Skip to content
2000
Volume 31, Issue 34
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The gut microbiome, a complex and diverse microbial ecosystem, plays a pivotal role in maintaining host health by regulating physiological balance and preventing disease. Probiotics, live beneficial microorganisms, have shown potential in modulating the gut microbiota through mechanisms such as competitive exclusion of pathogens, enhancement of mucosal immunity, and regulation of microbial metabolism. Recent advancements in membrane simulations offer a novel approach to studying these interactions at the molecular level. By employing molecular dynamics (MD) and coarse-grained models, these simulations provide insights into the structural and functional dynamics of bacterial membranes and their interactions with probiotics. This approach enables a deeper understanding of key processes, such as microbial metabolite transport, membrane permeability, and host response modulation, which are critical for maintaining gut homeostasis. Additionally, membrane simulations facilitate the exploration of microbial communication pathways, enhancing our knowledge of the molecular mechanisms underlying the beneficial effects of probiotics. As computational tools evolve, integrating membrane simulations with experimental approaches can accelerate the discovery of targeted probiotic therapies aimed at restoring microbial balance and optimizing gut health. This review underscores the significance of membrane simulations in advancing gut microbiome research, suggesting that future studies should focus on refining these computational models to bridge the gap between theoretical predictions and clinical applications. Through a synergistic approach, researchers can enhance the therapeutic potential of probiotics, leading to improved strategies for managing gut-related disorders with insightful knowledge of their interactions.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128357214250221053909
2025-03-13
2025-10-07
Loading full text...

Full text loading...

References

  1. ShahH. NgT.L. A narrative review from gut to lungs: Non-small cell lung cancer and the gastrointestinal microbiome.Transl. Lung Cancer Res.202312490992610.21037/tlcr‑22‑595 37197624
    [Google Scholar]
  2. ComessJ.E. Abad-JorgeA. Introduction to the gut microbiome and its impact on health and disease.Topics Clin. Nutr.202338318319510.1097/TIN.0000000000000324
    [Google Scholar]
  3. IliodromitiZ. TriantafyllouA.R. TsaousiM. Gut microbiome and neurodevelopmental disorders: A link yet to be disclosed.Microorganisms202311248710.3390/microorganisms11020487 36838452
    [Google Scholar]
  4. WangC. LiP. YanQ. Characterization of the pig gut microbiome and antibiotic resistome in industrialized feedlots in China.mSystems201946e0020610.1128/msystems.00206‑19
    [Google Scholar]
  5. LiS. SuB. WuH. HeQ. ZhangT. Integrated analysis of gut and oral microbiome in men who have sex with men with HIV Infection.Microbiol. Spectr.2023116e01064e2310.1128/spectrum.01064‑23 37850756
    [Google Scholar]
  6. ZhangJ. QiH. LiM. Diet mediates the impact of host habitat on gut microbiome and influences clinical indexes by modulating gut microbes and serum metabolites.Adv. Sci.20241119231006810.1002/advs.202310068 38477427
    [Google Scholar]
  7. PangS. Wen-YiJ. ZiW. The interplay between the gut microbiome and neurological disorders: Exploring the gut-brain axis.Neurology Letters202321252910.52547/nl.2.1.25
    [Google Scholar]
  8. ZhouJ. ZhangY. CuiP. Gut microbiome changes associated with HIV infection and sexual orientation.Front. Cell. Infect. Microbiol.20201043410.3389/fcimb.2020.00434 33102244
    [Google Scholar]
  9. CaricilliA.M. CastoldiA. CâmaraN.O. Intestinal barrier: A gentlemen’s agreement between microbiota and immunity.World J. Gastrointest. Pathophysiol.201451183210.4291/wjgp.v5.i1.18 24891972
    [Google Scholar]
  10. ShreinerA.B. KaoJ.Y. YoungV.B. The gut microbiome in health and in disease.Curr. Opin. Gastroenterol.2015311697510.1097/MOG.0000000000000139 25394236
    [Google Scholar]
  11. KundraP. RachmühlC. LacroixC. GeirnaertA. Role of dietary micronutrients on gut microbial dysbiosis and modulation in inflammatory bowel disease.Mol. Nutr. Food Res.2021655190127110.1002/mnfr.201901271
    [Google Scholar]
  12. ChettyA. BlekhmanR. Multi-omic approaches for host-microbiome data integration.Gut Microbes2024161229786010.1080/19490976.2023.2297860 38166610
    [Google Scholar]
  13. LemmensG. CampV.A. KourulaS. VanuytselT. AugustijnsP. Drug disposition in the lower gastrointestinal tract: Targeting and monitoring.Pharmaceutics202113216110.3390/pharmaceutics13020161 33530468
    [Google Scholar]
  14. SharptonT.J. StagamanK. SielerM.J. ArnoldH.K. DavisE.W. Phylogenetic integration reveals the zebrafish core microbiome and its sensitivity to environmental exposures.Toxics2021911010.3390/toxics9010010 33467528
    [Google Scholar]
  15. SwarteJ.C. KnobbeT.J. BjörkJ.R. Health-related quality of life is linked to the gut microbiome in kidney transplant recipients.Nat. Commun.2023141796810.1038/s41467‑023‑43431‑8 38042820
    [Google Scholar]
  16. MalukiewiczJ. CartwrightR.A. DergamJ.A. IgayaraC.S. KesslerS.E. MoreiraS.B. The gut microbiome of exudivorous marmosets in the wild and captivity.Sci. Reports202212110.1038/s41598‑022‑08797‑7
    [Google Scholar]
  17. NoblesS. JacksonC.R. Effects of life stage, site, and species on the dragonfly gut microbiome.Microorganisms20208218310.3390/microorganisms8020183 32012869
    [Google Scholar]
  18. KangJ.W. ZivkovicA.M. The potential utility of prebiotics to modulate Alzheimer’s disease: A review of the evidence.Microorganisms2021911231010.3390/microorganisms9112310 34835436
    [Google Scholar]
  19. TheophilusR.J. TaftD.H. Antimicrobial resistance genes (ARGs), the gut microbiome, and infant nutrition.Nutrients20231514317710.3390/nu15143177 37513595
    [Google Scholar]
  20. MatsumotoS. RenL. IigoM. MuraiA. YoshimuraT. Mimicking seasonal changes in light-dark cycle and ambient temperature modulates gut microbiome in mice under the same dietary regimen.PLoS One2023182e027801310.1371/journal.pone.0278013 36791094
    [Google Scholar]
  21. DaiW. LengH. LiJ. The role of host traits and geography in shaping the gut microbiome of insectivorous bats.MSphere202494e00087e2410.1128/msphere.00087‑24 38509042
    [Google Scholar]
