Skip to content
2000
image of Connection Between Mitochondria and Rheumatoid Arthritis and Osteoarthritis: Personalized Treatment Strategies

Abstract

This review explores the critical role of mitochondria in the immunometabolic processes underlying rheumatoid arthritis (RA) and osteoarthritis (OA). It examines the interplay between immune cells, metabolic demands, and tissue environments, emphasizing the impact of bioenergetics on immune responses and disease progression. Mitochondrial dysfunction in chondrocytes and immune cells contributes to OA and RA through mechanisms such as oxidative stress, disrupted calcium homeostasis, and inflammasome activation. In OA, mitochondrial dysfunction in chondrocytes results in impaired energy production, elevated reactive oxygen species (ROS), and calcium imbalance, leading to cartilage degradation and inflammation. The review highlights how disturbances in the mitochondrial respiratory chain and apoptotic pathways drive joint tissue damage. In contrast, RA shows how mitochondrial dysfunction influences chronic inflammation and synovial hyperplasia. The role of mitochondrial DNA (mtDNA) as a damage-associated molecular pattern (DAMP) is emphasized, illustrating how oxidized mtDNA activates inflammatory pathways, triggers immune responses, and contributes to joint destruction. Additionally, mitochondrial genetic variations may exacerbate inflammation and oxidative stress in RA. The review also discusses the effects of various RA treatments-conventional synthetic anti-rheumatic drugs, biological agents, and targeted synthetic DMARDs-on mitochondrial function. Insights into how these therapies modulate mitochondrial pathways and oxidative stress in immune and joint cells highlight new potential treatment strategies. This review enhances our understanding of OA and RA pathophysiology by elucidating the connections between mitochondria, immune responses, and rheumatic diseases, paving the way for innovative therapies targeting mitochondrial dysfunction.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128354572250408165158
2025-04-30
2025-09-10
Loading full text...

Full text loading...

References

  1. Ganeshan K. Chawla A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 2014 32 1 609 634 10.1146/annurev‑immunol‑032713‑120236 24655299
    [Google Scholar]
  2. Chen S. Saeed A.F.U.H. Liu Q. Jiang Q. Xu H. Xiao G.G. Rao L. Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. 2023 8 1 207 10.1038/s41392‑023‑01452‑1 37211559
    [Google Scholar]
  3. Aristizábal B. González Á. Innate immune system. Autoimmunity: From Bench to Bedside. Anaya J.M. Shoenfeld Y. Rojas-Villarraga A. Bogota, Colombia El Rosario University Press 2013
    [Google Scholar]
  4. Morris A.L. Mohiuddin S.S. Biochemistry, nutrients. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  5. Rademakers T. Horvath J.M. Blitterswijk C.A. LaPointe V.L.S. Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. J. Tissue Eng. Regen. Med. 2019 13 10 1815 1829 10.1002/term.2932 31310055
    [Google Scholar]
  6. Garcia C. Andersen C.J. Blesso C.N. The role of lipids in the regulation of immune responses. Nutrients 2023 15 18 3899 10.3390/nu15183899 37764683
    [Google Scholar]
  7. Wang S. Jung S. Ko K.S. Effects of amino acids supplementation on lipid and glucose metabolism in HepG2 cells. Nutrients 2022 14 15 3050 10.3390/nu14153050 35893906
    [Google Scholar]
  8. Zeng Q. Sun X. Xiao L. Xie Z. Bettini M. Deng T. A unique population: Adipose-resident regulatory T cells. Front. Immunol. 2018 9 2075 10.3389/fimmu.2018.02075 30323806
    [Google Scholar]
  9. Abdulkhaleq L.A. Assi M.A. Abdullah R. Zamri-Saad M. Taufiq-Yap Y.H. Hezmee M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018 11 5 627 635 10.14202/vetworld.2018.627‑635 29915501
    [Google Scholar]
  10. Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage 2013 21 9 1145 1153 10.1016/j.joca.2013.03.018 23973124
    [Google Scholar]
  11. Di Nicola V. Degenerative osteoarthritis a reversible chronic disease. Regen. Ther. 2020 15 149 160 10.1016/j.reth.2020.07.007 33426213
    [Google Scholar]
  12. Yao Q. Wu X. Tao C. Gong W. Chen M. Qu M. Zhong Y. He T. Chen S. Xiao G. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 56 10.1038/s41392‑023‑01330‑w 36737426
    [Google Scholar]
  13. Qi Z. Zhu J. Cai W. Lou C. Li Z. The role and intervention of mitochondrial metabolism in osteoarthritis. Mol. Cell. Biochem. 2024 479 6 1513 1524 10.1007/s11010‑023‑04818‑9 37486450
    [Google Scholar]
  14. De Nicolo B. Cataldi-Stagetti E. Diquigiovanni C. Bonora E. Calcium and reactive oxygen species signaling interplays in cardiac physiology and pathologies. Antioxidants 2023 12 2 353 10.3390/antiox12020353 36829912
    [Google Scholar]
  15. Ziskoven C. Jäger M. Zilkens C. Bloch W. Brixius K. Krauspe R. Oxidative stress in secondary osteoarthritis: From cartilage destruction to clinical presentation? Orthop. Rev. (Pavia) 2010 2 2 e23 10.4081/or.2010.e23 21808712
    [Google Scholar]
