Skip to content
2000
Volume 31, Issue 38
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Artificial intelligence (AI) can completely transform drug development methods by delivering faster, more accurate, efficient results. However, the effective use of AI requires the accessibility of data of excellent quality, the resolution of ethical dilemmas, and an awareness of the drawbacks of AI-based techniques. Moreover, the application of AI in drug discovery is gaining popularity as an alternative to both the complex and time-consuming process of discovering as well as developing novel medications. Importantly, machine learning (ML) as well as natural language processing, for example, may boost both productivity as well as accuracy by analyzing vast volumes of data. This review article discusses in detail the promise of AI in drug discovery as well as offers insights into various topics such as societal issues related to the application of AI in medicine (., legislation, interpretability and explainability, privacy and anonymity, and ethics and fairness), the importance of AI in the development of drug delivery systems, causability and explainability of AI in medicine, and opportunities and challenges for AI in clinical adoption, threat or opportunity of AI in medical imaging, the missing pieces of AI in medicine, approval of AI and ML-based medical devices.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128381171250415171256
2025-11-01
2025-09-11
Loading full text...

Full text loading...

References

  1. KaulV. EnslinS. GrossS.A. History of artificial intelligence in medicine.Gastrointest. Endosc.202092480781210.1016/j.gie.2020.06.040 32565184
    [Google Scholar]
  2. GreenhillA.T. EdmundsB.R. A primer of artificial intelligence in medicine.Tech. Innov. Gastrointest. Endosc.2020222858910.1016/j.tgie.2019.150642
    [Google Scholar]
  3. HametP. TremblayJ. Artificial intelligence in medicine.Metabolism201769S36S4010.1016/j.metabol.2017.01.011 28126242
    [Google Scholar]
  4. Amisha Malik .P. PathaniaM. RathaurV. Overview of artificial intelligence in medicine.J. Family Med. Prim. Care2019872328233110.4103/jfmpc.jfmpc_440_19 31463251
    [Google Scholar]
  5. HoogenboomS.A. BagciU. WallaceM.B. Artificial intelligence in gastroenterology. The current state of play and the potential. How will it affect our practice and when?Tech. Innov. Gastrointest. Endosc.2020222424710.1016/j.tgie.2019.150634
    [Google Scholar]
  6. Le BerreC. SandbornW.J. AridhiS. Application of artificial intelligence to gastroenterology and hepatology.Gastroenterology202015817694.e210.1053/j.gastro.2019.08.058 31593701
    [Google Scholar]
  7. KaurG. AdhikariN. KrishnapriyaS. Recent advancements in deep learning frameworks for precision fish farming opportunities, challenges, and applications.J. Food Qual.2023202311110.1155/2023/4399512
    [Google Scholar]
  8. GravesA. Long short-term memory.Supervised sequence labelling with recurrent neural networks2012374510.1007/978‑3‑642‑24797‑2_4
    [Google Scholar]
  9. YangX. ZhangS. LiuJ. GaoQ. DongS. ZhouC. Deep learning for smart fish farming: Applications, opportunities and challenges.Rev. Aquacult.2021131669010.1111/raq.12464
    [Google Scholar]
  10. Antonio de M. Artificial intelligence and the cardiologist: What you need to know for 2020.Heart202010639910.1136/heartjnl‑2019‑316033
    [Google Scholar]
  11. RuffleJ.K. FarmerA.D. AzizQ. Artificial intelligence-assisted gastroenterology— promises and pitfalls.Am. J. Gastroenterol.2019114342242810.1038/s41395‑018‑0268‑4 30315284
    [Google Scholar]
  12. MoranM.E. Evolution of robotic arms.J. Robot. Surg.20071210311110.1007/s11701‑006‑0002‑x 25484945
    [Google Scholar]
  13. WeizenbaumJ. ELIZA—a computer program for the study of natural language communication between man and machine.Commun. ACM196691364510.1145/365153.365168
    [Google Scholar]
  14. KuipersB. FeigenbaumE.A. HartP.E. NilssonN.J. Shakey: From conception to history.AI Mag.20173818810310.1609/aimag.v38i1.2716
    [Google Scholar]
  15. KulikowskiC.A. Beginnings of artificial intelligence in medicine (AIM): Computational artifice assisting scientific inquiry and clinical art – with reflections on present AIM challenges.Yearb. Med. Inform.201928124925610.1055/s‑0039‑1677895 31022744
    [Google Scholar]
  16. ShortliffeE.H. DavisR. AxlineS.G. BuchananB.G. GreenC.C. CohenS.N. Computer-based consultations in clinical therapeutics: Explanation and rule acquisition capabilities of the MYCIN system.Comput. Biomed. Res.19758430332010.1016/0010‑4809(75)90009‑9 1157471
    [Google Scholar]
  17. KulikowskiC.A. An opening chapter of the first generation of artificial intelligence in medicine: The first rutgers AIM workshop, June 1975.Yearb. Med. Inform.201524122723310.15265/IY‑2015‑016 26123911
    [Google Scholar]
  18. WeissS. KulikowskiC.A. SafirA. Glaucoma consultation by computer.Comput. Biol. Med.197881254010.1016/0010‑4825(78)90011‑2 620517
    [Google Scholar]
  19. BarnettG.O. CiminoJ.J. HuppJ.A. HofferE.P. DXplain.JAMA19872581677410.1001/jama.1987.03400010071030 3295316
    [Google Scholar]
  20. FerrucciD. LevasA. BagchiS. GondekD. MuellerE.T. Watson: Beyond jeopardy!Artif. Intell.2013199-2009310510.1016/j.artint.2012.06.009
    [Google Scholar]
  21. BakkarN. KovalikT. LorenziniI. Artificial intelligence in neurodegenerative disease research: Use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis.Acta Neuropathol.2018135222724710.1007/s00401‑017‑1785‑8 29134320
    [Google Scholar]
  22. ComendadorB.E.V. FranciscoB.M.B. MedenillaJ.S. NacionS.M.T. SeracT.B.E. Pharmabot: A pediatric generic medicine consultant chatbot.J Autom Control Eng20153213714010.12720/joace.3.2.137‑140
    [Google Scholar]