  22. ReidG. AnukamK. KoyamaT. Probiotic products in Canada with clinical evidence: What can gastroenterologists recommend?Can. J. Gastroenterol.200822216917510.1155/2008/843892 18299736
    [Google Scholar]
  23. GunerC.U. KissalA. Mothers’ knowledge, attitudes and practices regarding probiotic use during pregnancy and for their infants in Turkey.Public Health Nutr.202124134297430410.1017/S1368980021000951 33663639
    [Google Scholar]
  24. PecoraF. PersicoF. GismondiP. Gut microbiota in celiac disease: Is there any role for probiotics?Front. Immunol.20201195710.3389/fimmu.2020.00957 32499787
    [Google Scholar]
  25. HolmV.W. LauwensK. WeverD.P. Probiotics for oral health: Do they deliver what they promise?Front. Microbiol.202314121969210.3389/fmicb.2023.1219692 37485503
    [Google Scholar]
  26. FrunzaO.E. KhudaL.V. LazarenkoL.M. KhudyiO.I. KarpenkoO.V. SpivakY.M. The usage of probiotic microorganisms in production technology of European grayling fish stock.IOP Conf. Ser. Earth Environ. Sci.20231254101209310.1088/1755‑1315/1254/1/012093
    [Google Scholar]
  27. OhB. KimJ.W. KimB.S. Changes in the functional potential of the gut microbiome following probiotic supplementation during Helicobacter pylori treatment.Helicobacter201621649350310.1111/hel.12306 26991862
    [Google Scholar]
  28. RenJ. HeF. YuD. 16S rRNA gene amplicon sequencing of gut microbiota affected by four probiotic strains in mice.Vet. Sci.202310428810.3390/vetsci10040288 37104443
    [Google Scholar]
  29. NagpalR. WangS. AhmadiS. Human-origin probiotic cocktail increases short-chain fatty acid production modulation of mice and human gut microbiome.Sci. Rep.2018811264910.1038/s41598‑018‑30114‑4 30139941
    [Google Scholar]
  30. KhaliliL. AlipourB. Asghari Jafar-AbadiM. The effects of lactobacillus casei on glycemic response, serum sirtuin1 and fetuin-a levels in patients with type 2 diabetes mellitus: a randomized controlled trial.Iran. Biomed. J.2019231687710.29252/ibj.23.1.68 29803203
    [Google Scholar]
  31. GreenP.G. ÁlvarezP. LevineJ.D. A role for gut microbiota in early-life stress-induced widespread muscle pain in the adult rat.Mol. Pain2021171744806921102295210.1177/17448069211022952 34096398
    [Google Scholar]
  32. WestawayJ.A.F. HuerlimannR. KandasamyY. Exploring the long-term colonisation and persistence of probiotic-prophylaxis species on the gut microbiome of preterm infants: A pilot study.Eur. J. Pediatr.202218193389340010.1007/s00431‑022‑04548‑y 35796792
    [Google Scholar]
  33. ZmoraN. Zilberman-SchapiraG. SuezJ. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features.Cell2018174613881405.e2110.1016/j.cell.2018.08.041 30193112
    [Google Scholar]
  34. XuH. HuangW. HouQ. Oral administration of compound probiotics improved canine feed intake, weight gain, immunity and intestinal microbiota.Front. Immunol.20191066610.3389/fimmu.2019.00666 31001271
    [Google Scholar]
  35. SalmanM.K. AbuqwiderJ. MaurielloG. Anti-quorum sensing activity of probiotics: The mechanism and role in food and gut health.Microorganisms202311379310.3390/microorganisms11030793 36985366
    [Google Scholar]
  36. LeeY.S. ParkE.J. ParkG.S. Lactiplantibacillus plantarum ATG-K2 exerts an anti-obesity effect in high-fat diet-induced obese mice by modulating the gut microbiome.Int. J. Mol. Sci.202122231266510.3390/ijms222312665 34884471
    [Google Scholar]
  37. AbdoZ. LeCureuxJ. LaVoyA. EklundB. RyanE. DeanG. Longitudinal impact of oral probiotic Lactobacillus acidophilus vaccine strains on the immune response and gut microbiome of mice.bioRxiv20191810.1101/691709
    [Google Scholar]
  38. AtabatiH. EsmaeiliS.A. SaburiE. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis: Evidence from experimental and clinical studies.J. Cell. Physiol.2020235128925893710.1002/jcp.29737 32346892
    [Google Scholar]
  39. LeeN.Y. SukK.T. The role of the gut microbiome in liver cirrhosis treatment.Int. J. Mol. Sci.202022119910.3390/ijms22010199 33379148
    [Google Scholar]
  40. LiL. FangZ. LiuX. Lactobacillus reuteri attenuated allergic inflammation induced by HDM in the mouse and modulated gut microbes.PLoS One2020154e023186510.1371/journal.pone.0231865 32315360
    [Google Scholar]
  41. VasquezR. OhJ.K. SongJ.H. KangD.K. Gut microbiome-produced metabolites in pigs: A review on their biological functions and the influence of probiotics.J. Anim. Sci. Technol.202264467169510.5187/jast.2022.e58 35969697
    [Google Scholar]
  42. MaC. WastiS. HuangS. The gut microbiome stability is altered by probiotic ingestion and improved by the continuous supplementation of galactooligosaccharide.Gut Microbes2020121178525210.1080/19490976.2020.1785252 32663059
    [Google Scholar]
  43. HorvathA. DurdevićM. LeberB. Changes in the intestinal microbiome during a multispecies probiotic intervention in compensated cirrhosis.Nutrients2020126187410.3390/nu12061874 32585997
    [Google Scholar]
  44. XuX. LiuS. ZhaoY. Combination of Houttuynia cordata polysaccharide and Lactiplantibacillus plantarum P101 alleviates acute liver injury by regulating gut microbiota in mice.J. Sci. Food Agric.2022102156848685710.1002/jsfa.12046 35639719
    [Google Scholar]
  45. YangX. CaoQ. MaB. Probiotic powder ameliorates colorectal cancer by regulating Bifidobacterium animalis, Clostridium cocleatum, and immune cell composition.PLoS One2023183e027715510.1371/journal.pone.0277155 36913356
    [Google Scholar]
  46. MazumdarT TehB BolandW. The Microbiome of Spodoptera littoralis: Development, Control and Adaptation to the Insect Host. United Kingdom: InTechOpen.201810.5772/intechopen.72180
    [Google Scholar]
  47. ShinY.C. ShinW. KohD. Three-dimensional regeneration of patient-derived intestinal organoid epithelium in a physiodynamic mucosal interface-on-a-chip.Micromachines202011766310.3390/mi11070663 32645991
    [Google Scholar]
  48. ShangJ. ZhangY. GuoR. Gut microbiome analysis can be used as a noninvasive diagnostic tool and plays an essential role in the onset of membranous nephropathy.Adv. Sci.2022928220158110.1002/advs.202201581 35975460
    [Google Scholar]
  49. ShangJ. ZhangY. GuoR. LiuW. ZhangJ. YanG. Gut microbiota plays an essential role in the onset of membranous nephropathy: Evidence from multi-center case-control study and animal model.Research Square20211810.21203/rs.3.rs‑798947/v1
    [Google Scholar]
  50. LiuY. TeoS.M. MéricG. The gut microbiome is a significant risk factor for future chronic lung disease.J. Allergy Clin. Immunol.2023151494395210.1016/j.jaci.2022.12.810 36587850
    [Google Scholar]