  16. Primorac D. Molnar V. Rod E. Jeleč Ž. Čukelj F. Matišić V. Vrdoljak T. Hudetz D. Hajsok H. Borić I. Knee osteoarthritis: A review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes 2020 11 8 854 10.3390/genes11080854 32722615
    [Google Scholar]
  17. Dove A.P.H. Cmelak A. Darrow K. McComas K.N. Chowdhary M. Beckta J. Kirschner A.N. The use of low-dose radiation therapy in osteoarthritis: A review. Int. J. Radiat. Oncol. Biol. Phys. 2022 114 2 203 220 10.1016/j.ijrobp.2022.04.029 35504501
    [Google Scholar]
  18. Yasmeen F. Pirzada R.H. Ahmad B. Choi B. Choi S. Understanding autoimmunity: Mechanisms, predisposing factors, and cytokine therapies. Int. J. Mol. Sci. 2024 25 14 7666 10.3390/ijms25147666 39062908
    [Google Scholar]
  19. Loeser R.F. Goldring S.R. Scanzello C.R. Goldring M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012 64 6 1697 1707 10.1002/art.34453 22392533
    [Google Scholar]
  20. Coaccioli S. Sarzi-Puttini P. Zis P. Rinonapoli G. Varrassi G. Osteoarthritis: New insight on its pathophysiology. J. Clin. Med. 2022 11 20 6013 10.3390/jcm11206013 36294334
    [Google Scholar]
  21. Hsu W.C. Araneta M.R.G. Kanaya A.M. Chiang J.L. Fujimoto W. BMI cut points to identify at-risk Asian Americans for type 2 diabetes screening. Diabetes Care 2015 38 1 150 158 10.2337/dc14‑2391 25538311
    [Google Scholar]
  22. Dalmao-Fernández A. Hermida-Gómez T. Nogueira-Recalde U. Rego-Pérez I. Blanco-Garcia F.J. Fernández-Moreno M. Mitochondrial role on cellular apoptosis, autophagy, and senescence during osteoarthritis pathogenesis. Cells 2024 13 11 976 10.3390/cells13110976 38891108
    [Google Scholar]
  23. Liu H.Y. Chang C.F. Lu C.C. Wu S.C. Huang B. Cheng T.L. Lin S.Y. Ho C.J. Lee M.J. Yang C.D. Wang Y.C. Li J.Y. Liu P.C. Wei C.W. Kang L. Chen C.H. The role of mitochondrial metabolism, AMPK-SIRT mediated pathway, LncRNA and MicroRNA in osteoarthritis. Biomedicines 2022 10 7 1477 10.3390/biomedicines10071477 35884782
    [Google Scholar]
  24. Blanco F.J. López-Armada M.J. Maneiro E. Mitochondrial dysfunction in osteoarthritis. Mitochondrion 2004 4 5-6 715 728 10.1016/j.mito.2004.07.022 16120427
    [Google Scholar]
  25. Adam M.S. Zhuang H. Ren X. Zhang Y. Zhou P. The metabolic characteristics and changes of chondrocytes in vivo and in vitro in osteoarthritis. Front. Endocrinol. (Lausanne) 2024 15 1393550 10.3389/fendo.2024.1393550 38854686
    [Google Scholar]
  26. Jin K. Qian C. Lin J. Liu B. Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. Front. Oncol. 2023 13 1099811 10.3389/fonc.2023.1099811 36776289
    [Google Scholar]
  27. Redza-Dutordoir M. Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 12 2977 2992 10.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  28. Nissanka N. Moraes C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018 592 5 728 742 10.1002/1873‑3468.12956 29281123
    [Google Scholar]
  29. Liu L. Luo P. Yang M. Wang J. Hou W. Xu P. The role of oxidative stress in the development of knee osteoarthritis: A comprehensive research review. Front. Mol. Biosci. 2022 9 1001212 10.3389/fmolb.2022.1001212 36203877
    [Google Scholar]
  30. Nita M. Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev. 2016 2016 1 3164734 10.1155/2016/3164734 26881021
    [Google Scholar]
  31. Zhang D. Wang F. Li P. Gao Y. Mitochondrial Ca2+ homeostasis: Emerging roles and clinical significance in cardiac remodeling. Int. J. Mol. Sci. 2022 23 6 3025 10.3390/ijms23063025 35328444
    [Google Scholar]
  32. Panda S. Behera S. Alam M.F. Syed G.H. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 2021 58 227 242 10.1016/j.mito.2021.03.008 33775873
    [Google Scholar]
  33. Vaamonde-García C. Riveiro-Naveira R.R. Valcárcel-Ares M.N. Hermida-Carballo L. Blanco F.J. López-Armada M.J. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 2012 64 9 2927 2936 10.1002/art.34508 22549761
    [Google Scholar]
  34. Muraoka N. Nara K. Tamura F. Kojima H. Yamakawa H. Sadahiro T. Miyamoto K. Isomi M. Haginiwa S. Tani H. Kurotsu S. Osakabe R. Torii S. Shimizu S. Okano H. Sugimoto Y. Fukuda K. Ieda M. Role of cyclooxygenase-2- mediated prostaglandin E2-prostaglandin E receptor 4 signaling in cardiac reprogramming. Nat. Commun. 2019 10 1 674 10.1038/s41467‑019‑08626‑y 30787297
    [Google Scholar]
  35. Hwang H. Kim H. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 2015 16 11 26035 26054 10.3390/ijms161125943 26528972
    [Google Scholar]
  36. Wang R. Maimaitijuma T. Ma Y.Y. Jiao Y. Cao Y.P. Mitochondrial transfer from bone-marrow-derived mesenchymal stromal cells to chondrocytes protects against cartilage degenerative mitochondrial dysfunction in rats chondrocytes. Chin. Med. J. (Engl.) 2021 134 2 212 218 10.1097/CM9.0000000000001057 32858593
    [Google Scholar]
  37. Wang C. Youle R.J. The role of mitochondria in apoptosis. Annu. Rev. Genet. 2009 43 1 95 118 10.1146/annurev‑genet‑102108‑134850 19659442
    [Google Scholar]
  38. Li Y. Rasheed M. Liu J. Chen Z. Deng Y. Deciphering the molecular nexus: An in-depth review of mitochondrial pathways and their role in cell death crosstalk. Cells 2024 13 10 863 10.3390/cells13100863 38786088