  23. NiL. LuC. LiuN. LiuJ. MANDY: Towards a smart primary care chatbot application. In: Knowledge and Systems Sciences, Chen J, Theeramunkong T, Supnithi T, Tang X.eds.; Springer, Singaporer2017385210.1007/978‑981‑10‑6989‑5_4
    [Google Scholar]
  24. KulkarniS. SeneviratneN. BaigM.S. KhanA.H.A. Artificial intelligence in medicine: Where are we now?Acad. Radiol.2020271627010.1016/j.acra.2019.10.001 31636002
    [Google Scholar]
  25. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
  26. HalabiS.S. PrevedelloL.M. Kalpathy-CramerJ. The RSNA pediatric bone age machine learning challenge.Radiology2019290249850310.1148/radiol.2018180736 30480490
    [Google Scholar]
  27. GongE. PaulyJ.M. WintermarkM. ZaharchukG. Deep learning enables reduced gadolinium dose for contrast‐enhanced brain MRI.J. Magn. Reson. Imaging201848233034010.1002/jmri.25970 29437269
    [Google Scholar]
  28. SteinerD.F. MacDonaldR. LiuY. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer.Am. J. Surg. Pathol.201842121636164610.1097/PAS.0000000000001151 30312179
    [Google Scholar]
  29. BejnordiB.E. VetaM. Johannes van DiestP. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer.JAMA2017318222199221010.1001/jama.2017.14585 29234806
    [Google Scholar]
  30. De FauwJ. LedsamJ.R. Romera-ParedesB. Clinically applicable deep learning for diagnosis and referral in retinal disease.Nat. Med.20182491342135010.1038/s41591‑018‑0107‑6 30104768
    [Google Scholar]
  31. KashaniA.H. ChenC.L. GahmJ.K. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications.Prog. Retin. Eye Res.2017606610010.1016/j.preteyeres.2017.07.002 28760677
    [Google Scholar]
  32. TopolE.J. High-performance medicine: The convergence of human and artificial intelligence.Nat. Med.2019251445610.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  33. SchlessingerD.I. ChhorG. GevaertO. SwetterS.M. KoJ. NovoaR.A. Artificial intelligence and dermatology: Opportunities, challenges, and future directions.Semin. Cutan. Med. Surg.2019381E31E3710.12788/j.sder.2019.007 31051021
    [Google Scholar]
  34. EstevaA. KuprelB. NovoaR.A. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763911511810.1038/nature21056 28117445
    [Google Scholar]
  35. LakhaniP. SundaramB. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks.Radiology2017284257458210.1148/radiol.2017162326 28436741
    [Google Scholar]
  36. KhanA.I. Al-BadiA. Emerging data sources in decision making and AI.Procedia Comput. Sci.202017731832310.1016/j.procs.2020.10.042
    [Google Scholar]
  37. ZhuJ. ZhaoX. SunY. SongS. YuanX. Relational data cleaning meets artificial intelligence: A survey.Data Sci. Eng.202412810.1007/s41019‑024‑00266‑7
    [Google Scholar]
  38. KumarS DattaS SinghV SinghSK SharmaR Opportunities and challenges in data-centric AI.IEEE Access202412331733318910.1109/ACCESS.2024.3369417
    [Google Scholar]
  39. HassijaV. ChamolaV. MahapatraA. Interpreting black-box models: A review on explainable artificial intelligence.Cognit. Comput.2024161457410.1007/s12559‑023‑10179‑8
    [Google Scholar]
  40. XuH. ShuttleworthK.M.J. Medical artificial intelligence and the black box problem: A view based on the ethical principle of “do no harm”.Intell. Med.20244525710.1016/j.imed.2023.08.001
    [Google Scholar]
  41. BultenW. PinckaersH. van BovenH. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: A diagnostic study.Lancet Oncol.202021223324110.1016/S1470‑2045(19)30739‑9 31926805
    [Google Scholar]
  42. KunduS. AI in medicine must be explainable.Nat. Med.20212781328810.1038/s41591‑021‑01461‑z 34326551
    [Google Scholar]
  43. NaikN. HameedB.M.Z. ShettyD.K. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility?Front. Surg.2022986232210.3389/fsurg.2022.862322 35360424
    [Google Scholar]
  44. RuschemeierH. AI as a challenge for legal regulation - the scope of application of the artificial intelligence act proposal.ERA Forum20232336137610.1007/s12027‑022‑00725‑6
    [Google Scholar]
  45. De AngelisL. BaglivoF. ArzilliG. ChatGPT and the rise of large language models: The new AI-driven infodemic threat in public health.Front. Public Health202311116612010.3389/fpubh.2023.1166120 37181697
    [Google Scholar]
  46. LauP.L. NandyM. ChakrabortyS. Development goals with ai-driven technologies: A systematic literature review of women’s healthcare.Health Care202311340110.3390/healthcare11030401
    [Google Scholar]
  47. GrzybowskiA. JinK. WuH. Challenges of artificial intelligence in medicine and dermatology.Clin. Dermatol.202442321021510.1016/j.clindermatol.2023.12.013 38184124
    [Google Scholar]
  48. SuárezA. Díaz-Flores GarcíaV. AlgarJ. Gómez SánchezM. Llorente de PedroM. FreireY. Unveiling the ChatGPT phenomenon: Evaluating the consistency and accuracy of endodontic question answers.Int. Endod. J.202457110811310.1111/iej.13985 37814369
    [Google Scholar]
  49. WuC. Data privacy: From transparency to fairness.Technol. Soc.20247610245710.1016/j.techsoc.2024.102457
    [Google Scholar]
  50. DangiR.R. SharmaA. VageriyaV. Transforming healthcare in low-resource settings with artificial intelligence: Recent developments and outcomes.Public Health Nurs.202410.1111/phn.13500
    [Google Scholar]
  51. KellyC.J. KarthikesalingamA. SuleymanM. CorradoG. KingD. Key challenges for delivering clinical impact with artificial intelligence.BMC Med.201917119510.1186/s12916‑019‑1426‑2 31665002
    [Google Scholar]
  52. VargheseJ. Artificial intelligence in medicine: Chances and challenges for wide clinical adoption.Visc. Med.202036644344910.1159/000511930 33442551
    [Google Scholar]
  53. CharD.S. AbràmoffM.D. FeudtnerC. Identifying ethical considerations for machine learning healthcare applications.Am. J. Bioeth.2020201171710.1080/15265161.2020.1819469 33103967
    [Google Scholar]
  54. GanapathyK. Artificial intelligence and healthcare regulatory and legal concerns.Telehealth Med. Today20216210.30953/tmt.v6.252