  51. AmeenA. AkramM.N. FarooqS. Gut microbiome and its role in the development of neurological disorder (schizophrenia).Pak. J. Med. Health Sci.202317531131610.53350/pjmhs2023175311
    [Google Scholar]
  52. TaoR. LiuS. CrawfordJ. TaoF. Gut-brain crosstalk and the central mechanisms of orofacial pain.Brain Sci.20231310145610.3390/brainsci13101456 37891825
    [Google Scholar]
  53. HanH. JangJ. Recent advances in biofabricated gut models to understand the gut-brain axis in neurological diseases.Front. Med. Technol.2022493141110.3389/fmedt.2022.931411 36188186
    [Google Scholar]
  54. CombrinkL. HumphreysI.R. WashburnQ. Best practice for wildlife gut microbiome research: A comprehensive review of methodology for 16S rRNA gene investigations.Front. Microbiol.202314109221610.3389/fmicb.2023.1092216 36910202
    [Google Scholar]
  55. BjörkJ.R. DasariM. GrieneisenL. ArchieE.A. Primate microbiomes over time: Longitudinal answers to standing questions in microbiome research.Am. J. Primatol.20198110-11e2297010.1002/ajp.22970 30941803
    [Google Scholar]
  56. BaiJ. JhaneyI. WellsJ. Developing a reproducible microbiome data analysis pipeline using the Amazon Web Services cloud for a cancer research group: Proof-of-concept study.JMIR Med. Inform.201974e1466710.2196/14667 31710301
    [Google Scholar]
  57. ChuM. ZhangX. Bacterial atlas of mouse gut microbiota.Res Square20211610.21203/rs.3.rs‑829178/v1
    [Google Scholar]
  58. BanielA. AmatoK.R. BeehnerJ.C. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas.Microbiome2021912610.1186/s40168‑020‑00977‑9 33485388
    [Google Scholar]
  59. MengZ. YanZ. SunW. Azoxystrobin disrupts colonic barrier function in mice via metabolic disorders mediated by gut microbiota.J. Agric. Food Chem.202371178980110.1021/acs.jafc.2c05543 36594455
    [Google Scholar]
  60. DongZ.X. ChenY.F. LiH.Y. TangQ.H. GuoJ. The succession of the gut microbiota in insects: A dynamic alteration of the gut microbiota during the whole life cycle of honey bees (Apis cerana).Front. Microbiol.20211251396210.3389/fmicb.2021.513962 33935980
    [Google Scholar]
  61. LiW. ZhuY. LiaoQ. WangZ. WanC. Characterization of gut microbiota in children with pulmonary tuberculosis.BMC Pediatr.201919144510.1186/s12887‑019‑1782‑2 31735171
    [Google Scholar]
  62. SottasC. SchmiedováL. KreisingerJ. Gut microbiota in two recently diverged passerine species: Evaluating the effects of species identity, habitat use and geographic distance.BMC Ecol. Evol.20212114110.1186/s12862‑021‑01773‑1 33691625
    [Google Scholar]
  63. JanssenA.W.F. KatiraeiS. BartosinskaB. EberhardD. Willems van DijkK. KerstenS. Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota.Diabetologia20186161447145810.1007/s00125‑018‑4583‑5 29502266
    [Google Scholar]
  64. KeenanS.W. EngelA.S. ElseyR.M. The alligator gut microbiome and implications for archosaur symbioses.Sci. Rep.201331287710.1038/srep02877 24096888
    [Google Scholar]
  65. ZhouX. ZhangX. ZhaoN. Gut microbiota deficiency exacerbates liver injury in bile duct ligated mice via inflammation and lipid metabolism.Int. J. Mol. Sci.2023244318010.3390/ijms24043180 36834588
    [Google Scholar]
  66. ChenP.P. ZhangJ.X. LiX.Q. Outer membrane vesicles derived from gut microbiota mediate tubulointerstitial inflammation: A potential new mechanism for diabetic kidney disease.Theranostics202313123988400310.7150/thno.84650 37554279
    [Google Scholar]
  67. SaliaS. Gut-immune reactivity underlies sex differences in the maternal immune activation preclinical model of autism.bioRxiv20241610.1101/2024.06.18.599415
    [Google Scholar]
  68. ErcoliniD. FoglianoV. Food design to feed the human gut microbiota.J. Agric. Food Chem.201866153754375810.1021/acs.jafc.8b00456 29565591
    [Google Scholar]
  69. LkhagvaE. ChungH.J. AhnJ.S. HongS.T. Host factors affect the gut microbiome more significantly than diet shift.Microorganisms2021912252010.3390/microorganisms9122520 34946120
    [Google Scholar]
  70. JinJ.B. ChaJ.W. ShinI.S. Effect of Chlorella vulgaris on gut microbiota through a simulated in vitro digestion process.J. Appl. Biol. Chem.2021641495510.3839/jabc.2021.008
    [Google Scholar]
  71. DongL.N. WangM. GuoJ. WangJ.P. Role of intestinal microbiota and metabolites in inflammatory bowel disease.Chin. Med. J.2019132131610161410.1097/CM9.0000000000000290 31090547
    [Google Scholar]
  72. ZuoZ. PeiL. LiuT. LiuX. ChenY. HuZ. Investigation of gut microbiota disorders in sepsis and sepsis complicated with acute gastrointestinal injury based on 16s rrna genes illumina sequencing.Infect. Drug Resist.2023167389740310.2147/IDR.S440335 38053580
    [Google Scholar]
  73. ZhengK. WeiZ. LiW. Ecological insights into hematopoiesis regulation: Unraveling the influence of gut microbiota.Gut Microbes2024161235078410.1080/19490976.2024.2350784 38727219
    [Google Scholar]
  74. YangC. FangX. ZhanG. Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain.Transl. Psychiatry2019915710.1038/s41398‑019‑0379‑8 30705252
    [Google Scholar]
  75. YuanX. XuS. HuangH. Influence of excessive exercise on immunity, metabolism, and gut microbial diversity in an overtraining mice model.Scand. J. Med. Sci. Sports20182851541155110.1111/sms.13060 29364545
    [Google Scholar]
  76. LiH. LiT. BeasleyD.E. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota.Front. Microbiol.20167116910.3389/fmicb.2016.01169 27512391
    [Google Scholar]
  77. YuS.J. MorrisA. KayalA. Pioneering gut health improvements in piglets with phytogenic feed additives.Appl. Microbiol. Biotechnol.2024108114210.1007/s00253‑023‑12925‑2 38231265
    [Google Scholar]
  78. GalarisA. FanidisD. StylianakiE.A. Obesity reshapes the microbial population structure along the gut-liver-lung axis in mice.Biomedicines202210249410.3390/biomedicines10020494 35203702
    [Google Scholar]
  79. KoopenA.M. ClercqD.N.C. WarmbrunnM.V. Plasma metabolites related to peripheral and hepatic insulin sensitivity are not directly linked to gut microbiota composition.Nutrients2020128230810.3390/nu12082308 32752028
    [Google Scholar]
  80. LiuJ. WangX. ZhangW. Comparative analysis of gut microbiota in healthy and diarrheic yaks.Microb. Cell Fact.202221111110.1186/s12934‑022‑01836‑y 35659293
    [Google Scholar]
  81. LinT.Y. WuP.H. LinY.T. HungS.C. Gut dysbiosis and mortality in hemodialysis patients.NPJ Biofilms Microbiomes2021712010.1038/s41522‑021‑00191‑x 33658514
    [Google Scholar]