    [Google Scholar]
  39. Mustafa M. Ahmad R. Tantry I.Q. Ahmad W. Siddiqui S. Alam M. Abbas K. Moinuddin Hassan M.I. Habib S. Islam S. Apoptosis: A comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications. Cells 2024 13 22 1838 10.3390/cells13221838 39594587
    [Google Scholar]
  40. Hoffmann R.F. Jonker M.R. Brandenburg S.M. de Bruin H.G. ten Hacken N.H.T. van Oosterhout A.J.M. Heijink I.H. Mitochondrial dysfunction increases pro-inflammatory cytokine production and impairs repair and corticosteroid responsiveness in lung epithelium. Sci. Rep. 2019 9 1 15047 10.1038/s41598‑019‑51517‑x 31636329
    [Google Scholar]
  41. Kao W.C. Chen J.C. Liu P.C. Lu C.C. Lin S.Y. Chuang S.C. Wu S.C. Chang L. Lee M.J. Yang C.D. Lee T.C. Wang Y.C. Li J.Y. Wei C.W. Chen C.H. The role of autophagy in osteoarthritic cartilage. Biomolecules 2022 12 10 1357 10.3390/biom12101357 36291565
    [Google Scholar]
  42. Geto Z. Molla M.D. Challa F. Belay Y. Getahun T. Mitochondrial dynamic dysfunction as a main triggering factor for inflammation associated chronic non-communicable diseases. J. Inflamm. Res. 2020 13 97 107 10.2147/JIR.S232009 32110085
    [Google Scholar]
  43. Amador-Martínez I. Aparicio-Trejo O.E. Bernabe-Yepes B. Aranda-Rivera A.K. Cruz-Gregorio A. Sánchez-Lozada L.G. Pedraza-Chaverri J. Tapia E. Mitochondrial impairment: A link for inflammatory responses activation in the cardiorenal syndrome type 4. Int. J. Mol. Sci. 2023 24 21 15875 10.3390/ijms242115875 37958859
    [Google Scholar]
  44. Grässel S. Zaucke F. Madry H. Osteoarthritis: Novel molecular mechanisms increase our understanding of the disease pathology. J. Clin. Med. 2021 10 9 1938 10.3390/jcm10091938 33946429
    [Google Scholar]
  45. Chen C. Xie J. Rajappa R. Deng L. Fredberg J. Yang L. Interleukin-1β and tumor necrosis factor-α increase stiffness and impair contractile function of articular chondrocytes. Acta Biochim. Biophys. Sin. (Shanghai) 2015 47 2 121 129 10.1093/abbs/gmu116 25520178
    [Google Scholar]
  46. Horváth E. Sólyom Á. Székely J. Nagy E.E. Popoviciu H. Inflammatory and metabolic signaling interfaces of the hypertrophic and senescent chondrocyte phenotypes associated with osteoarthritis. Int. J. Mol. Sci. 2023 24 22 16468 10.3390/ijms242216468 38003658
    [Google Scholar]
  47. Cabral-Pacheco G.A. Garza-Veloz I. Castruita-De la Rosa C. Ramirez-Acuña J.M. Perez-Romero B.A. Guerrero-Rodriguez J.F. Martinez-Avila N. Martinez-Fierro M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 2020 21 24 9739 10.3390/ijms21249739 33419373
    [Google Scholar]
  48. Young D.A. Barter M.J. Wilkinson D.J. Recent advances in understanding the regulation of metalloproteinases. F1000Research, 8, F1000 Faculty Rev-195. F1000Research 2019 8 10.12688/f1000research.17471.1
    [Google Scholar]
  49. Guan M. Yu Q. Zhou G. Wang Y. Yu J. Yang W. Li Z. Mechanisms of chondrocyte cell death in osteoarthritis: Implications for disease progression and treatment. J. Orthop. Surg. Res. 2024 19 1 550 10.1186/s13018‑024‑05055‑6 39252111
    [Google Scholar]
  50. Han Z. Wang K. Ding S. Zhang M. Cross-talk of inflammation and cellular senescence: A new insight into the occurrence and progression of osteoarthritis. Bone Res. 2024 12 1 69 10.1038/s41413‑024‑00375‑z 39627227
    [Google Scholar]
  51. Kan S. Duan M. Liu Y. Wang C. Xie J. Role of mitochondria in physiology of chondrocytes and diseases of osteoarthritis and rheumatoid arthritis. Cartilage 2021 13 2_suppl 1102S 1121S 10.1177/19476035211063858 34894777
    [Google Scholar]
  52. Zhao T. Niu D. Chen Y. Fu P. The role of mitochondrial quality control mechanisms in chondrocyte senescence. Exp. Gerontol. 2024 188 112379 10.1016/j.exger.2024.112379 38378048
    [Google Scholar]
  53. Pi P. Zeng L. Zeng Z. Zong K. Han B. Bai X. Wang Y. The role of targeting glucose metabolism in chondrocytes in the pathogenesis and therapeutic mechanisms of osteoarthritis: a narrative review. Front. Endocrinol. (Lausanne) 2024 15 1319827 10.3389/fendo.2024.1319827 38510704
    [Google Scholar]
  54. Kowalczyk P. Sulejczak D. Kleczkowska P. Bukowska-Ośko I. Kucia M. Popiel M. Wietrak E. Kramkowski K. Wrzosek K. Kaczyńska K. Mitochondrial oxidative stress: A causative factor and therapeutic target in many diseases. Int. J. Mol. Sci. 2021 22 24 13384 10.3390/ijms222413384 34948180
    [Google Scholar]
  55. Mao X. Fu P. Wang L. Xiang C. Mitochondria: Potential targets for osteoarthritis. Front. Med. (Lausanne) 2020 7 581402 10.3389/fmed.2020.581402 33324661
    [Google Scholar]
  56. Scheffer D.L. Garcia A.A. Lee L. Mochly-Rosen D. Ferreira J.C.B. Mitochondrial fusion, fission, and mitophagy in cardiac diseases: Challenges and therapeutic opportunities. Antioxid. Redox Signal. 2022 36 13-15 844 863 10.1089/ars.2021.0145 35044229
    [Google Scholar]
  57. Ren L. Chen X. Chen X. Li J. Cheng B. Xia J. Mitochondrial dynamics: Fission and fusion in fate determination of mesenchymal stem cells. Front. Cell Dev. Biol. 2020 8 580070 10.3389/fcell.2020.580070 33178694
