Skip to content
2000
image of Angiogenesis and Resistance Mechanisms in Glioblastoma: Targeting Alternative Vascularization Pathways to Overcome Therapy Resistance

Abstract

Introduction

Glioblastoma (GBM), the most aggressive form of primary brain tumor in adults, remains a significant clinical challenge due to its high recurrence and poor prognosis. Characterized by rapid growth, invasiveness, and resistance to therapy, GBM relies on a sophisticated vascular network to sustain its progression. Angiogenesis, the process of forming new blood vessels, is central to meeting the metabolic demands of the tumor. To address this issue, there is a growing consensus on the need for multi-pronged therapeutic strategies that not only inhibit angiogenesis but also disrupt alternative neovascular mechanisms. Promising approaches include combining anti-angiogenic drugs with agents targeting pathways like neurogenic locus notch homolog protein (NOTCH), Wnt, and C-X-C motif chemokine receptor 4 (CXCR4)/stromal cell-derived factor 1 alpha (SDF-1α) to impede vessel co-option, VM, and GSC trans-differentiation.

Methods

The search strategy consisted of using material from the PubMed data, focusing on key terms such as: “angiogenesis”, “glioblastoma”, “glioma”, “oncogenesis”, “anti-VEGF treatment”, “signaling pathways”, “hypoxia”, “vessels”, “resistance”, and “neurosurgery.

Results

Аs a result of the analysis of existing recent studies, GBM exhibits an adaptive capacity to utilize various neovascular mechanisms, including vessel co-option, vasculogenic mimicry (VM), and the trans-differentiation of glioma stem cells (GSCs) into vascular-like structures, to circumvent traditional anti-angiogenic therapies. Initial successes with anti-angiogenic treatments targeting vascular endothelial growth factor (VEGF) showed improvements in progression-free survival. Still, they failed to significantly impact the overall survival due to the tumor's activation of compensatory pathways. Hypoxia, a critical driver of angiogenesis, stabilizes hypoxia-inducible factors (HIF-1α and HIF-2α), which upregulate pro-angiogenic gene expression and facilitate adaptive neovascular responses. These adaptations include vessel co-option, where tumor cells utilize pre-existing vasculature, and VM, where tumor cells form endothelial-like channels independent of typical angiogenesis. Moreover, the role of GSCs in forming new vascular structures through transdifferentiation further complicates treatment, enabling the tumor to maintain its blood supply even when VEGF pathways are blocked.

Discussion

This review highlights the necessity for comprehensive and targeted treatment strategies that encompass the full spectrum of neovascular mechanisms in GBM. Such strategies are crucial for developing more effective therapies that can extend patient survival and improve overall treatment outcomes.

Conclusion

To address the challenge of understanding tumor angiogenesis and ways to inhibit it, there is a growing consensus on the need for multifaceted therapeutic strategies that not only suppress angiogenesis but also disrupt alternative neovascular mechanisms. The most successfull approaches include the use of antiangiogenic drugs in combination with agents targeting pathways such as the neurogenic locus of the notch homolog protein (NOTCH), Wnt, and C-X-C receptor chemokine motif 4 (CXCR4)/stromal cell-derived factor 1 alpha (SDF-1α) aiming to inhibit vessel co-option, VM, and GSC transdifferentiation.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128367551250703122830
2025-07-22
2025-09-09
Loading full text...

Full text loading...

References

  1. Perry J.R. Laperriere N. O’Callaghan C.J. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N. Engl. J. Med. 2017 376 11 1027 1037 10.1056/NEJMoa1611977 28296618
    [Google Scholar]
  2. Stupp R. Hegi M.E. Mason W.P. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009 10 5 459 466 10.1016/S1470‑2045(09)70025‑7 19269895
    [Google Scholar]
  3. Stupp R. Taillibert S. Kanner A. Effect of tumor-treating fields plus maintenance temozolomide vs. maintenance temozolomide alone on survival in patients with glioblastoma. JAMA 2017 318 23 2306 2316 10.1001/jama.2017.18718 29260225