  82. TuP. BianX. ChiL. Characterization of the functional changes in mouse gut microbiome associated with increased Akkermansia muciniphila population modulated by dietary black raspberries.ACS Omega201839109271093710.1021/acsomega.8b00064 30288460
    [Google Scholar]
  83. WangY. ZhouP. ZhouX. Effect of host genetics and gut microbiome on fat deposition traits in pigs.Front. Microbiol.20221392520010.3389/fmicb.2022.925200 36204621
    [Google Scholar]
  84. ManorO. DaiC.L. KornilovS.A. Health and disease markers correlate with gut microbiome composition across thousands of people.Nat. Commun.2020111520610.1038/s41467‑020‑18871‑1 33060586
    [Google Scholar]
  85. VernierC. Gut microbiota contribute to variations in honey bee foraging intensity.ISME J.2023181wrae03010.1093/ismejo/wrae030
    [Google Scholar]
  86. KumarT. PandeyR. ChauhanN.S. Hypoxia inducible factor-1α: The curator of gut homeostasis.Front. Cell. Infect. Microbiol.20201022710.3389/fcimb.2020.00227 32500042
    [Google Scholar]
  87. ZhangY. The microbiome interacts with the circadian clock and dietary composition to regulate metabolite cycling in the gut.eLife202413RP9713010.7554/eLife.97130.1
    [Google Scholar]
  88. PrabhuV.R. WasimuddinW. KamalakkannanR. ArjunM.S. NagarajanM. Consequences of domestication on gut microbiome: A comparative study between wild gaur and domestic mithun.Front. Microbiol.20201113310.3389/fmicb.2020.00133 32158434
    [Google Scholar]
  89. TinkerK.A. OttesenE.A. Differences in gut microbiome composition between sympatric wild and allopatric laboratory populations of omnivorous cockroaches.Front. Microbiol.20211270378510.3389/fmicb.2021.703785 34394050
    [Google Scholar]
  90. ZhangY. LiY. BarberA.F. The microbiome stabilizes circadian rhythms in the gut.Proc. Natl. Acad. Sci. USA20231205e221753212010.1073/pnas.2217532120 36689661
    [Google Scholar]
  91. BatainehA.M.T. AlzaatrehA. HajjoR. BanimfregB.H. DashN.R. Compositional changes in human gut microbiota reveal a putative role of intestinal mycobiota in metabolic and biological decline during aging.Nutr. Healthy Aging20226426928310.3233/NHA‑210130
    [Google Scholar]
  92. PetakhP. KamyshnaI. OksenychV. KainovD. KamyshnyiA. Metformin therapy changes gut microbiota alpha-diversity in COVID-19 patients with type 2 diabetes: The role of SARS-CoV-2 variants and antibiotic treatment.Pharmaceuticals202316690410.3390/ph16060904 37375851
    [Google Scholar]
  93. PortuneK.J. Benítez-PáezA. PulgarD.E.M.G. CerrudoV. SanzY. Gut microbiota, diet, and obesity-related disorders-The good, the bad, and the future challenges.Mol. Nutr. Food Res.2017611160025210.1002/mnfr.201600252 27287778
    [Google Scholar]
  94. GibsonM.K. CroftsT.S. DantasG. Antibiotics and the developing infant gut microbiota and resistome.Curr. Opin. Microbiol.201527515610.1016/j.mib.2015.07.007 26241507
    [Google Scholar]
  95. TangM. MatzK.L. BermanL.M. Effects of complementary feeding with different protein-rich foods on infant growth and gut health: Study protocol.Front Pediatr.2022979321510.3389/fped.2021.793215 35096709
    [Google Scholar]
  96. LuzP. HaasE. FavaratoD. Intestinal microbiota and cardiovascular diseases.Int Cardiovasc Sci202033546247110.36660/ijcs.20200043
    [Google Scholar]
  97. LiuX. LuS. ShaoY. ZhangD. TuJ. ChenJ. Disorders of gut microbiota in children with Tetralogy of Fallot.Transl. Pediatr.202211338539510.21037/tp‑22‑33 35378966
    [Google Scholar]
  98. ZhangM. YangX.J. Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases.World J. Gastroenterol.201622408905890910.3748/wjg.v22.i40.8905 27833381
    [Google Scholar]
  99. SheflinA.M. MelbyC.L. CarboneroF. WeirT.L. Linking dietary patterns with gut microbial composition and function.Gut Microbes20178211312910.1080/19490976.2016.1270809 27960648
    [Google Scholar]
  100. CamposS.B. FilhoO.J.G. SalgaçoM.K. JesusM.H.D. EgeaM.B. Effects of peanuts and pistachios on gut microbiota and metabolic syndrome: A review.Foods20231224444010.3390/foods12244440 38137244
    [Google Scholar]
  101. ZangL. BaharlooeianM. TerasawaM. ShimadaY. NishimuraN. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation.Front. Nutr.202310117322510.3389/fnut.2023.1173225 37396125
    [Google Scholar]
  102. Ramírez-AcostaS. Selma-RoyoM. ColladoM.C. Navarro-RoldánF. AbrilN. García-BarreraT. Selenium supplementation influences mice testicular selenoproteins driven by gut microbiota.Sci. Rep.2022121421810.1038/s41598‑022‑08121‑3 35273298
    [Google Scholar]
  103. LiuJ. SunR. Research progress on the association between gut microbiota and respiratory system diseases.Proceedings of Anticancer Research202483687310.26689/par.v8i3.7228
    [Google Scholar]
  104. FlochM.H. Probiotics, irritable bowel syndrome, and inflammatory bowel disease.Curr. Treat. Options Gastroenterol.20036428328810.1007/s11938‑003‑0020‑y 12846937
    [Google Scholar]
  105. ArnalM.E. DenisS. UriotO. Impact of oral galenic formulations of Lactobacillus salivarius on probiotic survival and interactions with microbiota in human in vitro gut models.Benef. Microbes202112438139610.3920/BM2020.0187 34109893
    [Google Scholar]
  106. KimM. NamD.G. ImP. ChoeJ.S. ChoiA.J. Optimal conditions for the encapsulation of Weissella cibaria JW15 using alginate and chicory root and evaluation of capsule stability in a simulated gastrointestinal system.J. Food Sci.202085239440310.1111/1750‑3841.15013 31976556
    [Google Scholar]
  107. ZhouT. KangW. HanY. Combinedly increased viability of Lactiplantibacillus plantarum grx16 by co-encapsulation of cryoprotectants and porous starch within calcium alginate capsules.Int. J. Food Sci. Technol.202358105291529810.1111/ijfs.16636
    [Google Scholar]
  108. YeungN. ForsstenS.D. SaarinenM.T. AnjumM. OuwehandA.C. The effect of delivery matrix on Bifidobacterium animalis subsp. lactis HN019 survival through in vitro human digestion.Nutrients20231516354110.3390/nu15163541 37630731
    [Google Scholar]
  109. JazayeriS. MohammadiA.A. Khosravi-DaraniK. Effects of probiotics on biomarkers of oxidative stress and inflammatory factors in petrochemical workers: A randomized, double-blind, placebo-controlled trial.Int. J. Prev. Med.2015618210.4103/2008‑7802.164146 26445629
    [Google Scholar]
  110. SakaiT. MotekiY. TakahashiT. Probiotics into outer space: Feasibility assessments of encapsulated freeze-dried probiotics during 1 month’s storage on the International Space Station.Sci. Rep.2018811068710.1038/s41598‑018‑29094‑2 30013086
    [Google Scholar]