    [Google Scholar]
  58. Wang S. Tan J. Miao Y. Zhang Q. Mitochondrial dynamics, mitophagy, and mitochondria–endoplasmic reticulum contact sites crosstalk under hypoxia. Front. Cell Dev. Biol. 2022 10 848214 10.3389/fcell.2022.848214 35281107
    [Google Scholar]
  59. Zheng L. Zhang Z. Sheng P. Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res. Rev. 2021 66 101249 10.1016/j.arr.2020.101249 33383189
    [Google Scholar]
  60. Song Y. Zhou Y. Zhou X. The role of mitophagy in innate immune responses triggered by mitochondrial stress. Cell Commun. Signal. 2020 18 1 186 10.1186/s12964‑020‑00659‑x 33239048
    [Google Scholar]
  61. Defois A. Bon N. Charpentier A. Georget M. Gaigeard N. Blanchard F. Hamel A. Waast D. Armengaud J. Renoult O. Pecqueur C. Maugars Y. Boutet M.A. Guicheux J. Vinatier C. Osteoarthritic chondrocytes undergo a glycolysis-related metabolic switch upon exposure to IL-1b or TNF. Cell Commun. Signal. 2023 21 1 137 10.1186/s12964‑023‑01150‑z 37316888
    [Google Scholar]
  62. Kühn K. D’Lima D.D. Hashimoto S. Lotz M. Cell death in cartilage. Osteoarthritis Cartilage 2004 12 1 1 16 10.1016/j.joca.2003.09.015 14697678
    [Google Scholar]
  63. Baumgartner H.K. Gerasimenko J.V. Thorne C. Ferdek P. Pozzan T. Tepikin A.V. Petersen O.H. Sutton R. Watson A.J.M. Gerasimenko O.V. Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J. Biol. Chem. 2009 284 31 20796 20803 10.1074/jbc.M109.025353 19515844
    [Google Scholar]
  64. Baev A.Y. Vinokurov A.Y. Novikova I.N. Dremin V.V. Potapova E.V. Abramov A.Y. Interaction of mitochondrial calcium and ROS in neurodegeneration. Cells 2022 11 4 706 10.3390/cells11040706 35203354
    [Google Scholar]
  65. He Y. Wu Z. Xu L. Xu K. Chen Z. Ran J. Wu L. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis. Cell. Mol. Life Sci. 2020 77 19 3729 3743 10.1007/s00018‑020‑03497‑9 32468094
    [Google Scholar]
  66. Zhang M. Wu J. Cai K. Liu Y. Lu B. Zhang J. Xu J. Gu C. Chen T. From dysfunction to healing: Advances in mitochondrial therapy for Osteoarthritis. J. Transl. Med. 2024 22 1 1013 10.1186/s12967‑024‑05799‑z 39529128
    [Google Scholar]
  67. Lee K.H. Kim U.J. Lee B.H. Cha M. Safeguarding the brain from oxidative damage. Free Radic. Biol. Med. 2025 226 143 157 Epub ahead of print 10.1016/j.freeradbiomed.2024.11.019 39547523
    [Google Scholar]
  68. Tumilaar S.G. Hardianto A. Dohi H. Kurnia D. A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. J. Chem. 2024 2024 1 21 10.1155/2024/5594386
    [Google Scholar]
  69. Wang H. Su J. Yu M. Xia Y. Wei Y. PGC-1α in osteoarthritic chondrocytes: From mechanism to target of action. Front. Pharmacol. 2023 14 1169019 10.3389/fphar.2023.1169019 37089944
    [Google Scholar]
  70. Abu Shelbayeh O. Arroum T. Morris S. Busch K.B. PGC-1α is a master regulator of mitochondrial lifecycle and ros stress response. Antioxidants 2023 12 5 1075 10.3390/antiox12051075 37237941
    [Google Scholar]
  71. Lin Z. Wang H. Song J. Xu G. Lu F. Ma X. Xia X. Jiang J. Zou F. The role of mitochondrial fission in intervertebral disc degeneration. Osteoarthritis Cartilage 2023 31 2 158 166 10.1016/j.joca.2022.10.020 36375758
    [Google Scholar]
  72. Zhou Q. Ren C. Li J. Wang L. Duan Y. Yao R. Tian Y. Yao Y. The crosstalk between mitochondrial quality control and metal-dependent cell death. Cell Death Dis. 2024 15 4 299 10.1038/s41419‑024‑06691‑w 38678018
    [Google Scholar]
  73. Zhu X. Qin Z. Zhou M. Li C. Jing J. Ye W. Gan X. The role of mitochondrial permeability transition in bone metabolism, bone healing, and bone diseases. Biomolecules 2024 14 10 1318 10.3390/biom14101318 39456250
    [Google Scholar]
  74. Agarwal A. Wu P.H. Hughes E.G. Fukaya M. Tischfield M.A. Langseth A.J. Wirtz D. Bergles D.E. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 2017 93 3 587 605.e7 10.1016/j.neuron.2016.12.034 28132831
    [Google Scholar]
  75. Clemente-Suárez V.J. Martín-Rodríguez A. Yáñez-Sepúlveda R. Tornero-Aguilera J.F. Mitochondrial transfer as a novel therapeutic approach in disease diagnosis and treatment. Int. J. Mol. Sci. 2023 24 10 8848 10.3390/ijms24108848 37240194
    [Google Scholar]
  76. Bourebaba L. Bourebaba N. Galuppo L. Marycz K. Artificial mitochondrial transplantation (AMT) reverses aging of mesenchymal stromal cells and improves their immunomodulatory properties in LPS-induced synoviocytes inflammation. Biochim. Biophys. Acta Mol. Cell Res. 2024 1871 7 119806 10.1016/j.bbamcr.2024.119806 39098401
    [Google Scholar]
  77. Velarde F. Ezquerra S. Delbruyere X. Caicedo A. Hidalgo Y. Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: Mechanisms and functional impact. Cell. Mol. Life Sci. 2022 79 3 177 10.1007/s00018‑022‑04207‑3 35247083
    [Google Scholar]
  78. Liu Q. Zhang X. Zhu T. Xu Z. Dong Y. Chen B. Mitochondrial transfer from mesenchymal stem cells: Mechanisms and functions. Mitochondrion 2024 79 101950 10.1016/j.mito.2024.101950 39218052
    [Google Scholar]