    [Google Scholar]
  4. Lugano R. Ramachandran M. Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020 77 9 1745 1770 10.1007/s00018‑019‑03351‑7 31690961
    [Google Scholar]
  5. Le Rhun E. Preusser M. Roth P. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev. 2019 80 101896 10.1016/j.ctrv.2019.101896 31541850
    [Google Scholar]
  6. Wirsching H.G. Roth P. Weller M. A vasculature-centric approach to developing novel treatment options for glioblastoma. Expert Opin. Ther. Targets 2021 25 2 87 100 10.1080/14728222.2021.1881062 33482697
    [Google Scholar]
  7. Liu J. Piranlioglu R. Ye F. Shu K. Lei T. Nakashima H. Immunosuppressive cells in oncolytic virotherapy for glioma: Challenges and solutions. Front. Cell. Infect. Microbiol. 2023 13 1141034 10.3389/fcimb.2023.1141034 37234776
    [Google Scholar]
  8. Akanji M.A. Rotimi D. Adeyemi O.S. Hypoxia-inducible factors as an alternative source of treatment strategy for cancer. Oxid. Med. Cell. Longev. 2019 2019 1 10 10.1155/2019/8547846 31485300
    [Google Scholar]
  9. Zhang B. Chen Y. Shi X. Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma. Cell. Mol. Life Sci. 2021 78 1 195 206 10.1007/s00018‑020‑03483‑1 32088728
    [Google Scholar]
  10. Zhang J. Chen Y. Qiu X. The vascular delta-like ligand-4 (DLL4)-Notch4 signaling correlates with angiogenesis in primary glioblastoma: An immunohistochemical study. Tumour Biol. 2016 37 3 3797 3805 10.1007/s13277‑015‑4202‑8 26472724
    [Google Scholar]
  11. Annese T. Errede M. d’Amati A. Differential p-glycoprotein/cd31 expression as markers of vascular co-option in primary central nervous system tumors. Diagnostics 2022 12 12 3120 10.3390/diagnostics12123120 36553127
    [Google Scholar]
  12. Treps L. Faure S. Clere N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – Interest in making it a therapeutic target. Pharmacol. Ther. 2021 223 107805 10.1016/j.pharmthera.2021.107805 33465401
    [Google Scholar]
  13. Xie J. Tang J.X. Li Y. Kong X. Wang W. Wu H. ATM activation is key in vasculogenic mimicry formation by glioma stem-like cells. Biomed. Environ. Sci. 2024 37 8 834 849 10.3967/bes2024.127 39198249
    [Google Scholar]
  14. Holst C.B. Pedersen H. Obara E.A.A. Perspective: Targeting VEGF-A and YKL-40 in glioblastoma – Matter matters. Cell Cycle 2021 20 7 702 715 10.1080/15384101.2021.1901037 33779510
    [Google Scholar]
  15. Gimple R.C. Bhargava S. Dixit D. Rich J.N. Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 2019 33 11-12 591 609 10.1101/gad.324301.119 31160393
    [Google Scholar]
  16. Wicks E.E. Semenza G.L. Hypoxia-inducible factors: Cancer progression and clinical translation. J. Clin. Invest. 2022 132 11 e159839 10.1172/JCI159839 35642641
    [Google Scholar]
  17. Ahir B.K. Engelhard H.H. Lakka S.S. Tumor development and angiogenesis in adult brain tumor: Glioblastoma. Mol. Neurobiol. 2020 57 5 2461 2478 10.1007/s12035‑020‑01892‑8 32152825
    [Google Scholar]
  18. Jafari A. Babajani A. Abdollahpour-Alitappeh M. Ahmadi N. Rezaei-Tavirani M. Exosomes and cancer: From molecular mechanisms to clinical applications. Med. Oncol. 2021 38 4 45 10.1007/s12032‑021‑01491‑0 33743101
    [Google Scholar]
  19. Ren Y. Hao P. Dutta B. Hypoxia modulates A431 cellular pathways association to tumor radioresistance and enhanced migration revealed by comprehensive proteomic and functional studies. Mol. Cell. Proteomics 2013 12 2 485 498 10.1074/mcp.M112.018325 23204318
    [Google Scholar]
  20. Koledova Z. Sumbal J. Rabata A. Fibroblast growth factor 2 protein stability provides decreased dependence on heparin for induction of FGFR signaling and alters ERK signaling dynamics. Front. Cell Dev. Biol. 2019 7 331 10.3389/fcell.2019.00331 31921844
    [Google Scholar]
  21. Pellerino A. Bruno F. Soffietti R. Rudà R. Antiangiogenic therapy for malignant brain tumors: Does it still matter? Curr. Oncol. Rep. 2023 25 7 777 785 10.1007/s11912‑023‑01417‑1 37071295
    [Google Scholar]
  22. Hong H. Chen F. Zhang Y. Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv. Drug Deliv. Rev. 2014 76 2 20 10.1016/j.addr.2014.07.011 25086372
    [Google Scholar]