  111. GuarnerF. World gastroenterology organisation global guidelines: Probiotics and prebiotics.Pract Guidel201758653355310.1097/MCG.0000000000002002
    [Google Scholar]
  112. Sharifi-RadJ. RodriguesC.F. Stojanović-RadićZ. Probiotics: Versatile bioactive components in promoting human health.Medicina202056943310.3390/medicina56090433 32867260
    [Google Scholar]
  113. PandeyK.R. NaikS.R. VakilB.V. VakilB. Probiotics, prebiotics and synbiotics- a review.J. Food Sci. Technol.201552127577758710.1007/s13197‑015‑1921‑1 26604335
    [Google Scholar]
  114. Plaza-DíazJ. Ruiz-OjedaF. Gil-CamposM. GilA. Immune-mediated mechanisms of action of probiotics and synbiotics in treating pediatric intestinal diseases.Nutrients20181014210.3390/nu10010042 29303974
    [Google Scholar]
  115. RefeldA BogdanovaA PrazdnovaE BeskopylnyA OlshevskayaA Immunobiotics mechanisms of action and prospects of use in veterinary medicine. E3S Web Conf202021061810.1051/e3sconf/202021006017
    [Google Scholar]
  116. SicilianoR.A. MazzeoM.F. Molecular mechanisms of probiotic action: A proteomic perspective.Curr. Opin. Microbiol.201215339039610.1016/j.mib.2012.03.006 22538051
    [Google Scholar]
  117. VanderpoolC. YanF. PolkB.D. Mechanisms of probiotic action: Implications for therapeutic applications in inflammatory bowel diseases.Inflamm. Bowel Dis.200814111585159610.1002/ibd.20525 18623173
    [Google Scholar]
  118. YouS. MaY. YanB. The promotion mechanism of prebiotics for probiotics: A review.Front. Nutr.20229100051710.3389/fnut.2022.1000517 36276830
    [Google Scholar]
  119. Plaza-DíazJ. Ruiz-OjedaF. Vilchez-PadialL. GilA. Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases.Nutrients20179655510.3390/nu9060555 28555037
    [Google Scholar]
  120. PagniniC. SaeedR. BamiasG. ArseneauK.O. PizarroT.T. CominelliF. Probiotics promote gut health through stimulation of epithelial innate immunity.Proc. Natl. Acad. Sci. USA2010107145445910.1073/pnas.0910307107 20018654
    [Google Scholar]
  121. StaabB. EickS. KnöflerG. JentschH. The influence of a probiotic milk drink on the development of gingivitis: A pilot study.J. Clin. Periodontol.2009361085085610.1111/j.1600‑051X.2009.01459.x 19682173
    [Google Scholar]
  122. ShenhavL. FurmanO. BriscoeL. Modeling the temporal dynamics of the gut microbial community in adults and infants.PLOS Comput. Biol.2019156e100696010.1371/journal.pcbi.1006960 31246943
    [Google Scholar]
  123. ShenW. QiuW. LiuY. Postnatal age is strongly correlated with the early development of the gut microbiome in preterm infants.Transl. Pediatr.20211092313232410.21037/tp‑21‑367 34733672
    [Google Scholar]
  124. LeeK.A. ThomasA.M. BolteL.A. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma.Nat. Med.202228353554410.1038/s41591‑022‑01695‑5 35228751
    [Google Scholar]
  125. FaitovaT. CoelhoM. Da Cunha-BangC. The diversity of the microbiome impacts chronic lymphocytic leukemia development in mice and humans.Haematologica2024109103237325010.3324/haematol.2023.284693 38721725
    [Google Scholar]
  126. LüK. CableP.H. AboR.P. Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation.Chem. Res. Toxicol.201326121893190310.1021/tx4002868 24134150
    [Google Scholar]
  127. DaharshL. Ramer-TaitA. LiQ. Stable engraftment of a human gut bacterial microbiome in double humanized blt-mice.bioRxiv20191810.1101/749093
    [Google Scholar]
  128. WeersmaR.K. ZhernakovaA. FuJ. Interaction between drugs and the gut microbiome.Gut20206981510151910.1136/gutjnl‑2019‑320204 32409589
    [Google Scholar]
  129. MoriH. KatoT. OzawaH. Assessment of metagenomic workflows using a newly constructed human gut microbiome mock community.DNA Res.2023303dsad01010.1093/dnares/dsad010 37253538
    [Google Scholar]
  130. KillingerB.J. WhidbeyC. SadlerN.C. Activity-based protein profiling identifies alternating activation of enzymes involved in the bifidobacterium shunt pathway or mucin degradation in the gut microbiome response to soluble dietary fiber.NPJ Biofilms Microbiomes2022816010.1038/s41522‑022‑00313‑z 35858888
    [Google Scholar]
  131. BoertienJ.M. PereiraP.A.B. AhoV.T.E. ScheperjansF. Increasing comparability and utility of gut microbiome studies in Parkinson’s disease: A systematic review.J. Parkinsons Dis.20199s2S297S31210.3233/JPD‑191711 31498131
    [Google Scholar]
  132. GoyalA. WangT. DubinkinaV. MaslovS. Ecology-guided prediction of cross-feeding interactions in the human gut microbiome.Nat. Commun.2021121133510.1038/s41467‑021‑21586‑6 33637740
    [Google Scholar]
  133. GuthrieL. KellyL. Bringing microbiome-drug interaction research into the clinic.EBioMedicine20194470871510.1016/j.ebiom.2019.05.009 31151933
    [Google Scholar]
  134. StansfeldP.J. SansomM.S.P. From coarse grained to atomistic: A serial multiscale approach to membrane protein simulations.J. Chem. Theory Comput.2011741157116610.1021/ct100569y 26606363
    [Google Scholar]
  135. StraatsmaT.P. SoaresT.A. Characterization of the outer membrane protein OprF of Pseudomonas aeruginosa in a lipopolysaccharide membrane by computer simulation.Proteins200974247548810.1002/prot.22165 18655068
    [Google Scholar]
  136. ParkinJ. ChaventM. KhalidS. Molecular simulations of gram-negative bacterial membranes: A vignette of some recent successes.Biophys. J.2015109346146810.1016/j.bpj.2015.06.050 26244728
    [Google Scholar]
  137. YesylevskyyS.O. RivelT. RamseyerC. The influence of curvature on the properties of the plasma membrane. Insights from atomistic molecular dynamics simulations.Sci. Rep.2017711607810.1038/s41598‑017‑16450‑x 29167583
    [Google Scholar]
  138. PatelR.Y. BalajiP.V. Characterization of symmetric and asymmetric lipid bilayers composed of varying concentrations of ganglioside GM1 and DPPC.J. Phys. Chem. B2008112113346335610.1021/jp075975l 18298108
    [Google Scholar]
  139. RossiG. MonticelliL. Simulating the interaction of lipid membranes with polymer and ligand-coated nanoparticles.Adv. Phys. X20161227629610.1080/23746149.2016.1177468
    [Google Scholar]
  140. YesylevskyyS. MarrinkS.J. MarkA.E. Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the TAT peptide with lipid bilayers.Biophys. J.2009971404910.1016/j.bpj.2009.03.059 19580742
    [Google Scholar]
  141. ChangK.S. HsiungC.C. LinC.C. TungK.L. Residual solvent effects on free volume and performance of fluorinated polyimide membranes: A molecular simulation study.J. Phys. Chem. B200911330101591016910.1021/jp900246p 19351123
    [Google Scholar]