  79. Malekpour K. Hazrati A. Soudi S. Hashemi S.M. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. J. Control. Release 2023 354 755 769 10.1016/j.jconrel.2023.01.059 36706838
    [Google Scholar]
  80. Di Mambro T. Pellielo G. Agyapong E.D. Carinci M. Chianese D. Giorgi C. Morciano G. Patergnani S. Pinton P. Rimessi A. The tricky connection between extracellular vesicles and mitochondria in inflammatory-related diseases. Int. J. Mol. Sci. 2023 24 9 8181 10.3390/ijms24098181 37175888
    [Google Scholar]
  81. Payandeh Z. Tangruksa B. Synnergren J. Heydarkhan-Hagvall S. Nordin J.Z. Andaloussi S.E.L. Borén J. Wiseman J. Bohlooly-Y M. Lindfors L. Valadi H. Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics. Mol. Aspects Med. 2024 99 101302 10.1016/j.mam.2024.101302 39094449
    [Google Scholar]
  82. Li J. Wang T. Hou X. Li Y. Zhang J. Bai W. Qian H. Sun Z. Extracellular vesicles: Opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J. Nanobiotechnology 2024 22 1 487 10.1186/s12951‑024‑02750‑8 39143493
    [Google Scholar]
  83. Guo Q. Wang Y. Xu D. Nossent J. Pavlos N.J. Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018 6 1 15 10.1038/s41413‑018‑0016‑9 29736302
    [Google Scholar]
  84. Checa J. Aran J.M. Reactive oxygen species: Drivers of physiological and pathological processes. J. Inflamm. Res. 2020 13 1057 1073 10.2147/JIR.S275595 33293849
    [Google Scholar]
  85. Fock E.M. Parnova R.G. Protective effect of mitochondria-targeted antioxidants against inflammatory response to lipopolysaccharide challenge: A review. Pharmaceutics 2021 13 2 144 10.3390/pharmaceutics13020144 33499252
    [Google Scholar]
  86. Patergnani S. Bouhamida E. Leo S. Pinton P. Rimessi A. Mitochondrial oxidative stress and “Mito-Inflammation”: Actors in the diseases. Biomedicines 2021 9 2 216 10.3390/biomedicines9020216 33672477
    [Google Scholar]
  87. Bolduc J.A. Collins J.A. Loeser R.F. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic. Biol. Med. 2019 132 73 82 10.1016/j.freeradbiomed.2018.08.038 30176344
    [Google Scholar]
  88. Berdiaki A. Neagu M. Spyridaki I. Kuskov A. Perez S. Nikitovic D. Hyaluronan and reactive oxygen species signaling: Novel cues from the matrix? Antioxidants 2023 12 4 824 10.3390/antiox12040824 37107200
    [Google Scholar]
  89. Ma C. Wang J. Hong F. Yang S. Mitochondrial dysfunction in rheumatoid arthritis. Biomolecules 2022 12 9 1216 10.3390/biom12091216 36139055
    [Google Scholar]
  90. Ansari M.Y. Khan N.M. Ahmad I. Haqqi T.M. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes. Osteoarthritis Cartilage 2018 26 8 1087 1097 10.1016/j.joca.2017.07.020 28801211
    [Google Scholar]
  91. Kronzer V.L. Sparks J.A. Raychaudhuri S. Cerhan J.R. Low-frequency and rare genetic variants associated with rheumatoid arthritis risk. Nat. Rev. Rheumatol. 2024 20 5 290 300 10.1038/s41584‑024‑01096‑7 38538758
    [Google Scholar]
  92. Riitano G. Recalchi S. Capozzi A. Manganelli V. Misasi R. Garofalo T. Sorice M. Longo A. The role of autophagy as a trigger of post-translational modifications of proteins and extracellular vesicles in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci. 2023 24 16 12764 10.3390/ijms241612764 37628944
    [Google Scholar]
  93. Matuz-Mares D. González-Andrade M. Araiza-Villanueva M.G. Vilchis-Landeros M.M. Vázquez-Meza H. Mitochondrial calcium: Effects of its imbalance in disease. Antioxidants 2022 11 5 801 10.3390/antiox11050801 35624667
    [Google Scholar]
  94. Moon D.O. Calcium’s role in orchestrating cancer apoptosis: Mitochondrial-centric perspective. Int. J. Mol. Sci. 2023 24 10 8982 10.3390/ijms24108982 37240331
    [Google Scholar]
  95. Weyand C.M. Wu B. Huang T. Hu Z. Goronzy J.J. Mitochondria as disease-relevant organelles in rheumatoid arthritis. Clin. Exp. Immunol. 2023 211 3 208 223 10.1093/cei/uxac107 36420636
    [Google Scholar]
  96. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014 20 7 1126 1167 10.1089/ars.2012.5149 23991888
    [Google Scholar]
  97. Clayton S.A. MacDonald L. Kurowska-Stolarska M. Clark A.R. Mitochondria as key players in the pathogenesis and treatment of rheumatoid arthritis. Front. Immunol. 2021 12 673916 10.3389/fimmu.2021.673916 33995417
    [Google Scholar]
  98. Diogo D. Kurreeman F. Stahl E.A. Liao K.P. Gupta N. Greenberg J.D. Rivas M.A. Hickey B. Flannick J. Thomson B. Guiducci C. Ripke S. Adzhubey I. Barton A. Kremer J.M. Alfredsson L. Sunyaev S. Martin J. Zhernakova A. Bowes J. Eyre S. Siminovitch K.A. Gregersen P.K. Worthington J. Klareskog L. Padyukov L. Raychaudhuri S. Plenge R.M. Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid arthritis. Am. J. Hum. Genet. 2013 92 1 15 27 10.1016/j.ajhg.2012.11.012 23261300
    [Google Scholar]
  99. Hu Z. Li Y. Zhang L. Jiang Y. Long C. Yang Q. Yang M. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: State of the art review. Front. Immunol. 2024 15 1250884 10.3389/fimmu.2024.1250884 38482018
    [Google Scholar]
  100. Promila L. Joshi A. Khan S. Aggarwal A. Lahiri A. Role of mitochondrial dysfunction in the pathogenesis of rheumatoid arthritis: Looking closely at fibroblast- like synoviocytes. Mitochondrion 2023 73 62 71 10.1016/j.mito.2023.10.004 38506094