  23. Cao Y. Langer R. Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat. Rev. Drug Discov. 2023 22 6 476 495 10.1038/s41573‑023‑00671‑z 37041221
    [Google Scholar]
  24. Kim H.J. Ji Y.R. Lee Y.M. Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Arch. Pharm. Res. 2022 45 6 401 416 10.1007/s12272‑022‑01389‑z 35759090
    [Google Scholar]
  25. Mazzone M. Dettori D. Leite de Oliveira R. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 2009 136 5 839 851 10.1016/j.cell.2009.01.020 19217150
    [Google Scholar]
  26. Anderson N.M. Simon M.C. The tumor microenvironment. Curr. Biol. 2020 30 16 R921 R925 10.1016/j.cub.2020.06.081 32810447
    [Google Scholar]
  27. Sengupta S. Mondal M. Prasasvi K.R. Differentiated glioma cell-derived fibromodulin activates integrin-dependent Notch signaling in endothelial cells to promote tumor angiogenesis and growth. eLife 2022 11 e78972 10.7554/eLife.78972 35642785
    [Google Scholar]
  28. Ludwig N. Whiteside T.L. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin. Ther. Targets 2018 22 5 409 417 10.1080/14728222.2018.1464141 29634426
    [Google Scholar]
  29. Pérez-Herrero E. Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015 93 52 79 10.1016/j.ejpb.2015.03.018 25813885
    [Google Scholar]
  30. Jiang W. Huang Y. An Y. Kim B.Y.S. Remodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticles. ACS Nano 2015 9 9 8689 8696 10.1021/acsnano.5b02028 26212564
    [Google Scholar]
  31. Semenza G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 2014 9 1 47 71 10.1146/annurev‑pathol‑012513‑104720 23937437
    [Google Scholar]
  32. Touat M. Idbaih A. Sanson M. Ligon K.L. Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann. Oncol. 2017 28 7 1457 1472 10.1093/annonc/mdx106 28863449
    [Google Scholar]
  33. Mastri M. Rosario S. Tracz A. Frink R.E. Brekken R.A. Ebos J.M. The Challenges of modeling drug resistance to antiangiogenic therapy. Curr. Drug Targets 2016 17 15 1747 1754 10.2174/1389450117666151209123544 26648063
    [Google Scholar]
  34. Seano G. Jain R.K. Vessel co-option in glioblastoma: Emerging insights and opportunities. Angiogenesis 2020 23 1 9 16 10.1007/s10456‑019‑09691‑z 31679081
    [Google Scholar]
  35. Malapelle U. Rossi A. Emerging angiogenesis inhibitors for non-small cell lung cancer. Expert Opin. Emerg. Drugs 2019 24 2 71 81 10.1080/14728214.2019.1619696 31092048
    [Google Scholar]
  36. Wojtukiewicz M.Z. Mysliwiec M. Matuszewska E. Heterogeneous expression of proangiogenic and coagulation proteins in gliomas of different histopathological grade. Pathol. Oncol. Res. 2021 27 605017 10.3389/pore.2021.605017 34257567
    [Google Scholar]
  37. Ribatti D. Pezzella F. Vascular co-option and other alternative modalities of growth of tumor vasculature in glioblastoma. Front. Oncol. 2022 12 874554 10.3389/fonc.2022.874554 35433447
    [Google Scholar]
  38. Teuwen L.A. De Rooij L.P.M.H. Cuypers A. Tumor vessel co-option probed by single-cell analysis. Cell Rep. 2021 35 11 109253 10.1016/j.celrep.2021.109253 34133923
    [Google Scholar]
  39. Falchetti M.L. D’Alessandris Q.G. Pacioni S. Glioblastoma endothelium drives bevacizumab-induced infiltrative growth via modulation of PLXDC1. Int. J. Cancer 2019 144 6 1331 1344 10.1002/ijc.31983 30414187
    [Google Scholar]
  40. Bi J. Chowdhry S. Wu S. Zhang W. Masui K. Mischel P.S. Altered cellular metabolism in gliomas — An emerging landscape of actionable co-dependency targets. Nat. Rev. Cancer 2020 20 1 57 70 10.1038/s41568‑019‑0226‑5 31806884
    [Google Scholar]
  41. Watkins S. Robel S. Kimbrough I.F. Robert S.M. Ellis-Davies G. Sontheimer H. Disruption of astrocyte–vascular coupling and the blood–brain barrier by invading glioma cells. Nat. Commun. 2014 5 1 4196 10.1038/ncomms5196 24943270
    [Google Scholar]
  42. Ravin R. Suarez-Meade P. Busse B. Perivascular invasion of primary human glioblastoma cells in organotypic human brain slices: Human cells migrating in human brain. J. Neurooncol. 2023 164 1 43 54 10.1007/s11060‑023‑04349‑9 37490233
    [Google Scholar]
  43. Ferrer V.P. Moura Neto V. Mentlein R. Glioma infiltration and extracellular matrix: Key players and modulators. Glia 2018 66 8 1542 1565 10.1002/glia.23309 29464861