  142. ChungS. SeoC.D. ChoiJ.H. ChungJ. Evaluation method of membrane performance in membrane distillation process for seawater desalination.Environ. Technol.201435172147215210.1080/09593330.2014.895050 25145166
    [Google Scholar]
  143. HatóZ. KaviczkiÁ. KristófT. A simple method for the simulation of steady-state diffusion through membranes: Pressure-tuned, boundary-driven molecular dynamics.Mol. Simul.2016421718010.1080/08927022.2015.1010083
    [Google Scholar]
  144. YousefpourA. IranaghA.S. NademiY. ModarressH. Molecular dynamics simulation of nonsteroidal antiinflammatory drugs, naproxen and relafen, in a lipid bilayer membrane.Int. J. Quantum Chem.2013113151919193010.1002/qua.24415
    [Google Scholar]
  145. BakheetT.M. DoigA.J. DoigA. Properties and identification of human protein drug targets.Bioinformatics200925445145710.1093/bioinformatics/btp002 19164304
    [Google Scholar]
  146. ZhangL. ZhangZ. NegahbanM. JérusalemA. Molecular dynamics simulation of cell membrane pore sealing.Extreme Mech. Lett.201927839310.1016/j.eml.2019.01.008
    [Google Scholar]
  147. YuH. YzeiriI. HouB. Electric field effect on phospholipid monolayers at an aqueous–organic liquid–liquid interface.J. Phys. Chem. B2015119299319933410.1021/jp5098525 25289837
    [Google Scholar]
  148. SrinivasanS. ZoniV. VanniS. Estimating the accuracy of the MARTINI model towards the investigation of peripheral protein–membrane interactions.Faraday Discuss.2021232013114810.1039/D0FD00058B 34543365
    [Google Scholar]
  149. EnkaviG. JavanainenM. KuligW. RógT. VattulainenI. Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance.Chem. Rev.201911995607577410.1021/acs.chemrev.8b00538 30859819
    [Google Scholar]
  150. StansfeldP.J. SansomM.S.P. Molecular simulation approaches to membrane proteins.Structure201119111562157210.1016/j.str.2011.10.002 22078556
    [Google Scholar]
  151. ChowE. SkolnickJ. Effects of confinement on models of intracellular macromolecular dynamics.Proc. Natl. Acad. Sci. USA201511248148461485110.1073/pnas.1514757112 26627239
    [Google Scholar]
  152. YesylevskyyS.O. DemchenkoA.P. KraszewskiS. RamseyerC. Cholesterol induces uneven curvature of asymmetric lipid bilayers.ScientificWorldJournal20132013196523010.1155/2013/965230 23766730
    [Google Scholar]
  153. PartonD.L. KlingelhoeferJ.W. SansomM.S.P. Aggregation of] model membrane proteins, modulated by hydrophobic mismatch, membrane curvature, and protein class.Biophys. J.2011101369169910.1016/j.bpj.2011.06.048 21806937
    [Google Scholar]
  154. BondP.J. CuthbertsonJ. SansomM.S.P. Simulation studies of the interactions between membrane proteins and detergents.Biochem. Soc. Trans.200533591091210.1042/BST0330910 16246008
    [Google Scholar]
  155. KawamotoS. NakamuraT. NielsenS.O. ShinodaW. A guiding potential method for evaluating the bending rigidity of tensionless lipid membranes from molecular simulation.J. Chem. Phys.2013139303410810.1063/1.4811677 23883011
    [Google Scholar]
  156. HasomeM. MoriO. ShirasawaY. TsunodaH. Adjusting the membrane model using the multi-particle method via vibration experiments in a vacuum chamber.Trans. Jpn. Soc. Aeronaut. Space Sci.2013112731
    [Google Scholar]
  157. PsachouliaE. MarshallD.P. SansomM.S.P. Molecular dynamics simulations of the dimerization of transmembrane α-helices.Acc. Chem. Res.201043338839610.1021/ar900211k 20017540
    [Google Scholar]
  158. GumbartJ. Khalili-AraghiF. SotomayorM. RouxB. Constant electric field simulations of the membrane potential illustrated with simple systems.Biochim. Biophys. Acta Biomembr.20121818229430210.1016/j.bbamem.2011.09.030 22001851
    [Google Scholar]
  159. OkuizumiN ItoY NatoriM KatsumataN YamakawaH Numerical simulation of stepwise deployment of membrane structure with booms using multi-particle approximation method. Trans JSASS Aerospace Tech Japan201412ists29Pc_93810.2322/tastj.12.Pc_93
    [Google Scholar]
  160. MoriT. JungJ. SugitaY. Surface-tension replica-exchange molecular dynamics method for enhanced sampling of biological membrane systems.J. Chem. Theory Comput.20139125629564010.1021/ct400445k 26592297
    [Google Scholar]
  161. MisztaP. PasznikP. NiewieczerzałS. MłynarczykK. FilipekS. Cogrimen: Coarse-grained method for modeling of membrane proteins in implicit environments.J. Chem. Theory Comput.20221895145515610.1021/acs.jctc.2c00140 35998323
    [Google Scholar]
  162. SornbunditK. Exploring the impact of lipid domain size on the lifetime: A dissipative particle dynamics study.East Eur J Phys20233346647010.26565/2312‑4334‑2023‑3‑52
    [Google Scholar]
  163. YesylevskyyS.O. RamseyerC. Determination of mean and Gaussian curvatures of highly curved asymmetric lipid bilayers: The case study of the influence of cholesterol on the membrane shape.Phys. Chem. Chem. Phys.20141632170521706110.1039/C4CP01544D 25004951
    [Google Scholar]
  164. YesylevskyyS. KhandeliaH. Encurv: Simple technique of maintaining global membrane curvature in molecular dynamics simulations.J. Chem. Theory Comput.20211721181119310.1021/acs.jctc.0c00800 33513017
    [Google Scholar]
  165. WellsD.B. AbramkinaV. AksimentievA. Exploring transmembrane transport through α-hemolysin with grid-steered molecular dynamics.J. Chem. Phys.20071271212510110.1063/1.2770738 17902937
    [Google Scholar]
  166. KarplusM. McCammonJ.A. Molecular dynamics simulations of biomolecules.Nat. Struct. Biol.20029964665210.1038/nsb0902‑646 12198485
    [Google Scholar]
  167. RotenbergB. Use the force! Reduced variance estimators for densities, radial distribution functions, and local mobilities in molecular simulations.J. Chem. Phys.202015315150902 33092383
    [Google Scholar]
  168. BorštnikU. MillerB.T. BrooksB.R. JanežičD. The distributed diagonal force decomposition method for parallelizing molecular dynamics simulations.J. Comput. Chem.201132143005301310.1002/jcc.21882 21793007
    [Google Scholar]
  169. GuptaJ. NunesC. VyasS. JonnalagaddaS. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations.J. Phys. Chem. B201111592014202310.1021/jp108540n 21306175
    [Google Scholar]
  170. ZhuangW. ZhuW. Potential risk assessment of ionic liquids based on molecular dynamics simulation.Soft Comput.20231810.1007/s00500‑023‑08141‑9
    [Google Scholar]
  171. JonesD.E. LundA.M. GhandehariH. FacelliJ.C. Molecular dynamics simulations in drug delivery research: Calcium chelation of G3.5 PAMAM dendrimers.Cogent Chem.201621122983010.1080/23312009.2016.1229830 29177183
    [Google Scholar]
  172. KingE. AitchisonE. LiH. LuoR. Recent developments in free energy calculations for drug discovery.Front. Mol. Biosci.2021871208510.3389/fmolb.2021.712085 34458321