    [Google Scholar]
  101. Reunanen N. Kähäri V.M. Matrix metalloproteinases in cancer cell invasion. Madame Curie Bioscience Database. Austin, TX Landes Bioscience 2013
    [Google Scholar]
  102. López-Armada M.J. Fernández-Rodríguez J.A. Blanco F.J. Mitochondrial dysfunction and oxidative stress in rheumatoid arthritis. Antioxidants 2022 11 6 1151 10.3390/antiox11061151 35740048
    [Google Scholar]
  103. Moodley D. Mody G. Patel N. Chuturgoon A.A. Mitochondrial depolarisation and oxidative stress in rheumatoid arthritis patients. Clin. Biochem. 2008 41 16-17 1396 1401 10.1016/j.clinbiochem.2008.08.072 18789914
    [Google Scholar]
  104. Lane R.S. Fu Y. Matsuzaki S. Kinter M. Humphries K.M. Griffin T.M. Mitochondrial respiration and redox coupling in articular chondrocytes. Arthritis Res. Ther. 2015 17 1 54 10.1186/s13075‑015‑0566‑9 25889867
    [Google Scholar]
  105. Wu X. Liyanage C. Plan M. Stark T. McCubbin T. Barrero R.A. Batra J. Crawford R. Xiao Y. Prasadam I. Dysregulated energy metabolism impairs chondrocyte function in osteoarthritis. Osteoarthritis Cartilage 2023 31 5 613 626 10.1016/j.joca.2022.11.004 36410637
    [Google Scholar]
  106. Dan Dunn J. Alvarez L.A.J. Zhang X. Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015 6 472 485 10.1016/j.redox.2015.09.005 26432659
    [Google Scholar]
  107. Tirichen H. Yaigoub H. Xu W. Wu C. Li R. Li Y. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front. Physiol. 2021 12 627837 10.3389/fphys.2021.627837 33967820
    [Google Scholar]
  108. Foo J. Bellot G. Pervaiz S. Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022 30 7 679 692 10.1016/j.tim.2021.12.011 35063304
    [Google Scholar]
  109. Nakahira K. Hisata S. Choi A.M.K. The roles of mitochondrial damage associated molecular patterns in diseases. Antioxid. Redox Signal. 2015 23 17 1329 1350 10.1089/ars.2015.6407 26067258
    [Google Scholar]
  110. Chen S. Liao Z. Xu P. Mitochondrial control of innate immune responses. Front. Immunol. 2023 14 1166214 10.3389/fimmu.2023.1166214 37325622
    [Google Scholar]
  111. Boguszewska K. Szewczuk M. Kaźmierczak-Barańska J. Karwowski B.T. The similarities between human mitochondria and bacteria in the context of structure, genome, and base excision repair system. Molecules 2020 25 12 2857 10.3390/molecules25122857 32575813
    [Google Scholar]
  112. Riley J.S. Tait S.W.G. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020 21 4 e49799 10.15252/embr.201949799 32202065
    [Google Scholar]
  113. Rossmann M.P. Dubois S.M. Agarwal S. Zon L.I. Mitochondrial function in development and disease. Dis. Model. Mech. 2021 14 6 dmm048912 10.1242/dmm.048912 34114603
    [Google Scholar]
  114. Jiao Y. Yan Z. Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Front. Immunol. 2023 14 1160035 10.3389/fimmu.2023.1160035 37122709
    [Google Scholar]
  115. Cadet J. Davies K.J.A. Oxidative DNA damage & repair: An introduction. Free Radic. Biol. Med. 2017 107 2 12 10.1016/j.freeradbiomed.2017.03.030 28363603
    [Google Scholar]
  116. Lehmann J. Giaglis S. Kyburz D. Daoudlarian D. Walker U.A. Plasma mtDNA as a possible contributor to and biomarker of inflammation in rheumatoid arthritis. Arthritis Res. Ther. 2024 26 1 97 10.1186/s13075‑024‑03329‑2 38715082
    [Google Scholar]
  117. Rykova E. Sizikov A. Roggenbuck D. Antonenko O. Bryzgalov L. Morozkin E. Skvortsova K. Vlassov V. Laktionov P. Kozlov V. Circulating DNA in rheumatoid arthritis: Pathological changes and association with clinically used serological markers. Arthritis Res. Ther. 2017 19 1 85 10.1186/s13075‑017‑1295‑z 28464939
    [Google Scholar]
  118. Boyapati R.K. Tamborska A. Dorward D.A. Ho G.T. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000 Res. 2017 6 169 10.12688/f1000research.10397.1 28299196
    [Google Scholar]
  119. Paleolog E.M. The vasculature in rheumatoid arthritis: Cause or consequence? Int. J. Exp. Pathol. 2009 90 3 249 261 10.1111/j.1365‑2613.2009.00640.x 19563609
    [Google Scholar]
  120. Ng C.T. Biniecka M. Kennedy A. McCormick J. FitzGerald O. Bresnihan B. Buggy D. Taylor C.T. O’Sullivan J. Fearon U. Veale D.J. Synovial tissue hypoxia and inflammation in vivo. Ann. Rheum. Dis. 2010 69 7 1389 1395 10.1136/ard.2009.119776 20439288
    [Google Scholar]
  121. Fresneda Alarcon M. McLaren Z. Wright H.L. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: Same foe different M.O. Front. Immunol. 2021 12 649693 10.3389/fimmu.2021.649693 33746988
    [Google Scholar]
  122. Manda A. Pruchniak M.P. Araźna M. Demkow U.A. Neutrophil extracellular traps in physiology and pathology. Cent. Eur. J. Immunol. 2014 1 1 116 121 10.5114/ceji.2014.42136 26155111
    [Google Scholar]
  123. Cao Z. Zhao M. Sun H. Hu L. Chen Y. Fan Z. Roles of mitochondria in neutrophils. Front. Immunol. 2022 13 934444 10.3389/fimmu.2022.934444 36081497
    [Google Scholar]