    [Google Scholar]
  44. Khan F. Pang L. Dunterman M. Lesniak M.S. Heimberger A.B. Chen P. Macrophages and microglia in glioblastoma: Heterogeneity, plasticity, and therapy. J. Clin. Invest. 2023 133 1 e163446 10.1172/JCI163446 36594466
    [Google Scholar]
  45. Yadav V.N. Zamler D. Baker G.J. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget 2016 7 50 83701 83719 10.18632/oncotarget.13295 27863376
    [Google Scholar]
  46. Griveau A. Seano G. Shelton S.J. A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 2018 33 5 874 889.e7 10.1016/j.ccell.2018.03.020 29681511
    [Google Scholar]
  47. Donier E. Gomez-Sanchez J.A. Grijota-Martinez C. L1CAM binds ErbB receptors through Ig-like domains coupling cell adhesion and neuregulin signalling. PLoS One 2012 7 7 e40674 10.1371/journal.pone.0040674 22815787
    [Google Scholar]
  48. Caspani E.M. Crossley P.H. Redondo-Garcia C. Martinez S. Glioblastoma: A pathogenic crosstalk between tumor cells and pericytes. PLoS One 2014 9 7 e101402 10.1371/journal.pone.0101402 25032689
    [Google Scholar]
  49. Burgett M.E. Lathia J.D. Roth P. Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells. Oncotarget 2016 7 28 43852 43867 10.18632/oncotarget.9700 27270311
    [Google Scholar]
  50. Krusche B. Ottone C. Clements M.P. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. eLife 2016 5 e14845 10.7554/eLife.14845 27350048
    [Google Scholar]
  51. Jung E. Osswald M. Ratliff M. Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat. Commun. 2021 12 1 1014 10.1038/s41467‑021‑21117‑3 33579922
    [Google Scholar]
  52. Kuczynski E.A. Reynolds A.R. Vessel co-option and resistance to anti-angiogenic therapy. Angiogenesis 2020 23 1 55 74 10.1007/s10456‑019‑09698‑6 31865479
    [Google Scholar]
  53. Voutouri C. Kirkpatrick N.D. Chung E. Experimental and computational analyses reveal dynamics of tumor vessel cooption and optimal treatment strategies. Proc. Natl. Acad. Sci. USA 2019 116 7 2662 2671 10.1073/pnas.1818322116 30700544
    [Google Scholar]
  54. Nolan D.J. Ciarrocchi A. Mellick A.S. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007 21 12 1546 1558 10.1101/gad.436307 17575055
    [Google Scholar]
  55. Buccarelli M. Castellani G. Ricci-Vitiani L. Glioblastoma-specific strategies of vascularization: Implications in anti-angiogenic therapy resistance. J. Pers. Med. 2022 12 10 1625 10.3390/jpm12101625 36294763
    [Google Scholar]
  56. Kaur B. Khwaja F.W. Severson E.A. Matheny S.L. Brat D.J. Van Meir E.G. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncol. 2005 7 2 134 153 10.1215/S1152851704001115 15831232
    [Google Scholar]
  57. Tseng D. Vasquez-Medrano D.A. Brown J.M. Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas. Br. J. Cancer 2011 104 12 1805 1809 10.1038/bjc.2011.169 21587260
    [Google Scholar]
  58. Piao Y. Liang J. Holmes L. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-oncol. 2012 14 11 1379 1392 10.1093/neuonc/nos158 22965162
    [Google Scholar]
  59. Ahn G.O. Brown J.M. Role of endothelial progenitors and other bone marrow-derived cells in the development of the tumor vasculature. Angiogenesis 2009 12 2 159 164 10.1007/s10456‑009‑9135‑7 19221886
    [Google Scholar]
  60. Waked A. Crabbé M. Neirinckx V. Preclinical evaluation of CXCR4 peptides for targeted radionuclide therapy in glioblastoma. EJNMMI Radiopharm. Chem. 2024 9 1 52 10.1186/s41181‑024‑00282‑y 39008219
    [Google Scholar]
  61. Gagner J.P. Sarfraz Y. Ortenzi V. Multifaceted C-X-C chemokine receptor 4 (CXCR4) inhibition interferes with anti–vascular endothelial growth factor therapy-induced glioma dissemination. Am. J. Pathol. 2017 187 9 2080 2094 10.1016/j.ajpath.2017.04.020 28734730
    [Google Scholar]
  62. Bao S. Darvishi M.H. Amin A. CXC chemokine receptor 4 (CXCR4) blockade in cancer treatment. J. Cancer Res. Clin. Oncol. 2023 149 10 7945 7968 10.1007/s00432‑022‑04444‑w 36905421
    [Google Scholar]
  63. Schonberg D.L. Lubelski D. Miller T.E. Rich J.N. Brain tumor stem cells: Molecular characteristics and their impact on therapy. Mol. Aspects Med. 2014 39 82 101 10.1016/j.mam.2013.06.004 23831316
    [Google Scholar]
