Google Scholar]
  44. LevineB. Eprosartan provides safe and effective long-term maintenance of blood pressure control in patients with mild to moderate essential hypertension.Curr. Med. Res. Opin.200117181710.1185/0300799015200540511464450
    [Google Scholar]
  45. Guerra RuizA.R. CrespoJ. López MartínezR.M. IruzubietaP. Casals MercadalG. Lalana GarcésM. LavinB. Morales RuizM. Measurement and clinical usefulness of bilirubin in liver disease.Adv Lab Med20212335236110.1515/almed‑2021‑004737362415
    [Google Scholar]
  46. TanakaM. BudhathokiS. HirataA. MoritaM. KonoS. AdachiM. KawateH. OhnakaK. TakayanagiR. Behavioral and clinical correlates of serum bilirubin concentrations in Japanese men and women.BMC Endocr. Disord.20131313910.1186/1472‑6823‑13‑3924090309
    [Google Scholar]
  47. ShabanN.Z. ZakiM.M. KoutbF. Abdul-AzizA.A. ElshehawyA.A.H. MehanyH. Protective and therapeutic role of mango pulp and eprosartan drug and their anti-synergistic effects against thioacetamide-induced hepatotoxicity in male rats.Environ. Sci. Pollut. Res. Int.20222934514275144110.1007/s11356‑022‑19383‑935244847
    [Google Scholar]
  48. KotohK. FukushimaM. HorikawaY. YamashitaS. KohjimaM. NakamutaM. EnjojiM. Serum albumin is present at higher levels in alcoholic liver cirrhosis as compared to HCV-related cirrhosis.Exp. Ther. Med.201231727510.3892/etm.2011.37022969847
    [Google Scholar]
  49. DasS.K. VasudevanD.M. Biochemical diagnosis of alcoholism.Indian J. Clin. Biochem.2005201354210.1007/BF0289303923105491
    [Google Scholar]
  50. RothschildM.A. OratzM. SchreiberS.S. Alcohol, amino acids, and albumin synthesis.Gastroenterology19746761200121310.1016/S0016‑5085(19)32706‑44430433
    [Google Scholar]
  51. WuD. CederbaumA. Oxidative stress and alcoholic liver disease.Semin. Liver Dis.200929214115410.1055/s‑0029‑121437019387914
    [Google Scholar]
  52. AzarmehrN. AfsharP. MoradiM. SadeghiH. SadeghiH. AlipoorB. KhalvatiB. BarmoudehZ. Abbaszadeh-GoudarziK. DoustimotlaghA.H. Hepatoprotective and antioxidant activity of watercress extract on acetaminophen-induced hepatotoxicity in rats.Heliyon201957e0207210.1016/j.heliyon.2019.e0207231334381
    [Google Scholar]
  53. IlaiyarajaN. KhanumF. Amelioration of alcohol-induced hepatotoxicity and oxidative stress in rats by Acorus calamus.J. Diet. Suppl.20118433134510.3109/19390211.2011.61580522432772
    [Google Scholar]
  54. MorsyM.A. HeebaG.H. MahmoudM.E. Ameliorative effect of eprosartan on high-fat diet/streptozotocin-induced early diabetic nephropathy in rats.Eur. J. Pharmacol.2015750909710.1016/j.ejphar.2015.01.02725625658
    [Google Scholar]
  55. HalliwellB. Antioxidant defence mechanisms: From the beginning to the end (of the beginning).Free Radic. Res.199931426127210.1080/1071576990030084110517532
    [Google Scholar]
  56. NagiM.N. AlmakkiH.A. Thymoquinone supplementation induces quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity.Phytother. Res.20092391295129810.1002/ptr.276619277968
    [Google Scholar]
  57. InceS. KucukkurtI. CigerciI.H. Fatih FidanA. EryavuzA. The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats.J. Trace Elem. Med. Biol.201024316116410.1016/j.jtemb.2010.01.00320569927
    [Google Scholar]
  58. JiangW. GaoM. SunS. BiA. XinY. HanX. WangL. YinZ. LuoL. Protective effect of l-theanine on carbon tetrachloride-induced acute liver injury in mice.Biochem. Biophys. Res. Commun.2012422234435010.1016/j.bbrc.2012.05.02222583898
    [Google Scholar]
  59. LeeC. OhJ.I. ParkJ. ChoiJ.H. BaeE.K. LeeH.J. JungW.J. LeeD.S. AhnK.S. YoonS.S. TNF α mediated IL-6 secretion is regulated by JAK/STAT pathway but not by MEK phosphorylation and AKT phosphorylation in U266 multiple myeloma cells.BioMed Res. Int.20132013158013524151609
    [Google Scholar]
  60. WLiu Lactate modulates iron metabolism by binding soluble adenylyl cyclase.Cell Metab.202335915971612
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128342059250122060526
Loading
/content/journals/cpd/10.2174/0113816128342059250122060526
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): eprosartan; Ethanol; ethanol-induced rats; inflammation; liver; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test