  124. Lood C. Blanco L.P. Purmalek M.M. Carmona-Rivera C. De Ravin S.S. Smith C.K. Malech H.L. Ledbetter J.A. Elkon K.B. Kaplan M.J. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 2016 22 2 146 153 10.1038/nm.4027 26779811
    [Google Scholar]
  125. Wang M. Ishikawa T. Lai Y. Nallapothula D. Singh R.R. Diverse roles of NETosis in the pathogenesis of lupus. Front. Immunol. 2022 13 895216 10.3389/fimmu.2022.895216 35686129
    [Google Scholar]
  126. Kim J. Kim H.S. Chung J.H. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Exp. Mol. Med. 2023 55 3 510 519 10.1038/s12276‑023‑00965‑7 36964253
    [Google Scholar]
  127. Zhiyu W. Wang N. Wang Q. Peng C. Zhang J. Liu P. Ou A. Zhong S. Cordero M.D. Lin Y. The inflammasome: An emerging therapeutic oncotarget for cancer prevention. Oncotarget 2016 7 31 50766 50780 10.18632/oncotarget.9391 27206676
    [Google Scholar]
  128. Marchi S. Guilbaud E. Tait S.W.G. Yamazaki T. Galluzzi L. Mitochondrial control of inflammation. Nat. Rev. Immunol. 2023 23 3 159 173 10.1038/s41577‑022‑00760‑x 35879417
    [Google Scholar]
  129. Shimada K. Crother T.R. Karlin J. Dagvadorj J. Chiba N. Chen S. Ramanujan V.K. Wolf A.J. Vergnes L. Ojcius D.M. Rentsendorj A. Vargas M. Guerrero C. Wang Y. Fitzgerald K.A. Underhill D.M. Town T. Arditi M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012 36 3 401 414 10.1016/j.immuni.2012.01.009 22342844
    [Google Scholar]
  130. Lin M. Liu N. Qin Z. Wang Y. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol. Sin. 2022 43 10 2439 2447 10.1038/s41401‑022‑00879‑6 35233090
    [Google Scholar]
  131. Iyer S.S. He Q. Janczy J.R. Elliott E.I. Zhong Z. Olivier A.K. Sadler J.J. Knepper-Adrian V. Han R. Qiao L. Eisenbarth S.C. Nauseef W.M. Cassel S.L. Sutterwala F.S. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 2013 39 2 311 323 10.1016/j.immuni.2013.08.001 23954133
    [Google Scholar]
  132. Wenceslau C.F. McCarthy C.G. Goulopoulou S. Szasz T. NeSmith E.G. Webb R.C. Mitochondrial-derived N-formyl peptides: Novel links between trauma, vascular collapse and sepsis. Med. Hypotheses 2013 81 4 532 535 10.1016/j.mehy.2013.06.026 23890799
    [Google Scholar]
  133. Duvvuri B. Baddour A.A. Deane K.D. Feser M.L. Nelson J.L. Demoruelle M.K. Lood C. Mitochondrial N- formyl methionine peptides associate with disease activity as well as contribute to neutrophil activation in patients with rheumatoid arthritis. J. Autoimmun. 2021 119 102630 10.1016/j.jaut.2021.102630 33713887
    [Google Scholar]
  134. Snezhkina A.V. Kudryavtseva A.V. Kardymon O.L. Savvateeva M.V. Melnikova N.V. Krasnov G.S. Dmitriev A.A. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid. Med. Cell. Longev. 2019 2019 1 17 10.1155/2019/6175804 31467634
    [Google Scholar]
  135. West A.P. Shadel G.S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 2017 17 6 363 375 10.1038/nri.2017.21 28393922
    [Google Scholar]
  136. Jurewicz M.M. Stern L.J. Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2019 71 3 171 187 10.1007/s00251‑018‑1095‑x 30421030
    [Google Scholar]
  137. Alwehaidah M. Alsabbagh M. Al-kafaji G. Comprehensive analysis of mitochondrial DNA variants, mitochondrial DNA copy number and oxidative damage in psoriatic arthritis. Biomed. Rep. 2023 19 5 85 10.3892/br.2023.1667 37881602
    [Google Scholar]
  138. Zhou D. Shao L. Spitz D.R. Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res. 2014 122 1 67 10.1016/B978‑0‑12‑420117‑0.00001‑3 24974178
    [Google Scholar]
  139. Jing W. Liu C. Su C. Liu L. Chen P. Li X. Zhang X. Yuan B. Wang H. Du X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front. Immunol. 2023 14 1107670 10.3389/fimmu.2023.1107670 36845127
    [Google Scholar]
  140. Flaquer A. Baumbach C. Ladwig K-H. Kriebel J. Waldenberger M. Grallert H. Baumert J. Meitinger T. Kruse J. Peters A. Emeny R. Strauch K. Mitochondrial genetic variants identified to be associated with posttraumatic stress disorder. Transl. Psychiatry 2015 5 3 e524 10.1038/tp.2015.18 25756807
    [Google Scholar]
  141. Panga V. Kallor A.A. Nair A. Harshan S. Raghunathan S. Mitochondrial dysfunction in rheumatoid arthritis: A comprehensive analysis by integrating gene expression, protein-protein interactions and gene ontology data. PLoS One 2019 14 11 e0224632 10.1371/journal.pone.0224632 31703070
    [Google Scholar]
  142. Andreux P.A. Houtkooper R.H. Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat. Rev. Drug Discov. 2013 12 6 465 483 10.1038/nrd4023 23666487
    [Google Scholar]
  143. Choi J. Patel P. Fenando A. Sulfasalazine. StatPearls Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  144. Shams S. Martinez J.M. Dawson J.R.D. Flores J. Gabriel M. Garcia G. Guevara A. Murray K. Pacifici N. Vargas M.V. Voelker T. Hell J.W. Ashouri J.F. The therapeutic landscape of rheumatoid arthritis: Current state and future directions. Front. Pharmacol. 2021 12 680043 10.3389/fphar.2021.680043 34122106
    [Google Scholar]
  145. Qin C. Yang S. Chu Y.H. Zhang H. Pang X.W. Chen L. Zhou L.Q. Chen M. Tian D.S. Wang W. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022 7 1 215 10.1038/s41392‑022‑01064‑1 35794095
    [Google Scholar]