  64. Jhaveri N. Chen T.C. Hofman F.M. Tumor vasculature and glioma stem cells: Contributions to glioma progression. Cancer Lett. 2016 380 2 545 551 10.1016/j.canlet.2014.12.028 25527451
    [Google Scholar]
  65. Zheng Z.Q. Chen J.T. Zheng M.C. Nestin+/CD31+ cells in the hypoxic perivascular niche regulate glioblastoma chemoresistance by upregulating JAG1 and DLL4. Neuro-oncol. 2021 23 6 905 919 10.1093/neuonc/noaa265 33249476
    [Google Scholar]
  66. Piccirillo S.G.M. Combi R. Cajola L. Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 2009 28 15 1807 1811 10.1038/onc.2009.27 19287454
    [Google Scholar]
  67. Chroscinski D. Sampey D. Maherali N. Registered report: Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. eLife 2015 4 e04363 10.7554/eLife.04363 25714925
    [Google Scholar]
  68. Mei X. Chen Y.S. Chen F.R. Xi S.Y. Chen Z.P. Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro-oncol. 2017 19 8 1109 1118 10.1093/neuonc/nox016 28340100
    [Google Scholar]
  69. Jin Z. Zhan T. Tao J. MicroRNA - 34a induces transdifferentiation of glioma stem cells into vascular endothelial cells by targeting Notch pathway. Biosci. Biotechnol. Biochem. 2017 81 10 1899 1907 10.1080/09168451.2017.1364965 28859546
    [Google Scholar]
  70. Cui C Chen X Liu Y β1,4-Galactosyltransferase V activates Notch1 signaling in glioma stem-like cells and promotes their transdifferentiation into endothelial cells. J. Biol. Chem. 2018 293 6 2219 2230 10.1074/jbc.RA117.000682 29269413
    [Google Scholar]
  71. Hu B. Wang Q. Wang Y.A. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell 2016 167 5 1281 1295.e18 10.1016/j.cell.2016.10.039 27863244
    [Google Scholar]
  72. Han X. Wang Q. Fang S. P4HA1 regulates CD31 via COL6A1 in the transition of glioblastoma stem-like cells to tumor endothelioid cells. Front. Oncol. 2022 12 836511 10.3389/fonc.2022.836511 35494018
    [Google Scholar]
  73. Guichet P.O. Guelfi S. Teigell M. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells 2015 33 1 21 34 10.1002/stem.1767 24898819
    [Google Scholar]
  74. Gargini R Segura-Collar B Herránz B The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Sci Transl Med 2020 12 527 eaax1501 10.1126/scitranslmed.aax1501 31969485
    [Google Scholar]
  75. Segura-Collar B. Garranzo-Asensio M. Herranz B. Tumor-derived pericytes driven by EGFR mutations govern the vascular and immune microenvironment of gliomas. Cancer Res. 2021 81 8 2142 2156 10.1158/0008‑5472.CAN‑20‑3558 33593822
    [Google Scholar]
  76. Sanvoranart T. Supokawej A. Kheolamai P. Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis. Tumour Biol. 2016 37 11 14949 14960 10.1007/s13277‑016‑5314‑5 27651158
    [Google Scholar]
  77. Luo Q. Wang J. Zhao W. Vasculogenic mimicry in carcinogenesis and clinical applications. J. Hematol. Oncol. 2020 13 1 19 10.1186/s13045‑020‑00858‑6 32169087
    [Google Scholar]
  78. Sabazade S. Gill V. Herrspiegel C. Stålhammar G. Vasculogenic mimicry correlates to presenting symptoms and mortality in uveal melanoma. J. Cancer Res. Clin. Oncol. 2022 148 3 587 597 10.1007/s00432‑021‑03851‑9 34775516
    [Google Scholar]
  79. Stei M.M. Loeffler K.U. Holz F.G. Herwig M.C. Animal models of uveal melanoma: Methods, applicability, and limitations. BioMed Res. Int. 2016 2016 1 9 10.1155/2016/4521807 27366747
    [Google Scholar]
  80. Ci H. Xu Z. Xu J. Wang Y. Wu S. Expressions of KAI1 and E-cadherin in nonsmall cell lung cancer and their correlation with vasculogenic mimicry. Medicine 2018 97 40 e12293 10.1097/MD.0000000000012293 30290593
    [Google Scholar]
  81. Shirakawa K. Kobayashi H. Heike Y. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft. Cancer Res. 2002 62 2 560 566 11809710
    [Google Scholar]
  82. Kobayashi H. Shirakawa K. Kawamoto S. Rapid accumulation and internalization of radiolabeled herceptin in an inflammatory breast cancer xenograft with vasculogenic mimicry predicted by the contrast-enhanced dynamic MRI with the macromolecular contrast agent G6-(1B4M-Gd)(256). Cancer Res. 2002 62 3 860 866 11830544
    [Google Scholar]
  83. Zhang S. Li M. Gu Y. Thalidomide influences growth and vasculogenic mimicry channel formation in melanoma. J. Exp. Clin. Cancer Res. 2008 27 1 60 10.1186/1756‑9966‑27‑60 18983651
