Skip to content
2000
image of Loss of CD99L2 Contributed to Temozolomide Resistance and Glioblastoma Tumorigenesis Based on Genome-scale CRISPR/Cas9 Screening

Abstract

Introduction

Glioblastoma Multiforme (GBM) is a highly aggressive and fatal brain malignancy, with Temozolomide (TMZ) serving as the first-line chemotherapeutic treatment. However, over 50% of patients do not respond to TMZ, and the underlying mechanisms remain unclear. This study utilized the GeCKO library to identify novel genes involved in TMZ resistance and to explore their functions.

Methods

Loss-of-function genes related to TMZ resistance in GBM cells were identified using the GeCKO library and Next-Generation Sequencing (NGS), validated by qPCR and CCK-8 assays. CD99L2 function was assessed through proliferation, migration, and EdU assays in U251 and U87 cells. Tumor samples from 55 stage IV GBM patients were analyzed to explore the correlation between CD99L2 expression and Progression-Free Survival (PFS).

Results

GeCKO library screening identified seven genes associated with TMZ resistance. After validation, CD99L2 was confirmed as a key contributor to TMZ resistance. Knockdown of CD99L2 increased the IC of U251 and U87 cells by 1.39- and 1.54-fold, respectively. Conversely, CD99L2 overexpression reduced the IC by 0.52- and 0.58-fold. CD99L2 knockdown also promoted tumor proliferation and aggressiveness. Additionally, higher CD99L2 expression was associated with longer PFS in GBM patients (median PFS: 7.87 months 2.7 months, =0.0003).

Discussion

The functions of CD99L2 remain poorly understood. A few studies have reported that CD99L2 may serve as an adhesion molecule modulating inflammatory responses. One study has shown that CD99L2 is highly expressed in the brain and affects neuronal excitability. These findings suggest that CD99L2 may play a positive role in the body’s defense against glioma.

Conclusion

This study demonstrated that CD99L2 knockdown promotes TMZ resistance and tumorigenesis in GBM, suggesting its potential as a novel biomarker for TMZ resistance.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128386002250701113848
2025-07-18
2025-09-10
Loading full text...

Full text loading...