    [Google Scholar]
  173. ZhuY. XieL.L. SongS. QiS.H. LiuQ.Q. The simulation research of nano-indentation based on the molecular dynamics.Adv. Mat. Res.201250070270610.4028/www.scientific.net/AMR.500.702
    [Google Scholar]
  174. ZhuY. SongS. XieL.L. QiS.H. LiuQ.Q. Nano-indentation simulation study based on parallel computing.Adv. Mat. Res.201250069670110.4028/www.scientific.net/AMR.500.696
    [Google Scholar]
  175. YanS. GuoN. JinX. ChuZ. YanS. The study on mathematical simulation and analysis of the molecular discrete system of the sulfurated eucommia ulmoides gum.Mathematics202311496410.3390/math11040964
    [Google Scholar]
  176. VenableR.M. KrämerA. PastorR.W. Molecular dynamics simulations of membrane permeability.Chem. Rev.201911995954599710.1021/acs.chemrev.8b00486 30747524
    [Google Scholar]
  177. QianH.J. CarboneP. ChenX. Karimi-VarzanehH.A. LiewC.C. Müller-PlatheF. Temperature-transferable coarse-grained potentials for ethylbenzene, polystyrene, and their mixtures.Macromolecules200841249919992910.1021/ma801910r
    [Google Scholar]
  178. FritzD. HarmandarisV.A. KremerK. VegtD.V.N.F.A. Coarse-grained polymer melts based on isolated atomistic chains: Simulation of polystyrene of different tacticities.Macromolecules200942197579758810.1021/ma901242h
    [Google Scholar]
  179. YesylevskyyS.O. SchäferL.V. SenguptaD. MarrinkS.J. Polarizable water model for the coarse-grained MARTINI force field.PLOS Comput. Biol.201066e100081010.1371/journal.pcbi.1000810 20548957
    [Google Scholar]
  180. EomK. BaekS.C. AhnJ.H. NaS. Coarse‐graining of protein structures for the normal mode studies.J. Comput. Chem.20072881400141010.1002/jcc.20672 17330878
    [Google Scholar]
  181. BrasielloA. CrescitelliS. MilanoG. Development of a coarse-grained model for simulations of tridecanoin liquid–solid phase transitions.Phys. Chem. Chem. Phys.20111337166181662810.1039/c1cp20604d 21858376
    [Google Scholar]
  182. LiwoA. CzaplewskiC. SieradzanA.K. LipskaA.G. SamsonovS.A. MurarkaR.K. Theory and practice of coarse-grained molecular dynamics of biologically important systems.Biomolecules2021119134710.3390/biom11091347 34572559
    [Google Scholar]
  183. KinrossJ.M. DarziA.W. NicholsonJ.K. Gut microbiome-host interactions in health and disease.Genome Med.2011331410.1186/gm228 21392406
    [Google Scholar]
  184. PasinettiG.M. TurroniS. PalmieriJ. FilippoD.C. Human microbiome collection.Sci. Rep.2023131380710.1038/s41598‑023‑30625‑9 36890166
    [Google Scholar]
  185. MittalE. CuppG. KangY.A. Simulating the effect of gut microbiome on cancer cell growth using a microfluidic device.Sensors2023233126510.3390/s23031265 36772305
    [Google Scholar]
  186. HéY. KościółekT. TangJ. Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis.Eur. Psychiatry201853374510.1016/j.eurpsy.2018.05.011 29870894
    [Google Scholar]
  187. JiB. NielsenJ. From next-generation sequencing to systematic modeling of the gut microbiome.Front. Genet.2015621910.3389/fgene.2015.00219 26157455
    [Google Scholar]
  188. HeM. SattenG. ZhaoN. Midasim: A fast and simple simulator for realistic microbiome data.bioRxiv202310.1101/2023.03.23.533996
    [Google Scholar]
  189. LüK. MahbubR. CableP.H. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism.Chem. Res. Toxicol.201427217217410.1021/tx400454z 24490651
    [Google Scholar]
  190. CiernikovaS. SevcikovaA. StevurkovaV. MegoM. Tumor microbiome - an integral part of the tumor microenvironment.Front. Oncol.202212106310010.3389/fonc.2022.1063100 36505811
    [Google Scholar]
  191. ZhangY. LiangX.F. HeS. Effects of high carbohydrate diet-modulated microbiota on gut health in chinese perch.Front. Microbiol.20201157510210.3389/fmicb.2020.575102 33042089
    [Google Scholar]
  192. WangX. LinS. WangL. Versatility of bacterial outer membrane vesicles in regulating intestinal homeostasis.Sci. Adv.2023911eade507910.1126/sciadv.ade5079 36921043
    [Google Scholar]
  193. WangL. Bravo-RuisecoG. HappeR. HeT. DijlJ. HarmsenH. The effect of calcium palmitate on bacteria associated with infant gut microbiota.MicrobiologyOpen2021103e118710.1002/mbo3.1187
    [Google Scholar]
  194. BuX. WangJ. YinZ. Human amniotic mesenchymal stem cells alleviate agvhd after allo-hsct by regulating interactions between gut microbiota and intestinal immunity.Stem Cell Rev. Rep.20231951370138310.1007/s12015‑023‑10522‑4 36870009
    [Google Scholar]
  195. YadavM. KapoorA. VermaA. AmbatipudiK. Functional significance of different milk constituents in modulating the gut microbiome and infant health.J. Agric. Food Chem.202270133929394710.1021/acs.jafc.2c00335 35324181
    [Google Scholar]
  196. WangK. XuX. MaimaitiA. Gut microbiota disorder caused by diterpenoids extracted from Euphorbia pekinensis aggravates intestinal mucosal damage.Pharmacol. Res. Perspect.202195e0076510.1002/prp2.765 34523246
    [Google Scholar]
  197. DefoisC. RatelJ. GarraitG. Food chemicals disrupt human gut microbiota activity and impact intestinal homeostasis as revealed by in vitro systems.Sci. Rep.2018811100610.1038/s41598‑018‑29376‑9 30030472
    [Google Scholar]
  198. WuS. BhatZ. GounderR. Effect of dietary protein and processing on gut microbiota—a systematic review.Nutrients202214345310.3390/nu14030453 35276812
    [Google Scholar]
  199. Sánchez-TapiaM. Moreno-VicencioD. Ordáz-NavaG. Antibiotic treatment reduces the health benefits of soy protein.Mol. Nutr. Food Res.20206417200053210.1002/mnfr.202000532 32729948
    [Google Scholar]
  200. LiuY. WangH. GuiS. Proteomics analysis of the gut–brain axis in a gut microbiota-dysbiosis model of depression.Transl. Psychiatry202111156810.1038/s41398‑021‑01689‑w 34744165
    [Google Scholar]
  201. GriffinJ.L. WangX. StanleyE. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics.Circ. Cardiovasc. Genet.20158118719110.1161/CIRCGENETICS.114.000219 25691688
    [Google Scholar]
  202. AbriouelH. MontoroP.B. Casimiro-SoriguerC.S. Insight into potential probiotic markers predicted in lactobacillus pentosus mp-10 genome sequence.Front. Microbiol.2017889110.3389/fmicb.2017.00891 28588563
    [Google Scholar]
  203. NazirS. AfzaalM. SaeedF. Survivability and behavior of probiotic bacteria encapsulated by internal gelation in non-dairy matrix and in vitro GIT conditions.PLoS One2024196e030309110.1371/journal.pone.0303091 38905169
    [Google Scholar]