    [Google Scholar]
  84. Wei X. Chen Y. Jiang X. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol. Cancer 2021 20 1 7 10.1186/s12943‑020‑01288‑1 33397409
    [Google Scholar]
  85. Wang S. Yu L. Ling G. Vasculogenic mimicry and its clinical significance in medulloblastoma. Cancer Biol. Ther. 2012 13 5 341 348 10.4161/cbt.19108 22258034
    [Google Scholar]
  86. Wang N. Jain R.K. Batchelor T.T. New directions in anti-angiogenic therapy for glioblastoma. Neurotherapeutics 2017 14 2 321 332 10.1007/s13311‑016‑0510‑y 28083806
    [Google Scholar]
  87. Chiao M.T. Yang Y.C. Cheng W.Y. Shen C.C. Ko J.L. CD133+ glioblastoma stem-like cells induce vascular mimicry in vivo. Curr. Neurovasc. Res. 2011 8 3 210 219 10.2174/156720211796558023 21675958
    [Google Scholar]
  88. Scully S. Francescone R. Faibish M. Transdifferentiation of glioblastoma stem-like cells into mural cells drives vasculogenic mimicry in glioblastomas. J. Neurosci. 2012 32 37 12950 12960 10.1523/JNEUROSCI.2017‑12.2012 22973019
    [Google Scholar]
  89. Mao X. Xue X. Wang L. CDH5 is specifically activated in glioblastoma stemlike cells and contributes to vasculogenic mimicry induced by hypoxia. Neuro-oncol. 2013 15 7 865 879 10.1093/neuonc/not029 23645533
    [Google Scholar]
  90. Li J. Ke Y. Huang M. Huang S. Liang Y. Inhibitory effects of B-cell lymphoma 2 on the vasculogenic mimicry of hypoxic human glioma cells. Exp. Ther. Med. 2015 9 3 977 981 10.3892/etm.2014.2162 25667663
    [Google Scholar]
  91. Liu X. Wang J.H. Li S. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase/ERK– MMP –laminin5γ2 signaling pathway. Cancer Sci. 2015 106 7 857 866 10.1111/cas.12684 25940092
    [Google Scholar]
  92. Gao Y. Yu H. Liu Y. Long non-coding RNA HOXA-AS2 regulates malignant glioma behaviors and vasculogenic mimicry formation via the MiR-373/EGFR axis. Cell. Physiol. Biochem. 2018 45 1 131 147 10.1159/000486253 29310118
    [Google Scholar]
  93. Ling G. Ji Q. Ye W. Ma D. Wang Y. Epithelial-mesenchymal transition regulated by p38/MAPK signaling pathways participates in vasculogenic mimicry formation in SHG44 cells transfected with TGF-β cDNA loaded lentivirus in vitro and in vivo. Int. J. Oncol. 2016 49 6 2387 2398 10.3892/ijo.2016.3724 27748800
    [Google Scholar]
  94. Zhang C. Chen W. Zhang X. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes. Sci. Rep. 2016 6 1 23056 10.1038/srep23056 26976322
    [Google Scholar]
  95. Wu N. Zhao X. Liu M. Role of microRNA-26b in glioma development and its mediated regulation on EphA2. PLoS One 2011 6 1 e16264 10.1371/journal.pone.0016264 21264258
    [Google Scholar]
  96. Kim H. Won Y. Shim J. Kim H. Kim B. Hong H. Role of EphA2 PI3K signaling in vasculogenic mimicry induced by cancer associated fibroblasts in gastric cancer cells. Oncol. Lett. 2019 18 3 3031 3038 10.3892/ol.2019.10677 31452781
    [Google Scholar]
  97. Brantley-Sieders D.M. Caughron J. Hicks D. Pozzi A. Ruiz J.C. Chen J. EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J. Cell Sci. 2004 117 10 2037 2049 10.1242/jcs.01061 15054110
    [Google Scholar]
  98. Guo X. Xu S. Gao X. Macrophage migration inhibitory factor promotes vasculogenic mimicry formation induced by hypoxia via CXCR4/AKT/EMT pathway in human glioblastoma cells. Oncotarget 2017 8 46 80358 80372 10.18632/oncotarget.18673 29113309
    [Google Scholar]
  99. Liu Y. Li F. Yang Y.T. IGFBP2 promotes vasculogenic mimicry formation via regulating CD144 and MMP2 expression in glioma. Oncogene 2019 38 11 1815 1831 10.1038/s41388‑018‑0525‑4 30368528
    [Google Scholar]
  100. Huang M. Ke Y. Sun X. Mammalian target of rapamycin signaling is involved in the vasculogenic mimicry of glioma via hypoxia-inducible factor-1α. Oncol. Rep. 2014 32 5 1973 1980 10.3892/or.2014.3454 25175735
    [Google Scholar]
  101. Verdugo E. Puerto I. Medina M.Á. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. Cancer Commun. (Lond.) 2022 42 11 1083 1111 10.1002/cac2.12361
    [Google Scholar]
  102. Rong X. Huang B. Qiu S. Li X. He L. Peng Y. Tumor-associated macrophages induce vasculogenic mimicry of glioblastoma multiforme through cyclooxygenase-2 activation. Oncotarget 2016 7 51 83976 83986 10.18632/oncotarget.6930 27824617