    [Google Scholar]
  55. GeisJ.R. BradyA.P. WuC.C. Ethics of artificial intelligence in radiology: Summary of the joint European and North American multisociety statement.Radiology2019293243644010.1148/radiol.2019191586 31573399
    [Google Scholar]
  56. HasaniN. MorrisM.A. RahmimA. Trustworthy artificial intelligence in medical imaging.PET Clin.202217111210.1016/j.cpet.2021.09.007 34809860
    [Google Scholar]
  57. ChanK.S. ZaryN. Applications and challenges of implementing artificial intelligence in medical education: Integrative review.JMIR Med. Educ.201951e1393010.2196/13930 31199295
    [Google Scholar]
  58. SuebnukarnS. HaddawyP. A Bayesian approach to generating tutorial hints in a collaborative medical problem-based learning system.Artif. Intell. Med.200638152410.1016/j.artmed.2005.04.003 16183267
    [Google Scholar]
  59. FrizeM. FrassonC. Decision-support and intelligent tutoring systems in medical education.Clin. Invest. Med.2000234266269 10981539
    [Google Scholar]
  60. FrehywotS. VovidesY. TalibZ. E-learning in medical education in resource constrained low- and middle-income countries.Hum. Resour. Health2013111410.1186/1478‑4491‑11‑4 23379467
    [Google Scholar]
  61. JangH. ParkA. JungK. Neural network implementation using CUDA and OpenMP.2008 Digital Image Computing: Techniques and Applications Canberra, ACT, Australia200815516110.1109/DICTA.2008.82
    [Google Scholar]
  62. KumarA. PadhyS.K. TakkarB. ChawlaR. Artificial intelligence in diabetic retinopathy: A natural step to the future.Indian J. Ophthalmol.20196771004100910.4103/ijo.IJO_1989_18 31238395
    [Google Scholar]
  63. AbràmoffM.D. LavinP.T. BirchM. ShahN. FolkJ.C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices.NPJ Digit. Med.2018113910.1038/s41746‑018‑0040‑6 31304320
    [Google Scholar]
  64. YaegerK.A. MartiniM. YanivG. OermannE.K. CostaA.B. United States regulatory approval of medical devices and software applications enhanced by artificial intelligence.Health Policy Technol.20198219219710.1016/j.hlpt.2019.05.006
    [Google Scholar]
  65. BeckerK. LipprandtM. RöhrigR. NeumuthT. Digital health–Software as a medical device in focus of the medical device regulation (MDR).IT-Information Technology20196121121810.1515/itit‑2019‑0026
    [Google Scholar]
  66. BrightT.J. WongA. DhurjatiR. Effect of clinical decision-support systems: A systematic review.Ann. Intern. Med.20121571294310.7326/0003‑4819‑157‑1‑201207030‑00450 22751758
    [Google Scholar]
  67. VellidoA. Martín-GuerreroJ.D. LisboaP.J.G. Making machine learning models interpretable.ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligenceand Machine Learning Bruges (Belgium)25-27 April 2012163172
    [Google Scholar]
  68. StricklandE. IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care.IEEE Spectr.2019564243110.1109/MSPEC.2019.8678513
    [Google Scholar]
  69. OlivasE.S. GuerreroJ.D.M. Martinez-SoberM. Magdalena-BeneditoJ.R. SerranoL. Handbook of research on machine learning applications and trends: Algorithms, methods, and techniques: Algorithms, methods, and techniques2009
    [Google Scholar]
  70. MikołajczykA. GrochowskiM. Data augmentation for improving deep learning in image classification problem.2018 International Interdisciplinary PhD Workshop (IIPhDW) Świnouście, Poland201811712210.1109/IIPHDW.2018.8388338
    [Google Scholar]
  71. PerezL WangJ The effectiveness of data augmentation in image classification using deep learning.arXiv preprint20171712.04621
    [Google Scholar]
  72. StasiuR.K. BrittoJ.D. DiasJ.D.S. ScalabrinE. Teaching of electrocardiogram interpretation guided by a tutorial expert.Proceedings 14th IEEE Symposium on Computer-Based Medical Systems CBMS 2001 BethesdaMD, USA, 26-27 July200148749210.1109/CBMS.2001.941766
    [Google Scholar]
  73. IshiiE. EbnerD.K. KimuraS. Agha-Mir-SalimL. UchimidoR. CeliL.A. The advent of medical artificial intelligence: Lessons from the Japanese approach.J. Intensive Care2020813510.1186/s40560‑020‑00452‑5 32467762
    [Google Scholar]
  74. AntoniadiA.M. DuY. GuendouzY. Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: A systematic review.Appl. Sci.20211111508810.3390/app11115088
    [Google Scholar]
  75. AmannJ. BlasimmeA. VayenaE. FreyD. MadaiV.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective.BMC Med. Inform. Decis. Mak.202020131010.1186/s12911‑020‑01332‑6 33256715
    [Google Scholar]
  76. HulsenT. Explainable artificial intelligence (XAI): Concepts and challenges in healthcare.AI20234365266610.3390/ai4030034
    [Google Scholar]
  77. CaviqueL. Implications of causality in artificial intelligence.Front. Artif. Intell.2024710.3389/frai.2024.1439702
    [Google Scholar]
  78. HarwoodS. EavesS. Conceptualising technology, its development and future: The six genres of technology.Technol. Forecast. Soc. Change202016012017410.1016/j.techfore.2020.120174 32904525
    [Google Scholar]
  79. LakeB.M. UllmanT.D. TenenbaumJ.B. GershmanS.J. Building machines that learn and think like people.Behav. Brain Sci.201740e25310.1017/S0140525X16001837 27881212
    [Google Scholar]
  80. HolzingerA. LangsG. DenkH. ZatloukalK. MüllerH. Causability and explainability of artificial intelligence in medicine.Wiley Interdiscip. Rev. Data Min. Knowl. Discov.201994e131210.1002/widm.1312 32089788
    [Google Scholar]
  81. HolzingerA. From machine learning to explainable AI.2018 World Symposium on Digital Intelligence for Systems and Machines (DISA) Košice, Slovakia2018556610.1109/DISA.2018.8490530
    [Google Scholar]
  82. KiesebergP WeipplE HolzingerA Trust for the doctor-in-the-loo.European Research Consortium for Informatics and Mathematics (ERCIM) news: Tackling big data in the life sciences Palgrave Macmillan UK20163233.
