Skip to content
2000
image of Development and Optimization of Polyelectrolyte Complex Stabilized Piperine Adjuvant Simvastatin Nanoformulation for Improved Therapeutic Effect

Abstract

Introduction

The aim of the study was to prepare polyelectrolyte complex stabilized piperine adjuvant simvastatin nanoformulations and evaluate the antimicrobial effect. Simvastatin has antimicrobial properties but low therapeutic efficacy due to rapid metabolism, with only 12% oral bioavailability. Piperine, a CYP3A4 inhibitor, enhances bioavailability by inhibiting drug-metabolizing enzymes. This study developed chitosan-neem gum polyelectrolyte complex (Ch-NG PEC) nanoparticles combining piperine and simvastatin and evaluated their antimicrobial efficacy compared to simvastatin alone.

Methods

A flower-shaped nanoparticles of piperine adjuvant simvastatin were prepared by using chitosan (Ch)-neem gum (NG) as a polyelectrolyte complex (PEC) forming agent, and the anti-microbial effect of nanoformulations with and without piperine was evaluated. A solvent-anti-solvent method was used to form the nanoparticles, and a 32-factorial design was employed to analyze the impact of chitosan and neem gum concentration on the size of the nanoparticles and entrapment efficiency of simvastatin and piperine followed by their release profile and kinetics.

Results

Nanoparticles showed high drug entrapment efficiency (simvastatin: 96.4-99.7%, piperine: 64.8-99.4%) with sizes ranging from 341.3-629.1 nm. Drug release exceeded 50% in 3 hours and 99% in 8 hours, following Hixon-Crowell and Baker’s Lonsdale models. Antimicrobial assays revealed activity against but not . The results of the anti-microbial assay indicated that the PEC-based NPs stabilized piperine adjuvant simvastatin showed anti-microbial activity against but did not exhibit anti-fungal activity against

Conclusion

Piperine-adjuvant simvastatin Ch-NG-PEC nanoparticles demonstrate potential as a dual-treatment agent for hypercholesterolemia and bacterial infections.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128382527250625165648
2025-07-15
2025-09-10
Loading full text...

Full text loading...