    [Google Scholar]
  103. Yao X. Ping Y. Liu Y. Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by Glioma stem-like cells. PLoS One 2013 8 3 e57188 10.1371/journal.pone.0057188 23536763
    [Google Scholar]
  104. Angara K. Borin T.F. Rashid M.H. Corrigendum to “CXCR2-expressing tumor cells drive vascular mimicry in antiangiogenic therapy-resistant glioblastoma”. Neoplasia 2019 21 1 156 157 10.1016/j.neo.2018.11.001 30595360
    [Google Scholar]
  105. Angara K. Borin T.F. Arbab A.S. Vascular Mimicry: A novel neovascularization mechanism driving Anti-Angiogenic Therapy (AAT) resistance in glioblastoma. Transl. Oncol. 2017 10 4 650 660 10.1016/j.tranon.2017.04.007 28668763
    [Google Scholar]
  106. Song Y. Mu L. Han X. MicroRNA-9 inhibits vasculogenic mimicry of glioma cell lines by suppressing Stathmin expression. J. Neurooncol. 2013 115 3 381 390 10.1007/s11060‑013‑1245‑9 24043603
    [Google Scholar]
  107. Xue H. Gao X. Xu S. MicroRNA-Let-7f reduces the vasculogenic mimicry of human glioma cells by regulating periostin-dependent migration. Oncol. Rep. 2016 35 3 1771 1777 10.3892/or.2016.4548 26750768
    [Google Scholar]
  108. Xu S. Zhang J. Xue H. MicroRNA-584-3p reduces the vasculogenic mimicry of human glioma cells by regulating hypoxia-induced ROCK1 dependent stress fiber formation. Neoplasma 2017 64 1 13 21 10.4149/neo_2017_102 27881000
    [Google Scholar]
  109. Li H. Wang D. Yi B. SUMOylation of IGF2BP2 promotes vasculogenic mimicry of glioma via regulating OIP5-AS1/miR-495-3p axis. Int. J. Biol. Sci. 2021 17 11 2912 2930 10.7150/ijbs.58035 34345216
    [Google Scholar]
  110. Yin T. Wu J. Hu Y. Zhang M. He J. Long non-coding RNA HULC stimulates the epithelial–mesenchymal transition process and vasculogenic mimicry in human glioblastoma. Cancer Med. 2021 10 15 5270 5282 10.1002/cam4.4083 34213079
    [Google Scholar]
  111. Yu S. Ruan X. Liu X. HNRNPD interacts with ZHX2 regulating the vasculogenic mimicry formation of glioma cells via linc00707/miR-651-3p/SP2 axis. Cell Death Dis. 2021 12 2 153 10.1038/s41419‑021‑03432‑1 33542193
    [Google Scholar]
  112. Zhang Z. Guo X. Guo X. MicroRNA-29a-3p delivery via exosomes derived from engineered human mesenchymal stem cells exerts tumour suppressive effects by inhibiting migration and vasculogenic mimicry in glioma. Aging 2021 13 4 5055 5068 10.18632/aging.202424 33535172
    [Google Scholar]
  113. Rosińska S, Gavard J. Tumor vessels fuel the fire in glioblastoma. Int. J. Mol. Sci. 2021 22 12 6514 10.3390/ijms22126514 34204510
    [Google Scholar]
  114. Angara K. Rashid M.H. Shankar A. Vascular mimicry in glioblastoma following anti-angiogenic and anti-20-HETE therapies. Histol. Histopathol. 2017 32 9 917 928 10.14670/HH‑11‑856 27990624
    [Google Scholar]
  115. Wu H.B. Yang S. Weng H.Y. Autophagy-induced KDR/] VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells. Autophagy 2017 13 9 1528 1542 10.1080/15548627.2017.1336277 28812437
    [Google Scholar]
  116. Xue W. Du X. Wu H. Aberrant glioblastoma neovascularization patterns and their correlation with DCE-MRI-derived parameters following temozolomide and bevacizumab treatment. Sci. Rep. 2017 7 1 13894 10.1038/s41598‑017‑14341‑9 29066764
    [Google Scholar]
  117. Bernsen H. van der Laak J. Küsters B. van der Ven A. Wesseling P. Gliomatosis cerebri: Quantitative proof of vessel recruitment by cooptation instead of angiogenesis. J. Neurosurg. 2005 103 4 702 706 10.3171/jns.2005.103.4.0702 16266053
    [Google Scholar]
  118. Mosteiro A. Pedrosa L. Ferrés A. Diao D. Sierra À. González J.J. The vascular microenvironment in glioblastoma: A comprehensive review. Biomedicines 2022 10 6 1285 10.3390/biomedicines10061285 35740307
    [Google Scholar]
  119. Rubenstein J.L. Kim J. Ozawa T. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2000 2 4 306 314 10.1038/sj.neo.7900102 11005565
    [Google Scholar]
  120. Kloepper J. Riedemann L. Amoozgar Z. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc. Natl. Acad. Sci. USA 2016 113 16 4476 4481 10.1073/pnas.1525360113 27044098
    [Google Scholar]