    [Google Scholar]
  83. HolzingerA. Usability engineering methods for software developers.Commun. ACM2005481717410.1145/1039539.1039541
    [Google Scholar]
  84. MillerT HoweP SonenbergL. Explainable AI: Beware of inmates running the asylum or: How I learnt to stop worrying and love the social and behavioural sciences.ArXiv e-prints2017
    [Google Scholar]
  85. HamburgM.A. CollinsF.S. The path to personalized medicine.N. Engl. J. Med.2010363430130410.1056/NEJMp1006304 20551152
    [Google Scholar]
  86. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature14539 26017442
    [Google Scholar]
  87. HolzingerA BiemannC PattichisCS KellDB What do we need to build explainable AI systems for the medical domain?ArXiv eprints2017
    [Google Scholar]
  88. BolognaG. HayashiY. Characterization of symbolic rules embedded in deep DIMLP networks: A challenge to transparency of deep learning.J. Artif. Intell. Soft Comput. Res.20177426528610.1515/jaiscr‑2017‑0019
    [Google Scholar]
  89. NewellA. ShawJ.C. SimonH.A. Chess-playing programs and the problem of complexity.IBM J. Res. Develop.19582432033510.1147/rd.24.0320
    [Google Scholar]
  90. ShortliffeE.H. BuchananB.G. A model of inexact reasoning in medicine.Math. Biosci.1975233-435137910.1016/0025‑5564(75)90047‑4
    [Google Scholar]
  91. GershmanS.J. HorvitzE.J. TenenbaumJ.B. Computational rationality: A converging paradigm for intelligence in brains, minds, and machines.Science2015349624527327810.1126/science.aac6076 26185246
    [Google Scholar]
  92. ShanmugamR. Elements of causal inference: Foundations and learning algorithms.J. Stat. Comput. Simul.201888163248810.1080/00949655.2018.1505197
    [Google Scholar]
  93. DeoR.C. Machine learning in medicine.Circulation2015132201920193010.1161/CIRCULATIONAHA.115.001593 26572668
    [Google Scholar]
  94. VellidoA. Societal issues concerning the application of artificial intelligence in medicine.Kidney Dis.201951111710.1159/000492428 30815459
    [Google Scholar]
  95. VealeM BinnsR Van KleekM. Some HCI priorities for GDPRcompliant machine learning.arXiv20181803.06174.10.31228/osf.io/wm6yk
    [Google Scholar]
  96. DoranD SchulzS BesoldTR What does explainable AI really mean? A new conceptualization of perspectives.ArXiv e-prints2017
    [Google Scholar]
  97. HudecM. BednárováE. HolzingerA. Augmenting statistical data dissemination by short quantified sentences of natural language.J. Off. Stat.2018344981101010.2478/jos‑2018‑0048
    [Google Scholar]
  98. MontavonG. SamekW. MüllerK.R. Methods for interpreting and understanding deep neural networks.Digit. Signal Process.20187311510.1016/j.dsp.2017.10.011
    [Google Scholar]
  99. SarmaS. VermaA.K. PhadkuleS.S. SahariaM. Towards an interpretable machine learning model for electrospun polyvinylidene fluoride (PVDF) fiber properties.Comput. Mater. Sci.202221311166110.1016/j.commatsci.2022.111661
    [Google Scholar]
  100. RögnvaldssonT. EtchellsT.A. YouL. GarwiczD. JarmanI. LisboaP.J.G. How to find simple and accurate rules for viral protease cleavage specificities.BMC Bioinformatics200910114910.1186/1471‑2105‑10‑149 19445713
    [Google Scholar]
  101. Van BelleV. Van CalsterB. Van HuffelS. SuykensJ.A.K. LisboaP. Explaining support vector machines: A color based nomogram.PLoS One20161110e016456810.1371/journal.pone.0164568 27723811
    [Google Scholar]
  102. Fernández-AlemánJ.L. SeñorI.C. LozoyaP.Á.O. TovalA. Security and privacy in electronic health records: A systematic literature review.J. Biomed. Inform.201346354156210.1016/j.jbi.2012.12.003 23305810
    [Google Scholar]
  103. AggarwalC.C. YuP.S. A general survey of privacy-preserving data mining models and algorithms.In: Privacy-Preserving Data Mining.Springer Boston, MA2008Vol. 34115210.1007/978‑0‑387‑70992‑5_2
    [Google Scholar]
  104. ScardapaneS. AltilioR. CiccarelliV. UnciniA. PanellaM. Privacy-preserving data mining for distributed medical scenarios. In: Multidisciplinary Approaches to Neural Computing, Esposito A, Faudez-Zanuy M, Morabito F, Pasero E. eds.;Springer, Cham2017Vol. 6911912810.1007/978‑3‑319‑56904‑8_12
    [Google Scholar]
  105. HolmS. Principles of Biomedical Ethics.5th edn. J Med Ethics200228533210.1136/jme.28.5.332‑a
    [Google Scholar]
  106. MagoulasG.D. PrentzaA. Machine Learning in Medical Applications. In: Machine Learning and Its Applications. Paliouras G, Karkaletsis V, Spyropoulos CD, eds.;Springer Berlin, Heidelberg2001Vol. 204930030710.1007/3‑540‑44673‑7_19
    [Google Scholar]
  107. VealeM. BinnsR. Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data.Big Data Soc.201742205395171774353010.1177/2053951717743530
    [Google Scholar]
  108. VarkeyB. Principles of clinical ethics and their application to practice.Med. Princ. Pract.2021301172810.1159/000509119 32498071
    [Google Scholar]
  109. FilippiC.G. SteinJ.M. WangZ. Ethical considerations and fairness in the use of artificial intelligence for neuroradiology.AJNR Am. J. Neuroradiol.202344111242124810.3174/ajnr.A7963 37652578