References

  1. Beier D. Schulz J.B. Beier C.P. Chemoresistance of glioblastoma cancer stem cells - much more complex than expected. Mol. Cancer 2011 10 1 128 10.1186/1476‑4598‑10‑128 21988793
    [Google Scholar]
  2. Alexander B.M. Cloughesy T.F. Adult Glioblastoma. J. Clin. Oncol. 2017 35 21 2402 2409 10.1200/JCO.2017.73.0119 28640706
    [Google Scholar]
  3. Omuro A. DeAngelis L.M. Glioblastoma and other malignant gliomas: A clinical review. JAMA 2013 310 17 1842 1850 10.1001/jama.2013.280319 24193082
    [Google Scholar]
  4. Louis D.N. Perry A. Reifenberger G. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016 131 6 803 820 10.1007/s00401‑016‑1545‑1 27157931
    [Google Scholar]
  5. Miller K.D. Nogueira L. Mariotto A.B. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019 69 5 363 385 10.3322/caac.21565 31184787
    [Google Scholar]
  6. Hotchkiss K.M. Sampson J.H. Temozolomide treatment outcomes and immunotherapy efficacy in brain tumor. J. Neurooncol. 2021 151 1 55 62 10.1007/s11060‑020‑03598‑2 32813186
    [Google Scholar]
  7. D’Alessio A. Proietti G. Sica G. Scicchitano B.M. Pathological and molecular features of glioblastoma and its peritumoral tissue. Cancers 2019 11 4 469 10.3390/cancers11040469 30987226
    [Google Scholar]
  8. Iturrioz-Rodríguez N. Sampron N. Matheu A. Current advances in temozolomide encapsulation for the enhancement of glioblastoma treatment. Theranostics 2023 13 9 2734 2756 10.7150/thno.82005 37284445
    [Google Scholar]
  9. Bocangel D.B. Finkelstein S. Schold S.C. Bhakat K.K. Mitra S. Kokkinakis D.M. Multifaceted resistance of gliomas to temozolomide. Clin. Cancer Res. 2002 8 8 2725 2734 12171906
    [Google Scholar]
  10. Hombach-Klonisch S. Mehrpour M. Shojaei S. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol. Ther. 2018 184 13 41 10.1016/j.pharmthera.2017.10.017 29080702
    [Google Scholar]
  11. Aldape K. Zadeh G. Mansouri S. Reifenberger G. von Deimling A. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015 129 6 829 848 10.1007/s00401‑015‑1432‑1 25943888
    [Google Scholar]
  12. Lang F. Liu Y. Chou F.J. Yang C. Genotoxic therapy and resistance mechanism in gliomas. Pharmacol. Ther. 2021 228 107922 10.1016/j.pharmthera.2021.107922 34171339
    [Google Scholar]
  13. Lin K. Gueble S.E. Sundaram R.K. Huseman E.D. Bindra R.S. Herzon S.B. Mechanism-based design of agents that selectively target drug-resistant glioma. Science 2022 377 6605 502 511 10.1126/science.abn7570 35901163
    [Google Scholar]
  14. Zhou J. Tong F. Zhao J. Identification of the E2F1-RAD51AP1 axis as a key factor in MGMT-methylated GBM TMZ resistance. Cancer Biol. Med. 2023 20 5 385 400 10.20892/j.issn.2095‑3941.2023.0011 37283490
    [Google Scholar]
  15. Oldrini B. Vaquero-Siguero N. Mu Q. MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas. Nat. Commun. 2020 11 1 3883 10.1038/s41467‑020‑17717‑0 32753598
    [Google Scholar]
  16. Abe H. Natsumeda M. Okada M. MGMT expression contributes to temozolomide resistance in H3K27M-mutant diffuse midline gliomas. Front. Oncol. 2020 9 1568 10.3389/fonc.2019.01568 32039031
    [Google Scholar]
  17. Zhang K. Wang X. Zhou B. Zhang L. The prognostic value of MGMT promoter methylation in Glioblastoma multiforme: A meta-analysis. Fam. Cancer 2013 12 3 449 458 10.1007/s10689‑013‑9607‑1 23397067
    [Google Scholar]
  18. Yi G. Huang G. Guo M. Acquired temozolomide resistance in MGMT-deficient glioblastoma cells is associated with regulation of DNA repair by DHC2. Brain 2019 142 8 2352 2366 10.1093/brain/awz202 31347685
    [Google Scholar]
  19. Cong L. Ran F.A. Cox D. Multiplex genome engineering using CRISPR/Cas systems. Science 2013 339 6121 819 823 10.1126/science.1231143 23287718
    [Google Scholar]
  20. Mali P. Yang L. Esvelt K.M. RNA-guided human genome engineering via Cas9. Science 2013 339 6121 823 826 10.1126/science.1232033 23287722
    [Google Scholar]
  21. Hanna R.E. Doench J.G. Design and analysis of CRISPR-Cas experiments. Nat. Biotechnol. 2020 38 7 813 823 10.1038/s41587‑020‑0490‑7 32284587
    [Google Scholar]
  22. Shalem O. Sanjana N.E. Hartenian E. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014 343 6166 84 87 10.1126/science.1247005 24336571
    [Google Scholar]
  23. Wei L. Lee D. Law C.T. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat. Commun. 2019 10 1 4681 10.1038/s41467‑019‑12606‑7 31615983