  121. Scholz A. Harter P.N. Cremer S. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol. Med. 2016 8 1 39 57 10.15252/emmm.201505505 26666269
    [Google Scholar]
  122. Peterson T.E. Kirkpatrick N.D. Huang Y. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc. Natl. Acad. Sci. USA 2016 113 16 4470 4475 10.1073/pnas.1525349113 27044097
    [Google Scholar]
  123. Qian C. Liu C. Liu W. Zhou R. Zhao L. Targeting vascular normalization: A promising strategy to improve immune-vascular crosstalk in cancer immunotherapy. Front. Immunol. 2023 14 1291530 10.3389/fimmu.2023.1291530 38193080
    [Google Scholar]
  124. Takano S. Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation. Brain Tumor Pathol. 2012 29 2 73 86 10.1007/s10014‑011‑0077‑6 22218709
    [Google Scholar]
  125. Carrera-Aguado I. Marcos-Zazo L. Carrancio-Salán P. Guerra-Paes E. Sánchez-Juanes F. Muñoz-Félix J.M. The inhibition of vessel co-option as an emerging strategy for cancer therapy. Int. J. Mol. Sci. 2024 25 2 921 10.3390/ijms25020921 38255995
    [Google Scholar]
  126. Zhang J. Xue W. Xu K. Dual inhibition of PFKFB3 and VEGF normalizes tumor vasculature, reduces lactate production, and improves chemotherapy in glioblastoma: Insights from protein expression profiling and MRI. Theranostics 2020 10 16 7245 7259 10.7150/thno.44427 32641990
    [Google Scholar]
  127. Piao Y. Liang J. Holmes L. Henry V. Sulman E. de Groot J.F. Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin. Cancer Res. 2013 19 16 4392 4403 10.1158/1078‑0432.CCR‑12‑1557 23804423
    [Google Scholar]
  128. Huveldt D. Lewis-Tuffin L.J. Carlson B.L. Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion. PLoS One 2013 8 2 e56505 10.1371/journal.pone.0056505 23457577
    [Google Scholar]
  129. di Tomaso E. Snuderl M. Kamoun W.S. Glioblastoma recurrence after cediranib therapy in patients: Lack of “rebound” revascularization as mode of escape. Cancer Res. 2011 71 1 19 28 10.1158/0008‑5472.CAN‑10‑2602 21199795
    [Google Scholar]
  130. Renner D.N. Malo C.S. Jin F. Parney I.F. Pavelko K.D. Johnson A.J. Improved treatment efficacy of antiangiogenic therapy when combined with picornavirus vaccination in the GL261 glioma model. Neurotherapeutics 2016 13 1 226 236 10.1007/s13311‑015‑0407‑1 26620211
    [Google Scholar]
  131. Zhao P. Anami Y. Gao P. Enhanced anti-angiogenetic effect of transferrin receptor-mediated delivery of VEGF-trap in a glioblastoma mouse model. MAbs 2022 14 1 2057269 10.1080/19420862.2022.2057269 35388745
    [Google Scholar]
  132. Wen P.Y. Drappatz J. de Groot J. Phase II study of cabozantinib in patients with progressive glioblastoma: Subset analysis of patients naive to antiangiogenic therapy. Neuro-oncol. 2018 20 2 249 258 10.1093/neuonc/nox154 29016998
    [Google Scholar]
  133. Hainsworth J.D. Becker K.P. Mekhail T. Phase I/II study of bevacizumab with BKM120, an oral PI3K inhibitor, in patients with refractory solid tumors (phase I) and relapsed/refractory glioblastoma (phase II). J. Neurooncol. 2019 144 2 303 311 10.1007/s11060‑019‑03227‑7 31392595
    [Google Scholar]
  134. Kaley T.J. Panageas K.S. Mellinghoff I.K. Phase II trial of an AKT inhibitor (perifosine) for recurrent glioblastoma. J. Neurooncol. 2019 144 2 403 407 10.1007/s11060‑019‑03243‑7 31325145
    [Google Scholar]
  135. Brenner A.J. Floyd J. Fichtel L. Phase 2 trial of hypoxia activated evofosfamide (TH302) for treatment of recurrent bevacizumab-refractory glioblastoma. Sci. Rep. 2021 11 1 2306 10.1038/s41598‑021‑81841‑0 33504881
    [Google Scholar]
  136. Liu T. Ma W. Xu H. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat. Commun. 2018 9 1 3439 10.1038/s41467‑018‑05982‑z 30150753
    [Google Scholar]
  137. Platet N. Liu S.Y. Atifi M.E. Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett. 2007 258 2 286 290 10.1016/j.canlet.2007.09.012 17977646
    [Google Scholar]
  138. Li Z. Bao S. Wu Q. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009 15 6 501 513 10.1016/j.ccr.2009.03.018 19477429
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128367551250703122830
Loading
/content/journals/cpd/10.2174/0113816128367551250703122830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test