    [Google Scholar]
  110. FAccT '24: Proceedings of the 2024 ACM conference on fairness, accountability, and transparency.Association for Computing Machinery: Rio de Janeiro Brazil2024
    [Google Scholar]
  111. 3572 - 117th congress (2021-2022): Algorithmic accountability act of 2022. 2022. Available from: https://www.congress.gov/bill/117th-congress/senate-bill/3572
  112. WangH. WangQ. DingY. TangS. WangY. Privacy-preserving federated learning based on partial low-quality data.J. Cloud Comput.20241316210.1186/s13677‑024‑00618‑8
    [Google Scholar]
  113. NguyenD.C. DingM. PathiranaP.N. SeneviratneA. LiJ. Vincent PoorH. Federated learning for internet of things: A comprehensive survey.IEEE Commun. Surv. Tutor.20212331622165810.1109/COMST.2021.3075439
    [Google Scholar]
  114. RathiV.K. RajputN.K. MishraS. An edge AI-enabled IoT healthcare monitoring system for smart cities.Comput. Electr. Eng.20219610752410.1016/j.compeleceng.2021.107524
    [Google Scholar]
  115. AujlaG.S. JindalA. A decoupled blockchain approach for edge-envisioned IoT-based healthcare monitoring.IEEE J. Sel. Areas Comm.202139249149910.1109/JSAC.2020.3020655
    [Google Scholar]
  116. WuF. QiuC. WuT. YuceM.R. Edge-based hybrid system implementation for long-range safety and healthcare IoT applications.IEEE Internet Things J.20218129970998010.1109/JIOT.2021.3050445
    [Google Scholar]
  117. TanW. TiwariP. PandeyH.M. MoreiraC. JaiswalA.K. Multimodal medical image fusion algorithm in the era of big data.Neural Comput. Appl.202012110.1007/s00521‑020‑05173‑2
    [Google Scholar]
  118. TiwariP. UpretyS. DehdashtiS. HossainM.S. TermInformer: unsupervised term mining and analysis in biomedical literature.Neural Comput. Appl.20201410.1007/s00521‑020‑05335‑2 32958982
    [Google Scholar]
  119. YangY. ZhangH. GichoyaJ.W. KatabiD. GhassemiM. The limits of fair medical imaging AI in real-world generalization.Nat. Med.202430102838284810.1038/s41591‑024‑03113‑4 38942996
    [Google Scholar]
  120. LinM. LiT. YangY. Improving model fairness in image-based computer-aided diagnosis.Nat. Commun.2023141626110.1038/s41467‑023‑41974‑4 37803009
    [Google Scholar]
  121. LandiH. Google launches open health stack for app developers, unveils new AI partnerships.2023Availabe from https://www.fiercehealthcare.com/health-tech/google-launches-open-health-stack-app-developers-unveils-new-ai-partnerships
  122. OmarM. NassarS. HijaziK. GlicksbergB.S. NadkarniG.N. KlangE. Generating credible referenced medical research: A comparative study of openAI’s GPT-4 and Google’s gemini.Comput. Biol. Med.202518510954510.1016/j.compbiomed.2024.109545 39667055
    [Google Scholar]
  123. HassanzadehP. AtyabiF. DinarvandR. The significance of artificial intelligence in drug delivery system design.Adv. Drug Deliv. Rev.2019151-15216919010.1016/j.addr.2019.05.001 31071378
    [Google Scholar]
  124. RussellS. DeweyD. TegmarkM. Research priorities for robust and beneficial artificial intelligence.AI Mag.201536410511410.1609/aimag.v36i4.2577
    [Google Scholar]
  125. DuchW. SetionoR. ZuradaJ.M. Computational intelligence methods for rule-based data understanding.Proc. IEEE200492577180510.1109/JPROC.2004.826605
    [Google Scholar]
  126. GobburuJ.V.S. ChenE.P. Artificial neural networks as a novel approach to integrated pharmacokinetic-pharmacodynamic analysis.J. Pharm. Sci.199685550551010.1021/js950433d 8742942
    [Google Scholar]
  127. HellerA. Integrated medical feedback systems for drug delivery.AIChE J.20055141054106610.1002/aic.10489
    [Google Scholar]
  128. SutariyaV. GroshevA. SadanaP. BhatiaD. PathakY. Artificial neural network in drug delivery and pharmaceutical research.Open Bioinform. J.201371496210.2174/1875036201307010049
    [Google Scholar]
  129. SoványT. TislérZ. KristóK. KelemenA. RegdonG. Estimation of design space for an extrusion-spheronization process using response surface methodology and artificial neural network modelling.Eur. J. Pharm. Biopharm.2016106798710.1016/j.ejpb.2016.05.009 27185378
    [Google Scholar]
  130. MaroniA. ZemaL. CurtoM.D.D. LoretiG. GazzanigaA. Oral pulsatile delivery: Rationale and chronopharmaceutical formulations.Int. J. Pharm.20103981-21810.1016/j.ijpharm.2010.07.026 20655998
    [Google Scholar]
  131. StaplesM. DanielK. CimaM.J. LangerR. Application of micro- and nano-electromechanical devices to drug delivery.Pharm. Res.200623584786310.1007/s11095‑006‑9906‑4 16715375
    [Google Scholar]
  132. SohJ.L.P. ChenF. LiewC.V. ShiD. HengP.W.S. A novel preformulation tool to group microcrystalline celluloses using artificial neural network and data clustering.Pharm. Res.200421122360236810.1007/s11095‑004‑7690‑6 15648270
    [Google Scholar]
  133. ReisM.A.A. SinisterraR.D. BelchiorJ.C. An alternative approach based on artificial neural networks to study controlled drug release.J. Pharm. Sci.200493241843010.1002/jps.10569 14705198