  146. Luo H. Vong C.T. Chen H. Gao Y. Lyu P. Qiu L. Zhao M. Liu Q. Cheng Z. Zou J. Yao P. Gao C. Wei J. Ung C.O.L. Wang S. Zhong Z. Wang Y. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med. 2019 14 1 48 10.1186/s13020‑019‑0270‑9 31719837
    [Google Scholar]
  147. Fang Z. Zhang M. Liu J. Zhao X. Zhang Y. Fang L. Tanshinone IIA: A Review of its anticancer effects. Front. Pharmacol. 2021 11 611087 10.3389/fphar.2020.611087 33597880
    [Google Scholar]
  148. Yadav E. Yadav P. Khan M.M.U. Singh H. Verma A. Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Front. Pharmacol. 2022 13 922232 10.3389/fphar.2022.922232 36188541
    [Google Scholar]
  149. Shaito A. Al-Mansoob M. Ahmad S.M.S. Haider M.Z. Eid A.H. Posadino A.M. Pintus G. Giordo R. Resveratrol-mediated regulation of mitochondria biogenesis-associated pathways in neurodegenerative diseases: Molecular insights and potential therapeutic applications. Curr. Neuropharmacol. 2023 21 5 1184 1201 10.2174/1570159X20666221012122855 36237161
    [Google Scholar]
  150. Friedman B. Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine 2019 86 3 301 307 10.1016/j.jbspin.2018.07.004 30081197
    [Google Scholar]
  151. Wang G. Peng X. A review of clinical applications and side effects of methotrexate in ophthalmology. J. Ophthalmol. 2020 2020 1 11 10.1155/2020/1537689 32850138
    [Google Scholar]
  152. Bhattacharyya A. Chattopadhyay R. Mitra S. Crowe S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014 94 2 329 354 10.1152/physrev.00040.2012 24692350
    [Google Scholar]
  153. Kesarwani P. Murali A.K. Al-Khami A.A. Mehrotra S. Redox regulation of T-cell function: From molecular mechanisms to significance in human health and disease. Antioxid. Redox Signal. 2013 18 12 1497 1534 10.1089/ars.2011.4073 22938635
    [Google Scholar]
  154. Paul M. Hemshekhar M. Thushara R.M. Sundaram M.S. NaveenKumar S.K. Naveen S. Devaraja S. Somyajit K. West R. Basappa Nayaka S.C. Zakai U.I. Nagaraju G. Rangappa K.S. Kemparaju K. Girish K.S. Methotrexate promotes platelet apoptosis via JNK-mediated mitochondrial damage: Alleviation by N-Acetylcysteine and N-acetylcysteine amide. PLoS One 2015 10 6 e0127558 10.1371/journal.pone.0127558 26083398
    [Google Scholar]
  155. Padda I.S. Goyal A. Leflunomide. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  156. Ding M. Shi R. Cheng S. Li M. De D. Liu C. Gu X. Li J. Zhang S. Jia M. Fan R. Pei J. Fu F. Mfn2-mediated mitochondrial fusion alleviates doxorubicin-induced cardiotoxicity with enhancing its anticancer activity through metabolic switch. Redox Biol. 2022 52 102311 10.1016/j.redox.2022.102311 35413642
    [Google Scholar]
  157. Gao J. Zhao Y. Li T. Gan X. Yu H. The role of PKM2 in the regulation of mitochondrial function: focus on mitochondrial metabolism, oxidative stress, dynamic, and apoptosis. PKM2 in mitochondrial function. Oxid. Med. Cell. Longev. 2022 2022 1 9 10.1155/2022/7702681 35571239
    [Google Scholar]
  158. Curtis J.R. Singh J.A. Use of biologics in rheumatoid arthritis: Current and emerging paradigms of care. Clin. Ther. 2011 33 6 679 707 10.1016/j.clinthera.2011.05.044 21704234
    [Google Scholar]
  159. Alten R. Tocilizumab: A novel humanized anti-interleukin 6 receptor antibody for the treatment of patients with rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2011 3 3 133 149 10.1177/1759720X11407540 22870473
    [Google Scholar]
  160. Warren E. Gordon-Lipkin E.M. Cheung F. Chen J. Mukherjee A. Apps R. Tsang J.S. Jetmore J. Kruk S. Lei Y. West A.P. McGuire P.J. Inflammatory and interferon gene expression signatures in patients with mitochondrial disease. Research square 2023 10.21203/rs.3.rs‑2612547/v1
    [Google Scholar]
  161. Pearce S.F. Rebelo-Guiomar P. D’Souza A.R. Powell C.A. Van Haute L. Minczuk M. Regulation of mammalian mitochondrial gene expression: Recent advances. Trends Biochem. Sci. 2017 42 8 625 639 10.1016/j.tibs.2017.02.003 28285835
    [Google Scholar]
  162. Bechman K. Yates M. Galloway J.B. The new entries in the therapeutic armamentarium: The small molecule JAK inhibitors. Pharmacol. Res. 2019 147 104392 10.1016/j.phrs.2019.104392 31401212
    [Google Scholar]
  163. Angelini J. Talotta R. Roncato R. Fornasier G. Barbiero G. Dal Cin L. Brancati S. Scaglione F. JAK-inhibitors for the treatment of rheumatoid arthritis: A focus on the present and an outlook on the future. Biomolecules 2020 10 7 1002 10.3390/biom10071002 32635659
    [Google Scholar]
  164. Ivanova I.G. Perkins N.D. Hypoxia induces rapid, STAT3 and ROS dependent, mitochondrial translocation of RelA(p65) and IκBα. Biosci. Rep. 2019 39 9 BSR20192101 10.1042/BSR20192101 31484794
    [Google Scholar]
  165. Tang Y.Y. Wang D.C. Wang Y.Q. Huang A.F. Xu W.D. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Front. Immunol. 2023 13 1073971 10.3389/fimmu.2022.1073971 36761171
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128354572250408165158
Loading
/content/journals/cpd/10.2174/0113816128354572250408165158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test