  204. ZeashanM. AfzaalM. SaeedF. Survival and behavior of free and encapsulated probiotic bacteria under simulated human gastrointestinal and technological conditions.Food Sci. Nutr.2020852419242610.1002/fsn3.1531 32405398
    [Google Scholar]
  205. YangX. YangJ. YeZ. Physiologically inspired mucin-coated Escherichia coli nissle 1917 enhances biotherapy by regulating the pathological microenvironment to improve intestinal colonization.ACS Nano20221634041405810.1021/acsnano.1c09681 35230097
    [Google Scholar]
  206. ShaY. YanQ. LiuJ. Homologous genes shared between probiotics and pathogens affect the adhesion of probiotics and exclusion of pathogens in the gut mucus of shrimp.Front. Microbiol.202314119513710.3389/fmicb.2023.1195137 37389343
    [Google Scholar]
  207. SinghK.S. KumarS. MohantyA.K. GroverS. KaushikJ.K. Mechanistic insights into the host-microbe interaction and pathogen exclusion mediated by the Mucus-binding protein of Lactobacillus plantarum.Sci. Rep.2018811419810.1038/s41598‑018‑32417‑y 30242281
    [Google Scholar]
  208. ZhangH. YangC. ZhouW. A ph-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics.ACS Sustain. Chem. Eng.2018611139241393110.1021/acssuschemeng.8b02237
    [Google Scholar]
  209. KiepśJ. OlejnikA. JuzwaW. DembczyńskiR. Economic analysis of the production process of probiotics based on the biological and physiological parameters of the cells.Appl. Sci.202313201154110.3390/app132011541
    [Google Scholar]
  210. TekerH.T. CeylaniT. KeskinS. Supplementing probiotics during intermittent fasting proves more effective in restoring ileum and colon tissues in aged rats.J. Cell. Mol. Med.2024286e1820310.1111/jcmm.18203 38445809
    [Google Scholar]
  211. MaccaferriS. KlinderA. BrigidiP. CavinaP. CostabileA. Potential probiotic Kluyveromyces marxianus B0399 modulates the immune response in Caco-2 cells and peripheral blood mononuclear cells and impacts the human gut microbiota in an in vitro colonic model system.Appl. Environ. Microbiol.201278495696410.1128/AEM.06385‑11 22156412
    [Google Scholar]
  212. SmithI.M. ChristensenJ.E. ArneborgN. JespersenL. Yeast modulation of human dendritic cell cytokine secretion: An in vitro study.PLoS One201495e9659510.1371/journal.pone.0096595 24816850
    [Google Scholar]
  213. LaiY. LiuC.W. YangY. HsiaoY.C. RuH. LüK. High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice.Nat. Commun.2021121600010.1038/s41467‑021‑26209‑8 34667167
    [Google Scholar]
  214. JamshidiN. NigámS.K. Drug transporters OAT1 and OAT3 have specific effects on multiple organs and gut microbiome as revealed by contextualized metabolic network reconstructions.Sci. Rep.20221211830810.1038/s41598‑022‑21091‑w 36316339
    [Google Scholar]
  215. Gacek-MatthewsA. ChromikováZ. SulyokM. LückingG. BarákI. Ehling-SchulzM. Beyond toxin transport: Novel role of ABC transporter for enzymatic machinery of cereulide NRPS assembly line.MBio2020115e01577e2010.1128/mBio.01577‑20 32994334
    [Google Scholar]
  216. AhmedM.S. LauersenK.J. IkramS. LiC. Efflux transporters’ engineering and their application in microbial production of heterologous metabolites.ACS Synth. Biol.202110464666910.1021/acssynbio.0c00507 33751883
    [Google Scholar]
  217. RenH. IslamM.S. WangH. Effect of humic acid on soil physical and chemical properties, microbial community structure, and metabolites of decline diseased bayberry.Int. J. Mol. Sci.202223231470710.3390/ijms232314707 36499039
    [Google Scholar]
  218. KunduP. MannaB. MajumderS. GhoshA. Species-wide metabolic interaction network for understanding natural lignocellulose digestion in termite gut microbiota.Sci. Rep.2019911632910.1038/s41598‑019‑52843‑w 31705042
    [Google Scholar]
  219. HuH. ZhangS. PanS. Characterization of citrus pectin oligosaccharides and their microbial metabolites as modulators of immunometabolism on macrophages.J. Agric. Food Chem.202169308403841410.1021/acs.jafc.1c01445 34313419
    [Google Scholar]
  220. Valles-ColomerM. FalonyG. DarziY. The neuroactive potential of the human gut microbiota in quality of life and depression.Nat. Microbiol.20194462363210.1038/s41564‑018‑0337‑x 30718848
    [Google Scholar]
  221. ČervenkaI. AgudeloL.Z. RuasJ.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health.Science20173576349eaaf979410.1126/science.aaf9794 28751584
    [Google Scholar]
  222. GaoY. WidmalmG. ImW. Modeling and simulation of bacterial outer membranes with lipopolysaccharides and capsular polysaccharides.J. Chem. Inf. Model.20236351592160110.1021/acs.jcim.3c00072 36802606
    [Google Scholar]
  223. YangL. HungL. ZhuY. DingK. MargolisK. LeongK. Material engineering in gut microbiome and human health.Research20222022980401410.34133/2022/9804014
    [Google Scholar]
  224. CaoZ. WangX. PangY. ChengS. LiuJ. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment.Nat. Commun.2019101578310.1038/s41467‑019‑13727‑9 31857577
    [Google Scholar]
  225. MittalE. KangY. A microfluidic device to simulate the impact of gut microbiome in cancer.bioRxiv20221810.1101/2022.11.13.516284
    [Google Scholar]
  226. ImhannF. BonderM.J. VilaV.A. Proton pump inhibitors affect the gut microbiome.Gut201665574074810.1136/gutjnl‑2015‑310376 26657899
    [Google Scholar]
  227. SanidadK.Z. AmirM. AnanthanarayananA. Maternal gut microbiome-induced IgG regulates neonatal gut microbiome and immunity.Sci. Immunol.2022772eabh381610.1126/sciimmunol.abh3816 35687695
    [Google Scholar]
  228. RaymannK. MoranN.A. The role of the gut microbiome in health and disease of adult honey bee workers.Curr. Opin. Insect Sci.2018269710410.1016/j.cois.2018.02.012 29764668
    [Google Scholar]
  229. RothschildD. WeissbrodO. BarkanE. Environment dominates over host genetics in shaping human gut microbiota.Nature2018555769521021510.1038/nature25973 29489753
    [Google Scholar]
  230. ChapadgaonkarS.S. BajpaiS.S. GodboleM.S. Gut microbiome influences incidence and outcomes of breast cancer by regulating levels and activity of steroid hormones in women.Cancer Rep.2023611e184710.1002/cnr2.1847 37311575
    [Google Scholar]
  231. ZhangX. BrowmanG. SiuW. The BE GONE trial study protocol: A randomized crossover dietary intervention of dry beans targeting the gut microbiome of overweight and obese patients with a history of colorectal polyps or cancer.BMC Cancer2019191123310.1186/s12885‑019‑6400‑z 31852462
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128357214250221053909
Loading
/content/journals/cpd/10.2174/0113816128357214250221053909
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test