    [Google Scholar]
  134. de MatasM. ShaoQ. RichardsonC.H. ChrystynH. Evaluation of in vitro in vivo correlations for dry powder inhaler delivery using artificial neural networks.Eur. J. Pharm. Sci.2008331809010.1016/j.ejps.2007.10.001 18035525
    [Google Scholar]
  135. DowellJ.A. HussainA. DevaneJ. YoungD. Artificial neural networks applied to the in vitro-in vivo correlation of an extended-release formulation: Initial trials and experience.J. Pharm. Sci.199988115416010.1021/js970148p 9874718
    [Google Scholar]
  136. RafieniaM. AmiriM. JanmalekiM. SadeghianA. Application of artificial neural networks in controlled drug delivery systems.Appl. Artif. Intell.201024880782010.1080/08839514.2010.508606
    [Google Scholar]
  137. ChenH. EngkvistO. WangY. OlivecronaM. BlaschkeT. The rise of deep learning in drug discovery.Drug Discov. Today20182361241125010.1016/j.drudis.2018.01.039 29366762
    [Google Scholar]
  138. Romeo-GuitartD. ForésJ. Herrando-GrabulosaM. Neuroprotective drug for nerve trauma revealed using artificial intelligence.Sci. Rep.2018811879910.1038/s41598‑018‑19767‑3 29382857
    [Google Scholar]
  139. PrzybyszewskiA. KonM. SzlufikS. SzymanskiA. HabelaP. KoziorowskiD. Multimodal learning and intelligent prediction of symptom development in individual Parkinson’s patients.Sensors2016169149810.3390/s16091498 27649187
    [Google Scholar]
  140. GrantP. A new approach to diabetic control: Fuzzy logic and insulin pump technology.Med. Eng. Phys.200729782482710.1016/j.medengphy.2006.08.014 17052939
    [Google Scholar]
  141. Fernandez de CaneteJ. Gonzalez-PerezS. Ramos-DiazJ.C. Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes.Comput. Methods Programs Biomed.20121061556610.1016/j.cmpb.2011.11.006 22178070
    [Google Scholar]
  142. IbbiniM.S. MasadehM.A. A fuzzy logic based closed-loop control system for blood glucose level regulation in diabetics.J. Med. Eng. Technol.2005292646910.1080/03091900410001709088 15804854
    [Google Scholar]
  143. de MatasM. ShaoQ. BiddiscombeM.F. MeahS. ChrystynH. UsmaniO.S. Predicting the clinical effect of a short acting bronchodilator in individual patients using artificial neural networks.Eur. J. Pharm. Sci.201041570771510.1016/j.ejps.2010.09.018 20932900
    [Google Scholar]
  144. YamashitaF. HashidaM. Mechanistic and empirical modeling of skin permeation of drugs.Adv. Drug Deliv. Rev.20035591185119910.1016/S0169‑409X(03)00118‑2 12954198
    [Google Scholar]
  145. FuX.C. MaX.W. LiangW.Q. Prediction of skin permeability using an artificial neural network.Pharmazie2002579655656 12369461
    [Google Scholar]
  146. AtobeT. MoriM. YamashitaF. HashidaM. KouzukiH. Artificial neural network analysis for predicting human percutaneous absorption taking account of vehicle properties.J. Toxicol. Sci.201540227729410.2131/jts.40.277 25786531
    [Google Scholar]
  147. IchimasaK. KudoS. MoriY. Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer.Endoscopy201850323024010.1055/s‑0043‑122385 29272905
    [Google Scholar]
  148. HassanzadehP. AtyabiF. DinarvandR. Tissue engineering: Still facing a long way ahead.J. Control. Release201827918119710.1016/j.jconrel.2018.04.024 29655988
    [Google Scholar]
  149. XuJ. GeH. ZhouX. YanJ. ChiQ. ZhangZ. Prediction of vascular tissue engineering results with artificial neural networks.J. Biomed. Inform.200538641742110.1016/j.jbi.2005.03.002 16337566
    [Google Scholar]
  150. AguadoB.A. GrimJ.C. RosalesA.M. Watson-CappsJ.J. AnsethK.S. Engineering precision biomaterials for personalized medicine.Sci. Transl. Med.201810424eaam864510.1126/scitranslmed.aam8645 29343626
    [Google Scholar]
  151. ZarrinparA. LeeD-K. SilvaA. Individualizing liver transplant immunosuppression using a phenotypic personalized medicine platform.Sci. Transl. Med.20168333ra4910.1126/scitranslmed.aac5954
    [Google Scholar]
  152. LyD.Q. ParamonovL. DavidsonC. The matter compiler—towards atomically precise engineering and manufacture.Nanotechnol. Percept.20117319921710.4024/N13LY11A.ntp.07.03
    [Google Scholar]
  153. SachaG.M. VaronaP. Artificial intelligence in nanotechnology.Nanotechnology2013244545200210.1088/0957‑4484/24/45/452002 24121558
    [Google Scholar]
  154. HosnyA. ParmarC. QuackenbushJ. SchwartzL.H. AertsH.J.W.L. Artificial intelligence in radiology.Nat. Rev. Cancer201818850051010.1038/s41568‑018‑0016‑5 29777175
    [Google Scholar]
  155. HuangQ. ZhangF. LiX. Machine learning in ultrasound computer-aided diagnostic systems: A survey.BioMed Res. Int.2018201811010.1155/2018/5137904 29687000
    [Google Scholar]
  156. WongS.T.C. Is pathology prepared for the adoption of artificial intelligence?Cancer Cytopathol.2018126637337510.1002/cncy.21994 29663732
    [Google Scholar]
  157. GulshanV. PengL. CoramM. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.JAMA2016316222402241010.1001/jama.2016.17216 27898976