References

  1. Jhaveri J. Raichura Z. Khan T. Momin M. Omri A. Chitosan nanoparticles-insight into properties, functionalization and applications in drug delivery and theranostics. Molecules 2021 26 2 272 10.3390/molecules26020272 33430478
    [Google Scholar]
  2. Aljebory A.M. Alsalman T.M. Chitosan nanoparticles. Imp J Interdiscip Res 2017 3 233 242
    [Google Scholar]
  3. Ciro Y. Rojas J. Alhajj M. Carabali G. Salamanca C. Production and characterization of chitosan-polyanion nanoparticles by polyelectrolyte complexation assisted by high-intensity sonication for the modified release of methotrexate. Pharmaceuticals (Basel) 2020 13 1 11 10.3390/ph13010011 31936208
    [Google Scholar]
  4. Salem D.S. Shouman S.A. Badr Y. Laser-triggered release of drug encapsulated in chitosan nanoparticles for therapy of hepatocellular carcinoma. Colloidal Nanoparticles for Biomedical Applications XIV. USA SPIE 2019 Vol. 10892 107 113 10.1117/12.2508884
    [Google Scholar]
  5. Kumar M.N.V.R. Muzzarelli R.A.A. Muzzarelli C. Sashiwa H. Domb A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004 104 12 6017 6084 10.1021/cr030441b 15584695
    [Google Scholar]
  6. He C. Hu Y. Yin L. Tang C. Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010 31 13 3657 3666 10.1016/j.biomaterials.2010.01.065 20138662
    [Google Scholar]
  7. Nayak R. Halder J. Rajwar T.K. Metronidazole loaded chitosan–phytic acid polyelectrolyte complex nanoparticles as mucoadhesive vaginal delivery system for bacterial vaginosis. Int. J. Biol. Macromol. 2024 255 128212 10.1016/j.ijbiomac.2023.128212 37989434
    [Google Scholar]
  8. Kamaraj C Gandhi PR Elango G Karthi S Chung IM Rajakumar G Novel and environmental friendly approach; Impact of Neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). Int J Biol Macromol 2018 107 Pt A 59 69 10.1016/j.ijbiomac.2017.08.145 28860055
    [Google Scholar]
  9. Gill S.R. Fouts D.E. Archer G.L. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 2005 187 7 2426 2438 10.1128/JB.187.7.2426‑2438.2005 15774886
    [Google Scholar]
  10. Horn M.P. Knecht S.M. Rushing F.L. Simvastatin inhibits Staphylococcus aureus host cell invasion through modulation of isoprenoid intermediates. J. Pharmacol. Exp. Ther. 2008 326 1 135 143 10.1124/jpet.108.137927 18388257
    [Google Scholar]
  11. Jerwood S. Cohen J. Unexpected antimicrobial effect of statins. J. Antimicrob. Chemother. 2007 61 2 362 364 10.1093/jac/dkm496 18086693
    [Google Scholar]
  12. Srinivasan K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 2007 47 8 735 748 10.1080/10408390601062054 17987447
    [Google Scholar]
  13. Sachan N. Pal D. Chandra P. Piperine: Sources, Properties, Applications, and Biotechnological Production. Bioactive Natural Products for Pharmaceutical Applications. Cham Springer 2021 759 791
    [Google Scholar]
  14. Pradeepa B.R. Vijayakumar T.M. Dhivya L.S. Manikandan K. In-silico comparison of cytochrome P450 inhibitory and dopaminergic activity of Piperine, Curcumin and Capsaicin. Nat. Prod. Res. 2023 37 17 2888 2893 10.1080/14786419.2022.2134862 36255130
    [Google Scholar]
  15. Cui T. Wang Q. Tian X. Zhang K. Peng Y. Zheng J. Piperine is a mechanism-based inactivator of CYP3A. Drug Metab. Dispos. 2020 48 2 123 134 10.1124/dmd.119.088955 31748224
    [Google Scholar]
  16. Malviya R. Green approach for fabrication of chitosan-neem gum polyelectrolyte stabilized penta and hexagonal nanoparticles and in-vitro cytotoxic potential toward breast cancer (MCF-7) cells. Precis. Med. Sci. 2020 9 2 68 82 10.1002/prm2.12025
    [Google Scholar]
  17. Malviya R. Sharma P.K. Dubey S.K. Stability facilitation of nanoparticles prepared by ultrasound assisted solvent-antisolvent method: Effect of neem gum, acrylamide grafted neem gum and carboxymethylated neem gum over size, morphology and drug release. Mater. Sci. Eng. C 2018 91 772 784 10.1016/j.msec.2018.06.013 30033312
    [Google Scholar]
  18. Malviya R. Sharma P.K. Dubey S.K. Microwave-assisted preparation of biodegradable, hemocompatible, and antimicrobial neem gum-grafted poly (acrylamide) hydrogel using (3)2 factorial design. Emergent Materials 2019 2 1 95 112 10.1007/s42247‑019‑00022‑y
    [Google Scholar]
  19. Kamat V. Bodas D. Paknikar K. Chitosan nanoparticles synthesis caught in action using microdroplet reactions. Sci. Rep. 2016 6 1 22260 10.1038/srep22260 26924801
    [Google Scholar]
  20. Chung E. Ren G. Johnston I. Applied methods to assess the antimicrobial activity of metallic-based nanoparticles. Bioengineering (Basel) 2023 10 11 1259 10.3390/bioengineering10111259 38002383
    [Google Scholar]