    [Google Scholar]
  24. Cao J. Wei J. Yang P. Genome-scale CRISPR-Cas9 knockout screening in gastrointestinal stromal tumor with Imatinib resistance. Mol. Cancer 2018 17 1 121 10.1186/s12943‑018‑0865‑2 30103756
    [Google Scholar]
  25. MacLeod G. Bozek D.A. Rajakulendran N. Genome-wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of temozolomide sensitivity in glioblastoma stem cells. Cell Rep. 2019 27 3 971 986.e9 10.1016/j.celrep.2019.03.047 30995489
    [Google Scholar]
  26. Ouyang Q. Liu Y. Tan J. Loss of ZNF587B and SULF1 contributed to cisplatin resistance in ovarian cancer cell lines based on Genome-scale CRISPR/Cas9 screening. Am. J. Cancer Res. 2019 9 5 988 31218106
    [Google Scholar]
  27. Bixel M.G. Petri B. Khandoga A.G. A CD99-related antigen on endothelial cells mediates neutrophil but not lymphocyte extravasation in vivo. Blood 2007 109 12 5327 5336 10.1182/blood‑2006‑08‑043109 17344467
    [Google Scholar]
  28. Nam G. Lee Y.K. Lee H.Y. Interaction of CD99 with its paralog CD99L2 positively regulates CD99L2 trafficking to cell surfaces. J. Immunol. 2013 191 11 5730 5742 10.4049/jimmunol.1203062 24133166
    [Google Scholar]
  29. Ramos P.S. Sajuthi S. Langefeld C.D. Walker S.J. Immune function genes CD99L2, JARID2 and TPO show association with autism spectrum disorder. Mol. Autism 2012 3 1 4 10.1186/2040‑2392‑3‑4 22681640
    [Google Scholar]
  30. Suh Y.H. Shin Y.K. Kook M.C. Cloning, genomic organization, alternative transcripts and expression analysis of CD99L2, a novel paralog of human CD99, and identification of evolutionary conserved motifs. Gene 2003 307 63 76 10.1016/S0378‑1119(03)00401‑3 12706889
    [Google Scholar]
  31. Bixel M.G. Li H. Petri B. CD99 and CD99L2 act at the same site as, but independently of, PECAM-1 during leukocyte diapedesis. Blood 2010 116 7 1172 1184 10.1182/blood‑2009‑12‑256388 20479283
    [Google Scholar]
  32. Samus M. Seelige R. Schäfer K. Sorokin L. Vestweber D. CD99L2 deficiency inhibits leukocyte entry into the central nervous system and ameliorates neuroinflammation. J. Leukoc. Biol. 2018 104 4 787 797 10.1002/JLB.1A0617‑228R 29791026
    [Google Scholar]
  33. Liu F. Zhang G. Liu F. Effect of shRNA targeting mouse CD99L2 gene in a murine B cell lymphoma in vitro and in vivo. Oncol. Rep. 2013 29 4 1405 1414 10.3892/or.2013.2244 23338758
    [Google Scholar]
  34. Zeng J. Zhang L. Huang L. MAZ promotes thyroid cancer progression by driving transcriptional reprogram and enhancing ERK1/2 activation. Cancer Lett. 2024 602 217201 10.1016/j.canlet.2024.217201 39197582
    [Google Scholar]
  35. Shen Y. Zhang N. Chai J. CircPDIA4 induces gastric cancer progression by promoting ERK1/2 activation and enhancing biogenesis of oncogenic circRNAs. Cancer Res. 2023 83 4 538 552 10.1158/0008‑5472.CAN‑22‑1923 36562654
    [Google Scholar]
  36. Flint A.C. Mitchell D.K. Angus S.P. Combined CDK4/6 and ERK1/2 inhibition enhances antitumor activity in NF1-associated plexiform neurofibroma. Clin. Cancer Res. 2023 29 17 3438 3456 10.1158/1078‑0432.CCR‑22‑2854 37406085
    [Google Scholar]
  37. Xu M.H. Zheng Y.M. Liang B.G. Deubiquitination of CIB1 by USP14 promotes lenvatinib resistance via the PAK1-ERK1/2 axis in hepatocellular carcinoma. Int. J. Biol. Sci. 2024 20 9 3269 3284 10.7150/ijbs.96031 38993552
    [Google Scholar]
  38. Kim Y. Jung K.Y. Kim Y.H. Inhibition of SIRT7 overcomes sorafenib acquired resistance by suppressing ERK1/2 phosphorylation via the DDX3X-mediated NLRP3 inflammasome in hepatocellular carcinoma. Drug Resist. Updat. 2024 73 101054 10.1016/j.drup.2024.101054 38277756
    [Google Scholar]
  39. Wei Y. Lu C. Zhou P. EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1–2 signaling. Neuro-oncol. 2021 23 4 611 624 10.1093/neuonc/noaa214 32926734
    [Google Scholar]
  40. He Z. Cheng M. Hu J. miR-1297 sensitizes glioma cells to temozolomide (TMZ) treatment through targeting adrenomedullin (ADM). J. Transl. Med. 2022 20 1 443 10.1186/s12967‑022‑03647‑6 36183123
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128386002250701113848
Loading
/content/journals/cpd/10.2174/0113816128386002250701113848
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: glioblastoma multiforme ; CD99L2 ; tumorigenesis ; temozolomide resistance ; CRISPR/Cas9
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test