    [Google Scholar]
  158. KumarY. KoulA. SinglaR. IjazM.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda.J. Ambient Intell. Humaniz. Comput.20231478459848610.1007/s12652‑021‑03612‑z 35039756
    [Google Scholar]
  159. ZhouL.Q. WangJ.Y. YuS.Y. Artificial intelligence in medical imaging of the liver.World J. Gastroenterol.201925667268210.3748/wjg.v25.i6.672 30783371
    [Google Scholar]
  160. KapoorN. LacsonR. KhorasaniR. Workflow applications of artificial intelligence in radiology and an overview of available tools.J. Am. Coll. Radiol.202017111363137010.1016/j.jacr.2020.08.016 33153540
    [Google Scholar]
  161. NikpanahM. XuZ. JinD. A deep-learning based artificial intelligence (AI) approach for differentiation of clear cell renal cell carcinoma from oncocytoma on multi-phasic MRI.Clin. Imaging20217729129810.1016/j.clinimag.2021.06.016 34171743
    [Google Scholar]
  162. WeismanA.J. KielerM.W. PerlmanS. Comparison of 11 automated PET segmentation methods in lymphoma.Phys. Med. Biol.2020652323501910.1088/1361‑6560/abb6bd 32906088
    [Google Scholar]
  163. YousefiriziF. JhaA.K. Brosch-LenzJ. SabouryB. RahmimA. Toward high-throughput artificial intelligence-based segmentation in oncological PET imaging.PET Clin.202116457759610.1016/j.cpet.2021.06.001 34537131
    [Google Scholar]
  164. ChenY. ShaM. ZhaoX. Automated detection of pathologic white matter alterations in Alzheimer’s disease using combined diffusivity and kurtosis method.Psychiatry Res. Neuroimaging2017264354510.1016/j.pscychresns.2017.04.004 28448817
    [Google Scholar]
  165. UysalG. OzturkM. Hippocampal atrophy based Alzheimer’s disease diagnosis via machine learning methods.J. Neurosci. Methods202033710866910.1016/j.jneumeth.2020.108669 32126274
    [Google Scholar]
  166. LjubicB. RoychoudhuryS. CaoX.H. Influence of medical domain knowledge on deep learning for Alzheimer’s disease prediction.Comput. Methods Programs Biomed.202019710576510.1016/j.cmpb.2020.105765 33011665
    [Google Scholar]
  167. JaremkoJ.L. AzarM. BromwichR. Canadian association of radiologists white paper on ethical and legal issues related to artificial intelligence in radiology.Can. Assoc. Radiol. J.201970210711810.1016/j.carj.2019.03.001 30962048
    [Google Scholar]
  168. HuynhE. HosnyA. GuthierC. Artificial intelligence in radiation oncology.Nat. Rev. Clin. Oncol.2020171277178110.1038/s41571‑020‑0417‑8 32843739
    [Google Scholar]
  169. GoreJ.C. Artificial intelligence in medical imaging.Magn. Reson. Imaging202068A1A410.1016/j.mri.2019.12.006 31857130
    [Google Scholar]
  170. DinklaA.M. WolterinkJ.M. MasperoM. MR-only brain radiation therapy: Dosimetric evaluation of synthetic CTs generated by a dilated convolutional neural network.Int. J. Radiat. Oncol. Biol. Phys.201810280181210.1016/j.ijrobp.2018.05.058
    [Google Scholar]
  171. HanX. MR-based synthetic CT generation using a deep convolutional neural network method.Med. Phys.20174441408141910.1002/mp.12155 28192624
    [Google Scholar]
  172. MasperoM. SavenijeM.H.F. DinklaA.M. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy.Phys. Med. Biol.2018631818500110.1088/1361‑6560/aada6d 30109989
    [Google Scholar]
  173. ChenX. OshimaK. SchottD. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: An exploratory study.PLoS One2017126e017896110.1371/journal.pone.0178961 28575105
    [Google Scholar]
  174. HorvatN. VeeraraghavanH. KhanM. MR imaging of rectal cancer: Radiomics analysis to assess treatment response after neoadjuvant therapy.Radiology2018287383384310.1148/radiol.2018172300 29514017
    [Google Scholar]
  175. ChaK.H. HadjiiskiL. ChanH.P. Bladder cancer treatment response assessment in CT using radiomics with deep-learning.Sci. Rep.201771873810.1038/s41598‑017‑09315‑w 28821822
    [Google Scholar]
  176. MuehlematterU.J. DanioreP. VokingerK.N. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): A comparative analysis.Lancet Digit. Health202133e195e20310.1016/S2589‑7500(20)30292‑2 33478929
    [Google Scholar]
  177. BickmoreT.W. TrinhH. OlafssonS. Patient and consumer safety risks when using conversational assistants for medical] information: An observational study of Siri, Alexa, and Google Assistant.J. Med. Internet Res.2018209e1151010.2196/11510 30181110
    [Google Scholar]
  178. BurkiT. The dangers of the digital age.Lancet Digit. Health201912e61e6210.1016/S2589‑7500(19)30032‑9
    [Google Scholar]
  179. FlaxmanA.D. VosT. Machine learning in population health: Opportunities and threats.PLoS Med.20181511e100270210.1371/journal.pmed.1002702 30481173
    [Google Scholar]
  180. WeingartS.N. WilsonR.M. GibberdR.W. HarrisonB. Epidemiology of medical error.BMJ2000320723777477710.1136/bmj.320.7237.774 10720365
    [Google Scholar]
  181. BadnjevićA AvdihodžićH Gurbeta PokvićL. Artificial intelligence in medical devices: Past, Present and Future.Psychiatr Danub202133S33641.(Suppl. 3)34010259