  21. Malviya R. Raj S. Fuloria S. Evaluation of antitumor efficacy of chitosan-tamarind gum polysaccharide polyelectrolyte complex stabilized nanoparticles of simvastatin. Int. J. Nanomedicine 2021 16 2533 2553 10.2147/IJN.S300991 33824590
    [Google Scholar]
  22. Siafaka P.I. Titopoulou A. Koukaras E.N. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int. J. Pharm. 2015 495 1 249 264 10.1016/j.ijpharm.2015.08.100 26341322
    [Google Scholar]
  23. Barbosa A.I. Costa Lima S.A. Reis S. Application of pH-responsive fucoidan/chitosan nanoparticles to improve oral quercetin delivery. Molecules 2019 24 2 346 10.3390/molecules24020346 30669398
    [Google Scholar]
  24. Quek J.A. Lam S.M. Sin J.C. Mohamed A.R. Visible light responsive flower-like ZnO in photocatalytic antibacterial mechanism towards Enterococcus faecalis and Micrococcus luteus. J. Photochem. Photobiol. B 2018 187 66 75 10.1016/j.jphotobiol.2018.07.030 30099271
    [Google Scholar]
  25. Taymouri S. Ahmadi Z. Mirian M. Tavakoli N. Simvastatin nanosuspensions prepared using a combination of pH-sensitive and timed-release approaches for potential treatment of colorectal cancer. Pharm. Dev. Technol. 2021 26 3 335 348 10.1080/10837450.2021.1872086 33430677
    [Google Scholar]
  26. Zhang L. Wang J. Ni C. Zhang Y. Shi G. Preparation of polyelectrolyte complex nanoparticles of chitosan and poly(2-acry1amido-2-methylpropanesulfonic acid) for doxorubicin release. Mater. Sci. Eng. C 2016 58 724 729 10.1016/j.msec.2015.09.044 26478364
    [Google Scholar]
  27. Montero N. Alhajj M.J. Sierra M. Oñate-Garzon J. Yarce C.J. Salamanca C.H. Development of polyelectrolyte complex nanoparticles-PECNs loaded with ampicillin by means of polyelectrolyte complexation and ultra-high pressure homogenization (UHPH). Polymers (Basel) 2020 12 5 1168 10.3390/polym12051168 32443668
    [Google Scholar]
  28. Penders J. Stolzoff M. Hickey D.J. Andersson M. Webster T.J. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int. J. Nanomedicine 2017 12 2457 2468 10.2147/IJN.S124442 28408817
    [Google Scholar]
  29. Talebian N. Amininezhad S.M. Doudi M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B 2013 120 66 73 10.1016/j.jphotobiol.2013.01.004 23428888
    [Google Scholar]
  30. Rajkumar C. Srivastava R.K. UV–visible photoresponse properties of self-seeded and polymer mediated ZnO flower-like and biconical nanostructures. Results Phys. 2019 15 102647 10.1016/j.rinp.2019.102647
    [Google Scholar]
  31. Lall A. Kamdem Tamo A. Doench I. Nanoparticles and colloidal hydrogels of chitosan-caseinate polyelectrolyte complexes for drug-controlled release applications. Int. J. Mol. Sci. 2020 21 16 5602 10.3390/ijms21165602 32764340
    [Google Scholar]
  32. Bezerra J.M.N.A. Oliveira A.C.J. Silva-Filho E.C. The potential role of polyelectrolyte complex nanoparticles based on cashew gum, tripolyphosphate and chitosan for the loading of insulin. Diabetology 2021 2 2 107 116 10.3390/diabetology2020009
    [Google Scholar]
  33. Malviya R. Sharma P.K. Dubey S.K. Efficiency of self-assembled etoricoxib containing polyelectrolyte complex stabilized cubic nanoparticles against human cancer cells. Precis. Med. Sci. 2020 9 1 9 22 10.1002/prm2.12004
    [Google Scholar]
  34. Quadrado R.F.N. Fajardo A.R. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. Arab. J. Chem. 2020 13 1 2183 2194 10.1016/j.arabjc.2018.04.004
    [Google Scholar]
  35. Huang W. Tsui C.P. Tang C.Y. Gu L. Effects of compositional tailoring on drug delivery behaviours of silica xerogel/polymer core-shell composite nanoparticles. Sci. Rep. 2018 8 1 13002 10.1038/s41598‑018‑31070‑9 30158709
    [Google Scholar]
  36. Masadeh M. Mhaidat N. Alzoubi K. Al-azzam S. Alnasser Z. Antibacterial activity of statins: a comparative study of Atorvastatin, Simvastatin, and Rosuvastatin. Ann. Clin. Microbiol. Antimicrob. 2012 11 1 13 10.1186/1476‑0711‑11‑13 22564676
    [Google Scholar]
  37. Figueiredo E.P. Ribeiro J.M. Nishio E.K. New approach for simvastatin as an antibacterial: Synergistic effect with bio-synthesized silver nanoparticles against multidrug-resistant bacteria. Int. J. Nanomedicine 2019 14 7975 7985 10.2147/IJN.S211756 31632012
    [Google Scholar]
  38. Thangamani S. Mohammad H. Abushahba M.F.N. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Sci. Rep. 2015 5 1 16407 10.1038/srep16407 26553420
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128382527250625165648
Loading
/content/journals/cpd/10.2174/0113816128382527250625165648
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: piperine ; Chitosan ; anti-microbial ; simvastatin ; polyelectrolyte ; neem gum
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test