    [Google Scholar]
  182. JhaS. TopolE.J. Adapting to artificial intelligence.JAMA2016316222353235410.1001/jama.2016.17438 27898975
    [Google Scholar]
  183. SloaneE.B.J. SilvaR. Artificial intelligence in medical devices and clinical decision support systems. In: Clinical Engineering Handbook. (Second Edition), Iadanza E, ed.;Academic Press202055656810.1016/B978‑0‑12‑813467‑2.00084‑5
    [Google Scholar]
  184. JiangF. JiangY. ZhiH. Artificial intelligence in healthcare: Past, present and future.Stroke Vasc. Neurol.20172423024310.1136/svn‑2017‑000101 29507784
    [Google Scholar]
  185. Centers for Disease Control and Prevention (CDC). Medicare, Medicaid, and CLIA programs; Laboratory requirements relating to quality systems and certain personnel qualifications. Final rule.Fed. Regist.2003681636393714 12545998
    [Google Scholar]
  186. WongG.L.H. MaA.J. DengH. Machine learning model to predict recurrent ulcer bleeding in patients with history of idiopathic gastroduodenal ulcer bleeding.Aliment. Pharmacol. Ther.201949791291810.1111/apt.15145 30761584
    [Google Scholar]
  187. GiulianoK.K. SuW.T. DegnanD.D. FitzgeraldK. ZinkR.J. DeLaurentisP. Intravenous smart pump drug library compliance: A descriptive study of 44 hospitals.J Patient Saf.2018144e76e8210.1097/PTS.0000000000000383 28574959
    [Google Scholar]
  188. AbrahamS.B. ArunachalamS. ZhongA. AgrawalP. CohenO. McMahonC.M. Improved real-world glycemic control with continuous glucose monitoring system predictive alerts.J. Diabetes Sci. Technol.2021151919710.1177/1932296819859334 31272204
    [Google Scholar]
  189. van der HeijdenA.A. AbramoffM.D. VerbraakF. van HeckeM.V. LiemA. NijpelsG. Validation of automated screening for referable diabetic retinopathy with the IDx‐DR device in the Hoorn Diabetes Care System.Acta Ophthalmol.2018961636810.1111/aos.13613 29178249
    [Google Scholar]
  190. GilvaryC. MadhukarN. ElkhaderJ. ElementoO. The missing pieces of artificial intelligence in medicine.Trends Pharmacol. Sci.201940855556410.1016/j.tips.2019.06.001 31277839
    [Google Scholar]
  191. BejnordiB.E. ZuidhofG. BalkenholM. Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images.J. Med. Imaging201744110.1117/1.JMI.4.4.044504 29285517
    [Google Scholar]
  192. CampanellaG SilvaVWK FuchsTJ Terabyte-scale deep multiple instance learning for classification and localization in pathology.arXiv preprint20181805.06983.
    [Google Scholar]
  193. GeeleherP. CoxN.J. HuangR.S. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines.Genome Biol.2014153R4710.1186/gb‑2014‑15‑3‑r47 24580837
    [Google Scholar]
  194. SaitoT. RehmsmeierM. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets.PLoS One2015103e011843210.1371/journal.pone.0118432 25738806
    [Google Scholar]
  195. ZhengT. XieW. XuL. A machine learning-based framework to identify type 2 diabetes through electronic health records.Int. J. Med. Inform.20179712012710.1016/j.ijmedinf.2016.09.014 27919371
    [Google Scholar]
  196. EapenZ.J. LiangL. FonarowG.C. Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients.JACC Heart Fail.20131324525110.1016/j.jchf.2013.01.008 24621877
    [Google Scholar]
  197. ZhaoJ. FengQ. WuP. Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction.Sci. Rep.20199171710.1038/s41598‑018‑36745‑x 30679510
    [Google Scholar]
  198. TaslimitehraniV. DongG. PereiraN.L. PanahiazarM. PathakJ. Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function.J. Biomed. Inform.20166026026910.1016/j.jbi.2016.01.009 26844760
    [Google Scholar]
  199. KatsukiT. OnoM. KosekiA. Risk prediction of diabetic nephropathy via interpretable feature extraction from EHR using convolutional autoencoder.Stud. Health Technol. Inform.201824710611010.3233/978‑1‑61499‑852‑5‑106
    [Google Scholar]
  200. ZhangQ. WuY.N. ZhuS.C. Interpretable convolutional neural networks.2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Salt Lake CityUT, USA 18-23 June20188827883610.1109/CVPR.2018.00920
    [Google Scholar]
  201. Saez-RodriguezJ. CostelloJ.C. FriendS.H. Crowdsourcing biomedical research: Leveraging communities as innovation engines.Nat. Rev. Genet.201617847048610.1038/nrg.2016.69 27418159
    [Google Scholar]
  202. MendenM.P. WangD. GuanY. A cancer pharmacogenomic screen powering crowd-sourced advancement of drug combination prediction.bioRxiv2018200451
    [Google Scholar]
  203. CostelloJ.C. HeiserL.M. GeorgiiE. A community effort to assess and improve drug sensitivity prediction algorithms.Nat. Biotechnol.201432121202121210.1038/nbt.2877 24880487
    [Google Scholar]
  204. Regulatory considerations on artificial intelligence for health. 2023. Available from: https://www.who.int/publications/i/item/9789240078871
/content/journals/cpd/10.2174/0113816128381171250415171256
Loading
/content/journals/cpd/10.2174/0113816128381171250415171256
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test