Skip to content
2000
Volume 31, Issue 38
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Shashen Maidong Decoction (SSMDD) is a traditional Chinese medicine (TCM) formula used for treating chronic bronchitis (CB).

Objectives

This study aims to explore the mechanism of SSMDD against CB, focusing on its active components and their impact on Interleukin 6 (IL-6), a key inflammatory factor.

Materials and Methods

Network pharmacology, a method that helps identify potential active components and their interactions in a biological network, was used to predict SSMDD’s effects. Molecular docking, a computational approach for predicting the binding affinity between small molecules and target proteins, was utilized to elucidate the mechanisms of action. Transcriptomic analysis, ELISA, and Western blot assays were subsequently implemented for mechanism validation.

Results

Network pharmacology analysis identified quercetin and kaempferol as key active components of SSMDD, with a high affinity for IL-6. Transcriptomic data confirmed the regulation of inflammation-related pathways by SSMDD, aligning with the predicted targets. In the ELISA determination, compared with the model group, the IL-6 levels in the samples treated with quercetin and kaempferol were reduced by 55% and 36%, respectively. The Western blot results showed that the expression of IL-6 protein in these samples decreased by 33% and 25%, respectively.

Conclusion

SSMDD exhibits anti-inflammatory activity against CB by targeting IL-6. This study provides a deeper understanding of the mechanisms through which SSMDD exerts its therapeutic effects on CB. Moreover, these findings also suggest that SSMDD may offer insights for future treatments of other inflammatory diseases, potentially improving patient outcomes and developing novel therapeutic strategies. Future studies should explore the effects of additional targets and active compounds within SSMDD and evaluate its broader applications in inflammatory conditions.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128363449250526092829
2025-11-01
2025-10-27
Loading full text...

Full text loading...

References

  1. KimV. CrinerG.J. The chronic bronchitis phenotype in chronic obstructive pulmonary disease.Curr. Opin. Pulm. Med.201521213314110.1097/MCP.0000000000000145 25575367
    [Google Scholar]
  2. ZhangJ. WurzelD.F. PerretJ.L. LodgeC.J. WaltersE.H. DharmageS.C. Chronic bronchitis in children and adults: Definitions, pathophysiology, prevalence, risk factors, and consequences.J. Clin. Med.2024138241310.3390/jcm13082413 38673686
    [Google Scholar]
  3. LinJ.L. XuJ.F. QuJ.M. Bronchiectasis in China.Ann. Am. Thorac. Soc.201613560961610.1513/AnnalsATS.201511‑740PS 26882271
    [Google Scholar]
  4. WangC. KangL. ZuoB. Gleditsiae sinensis fructus Pills combined with Jujubae fructus attenuate chronic bronchitis via regulation of AGE-RAGE signaling pathway.J. Ethnopharmacol.2024319Pt 111719110.1016/j.jep.2023.117191 37717840
    [Google Scholar]
  5. ManninoD.M. Asthma, COPD and their overlap: Coexistence or something more?Eur. Respir. J.2021585210132910.1183/13993003.01329‑2021 34824127
    [Google Scholar]
  6. ChristensonS.A. SmithB.M. BafadhelM. PutchaN. Chronic obstructive pulmonary disease.Lancet2022399103422227224210.1016/S0140‑6736(22)00470‑6 35533707
    [Google Scholar]
  7. ZhaiR. YuX. ShaferA. WainJ.C. ChristianiD.C. The impact of coexisting COPD on survival of patients with early-stage non-small cell lung cancer undergoing surgical resection.Chest2014145234635310.1378/chest.13‑1176 24008835
    [Google Scholar]
  8. MejzaF. GnatiucL. BuistA.S. Prevalence and burden of chronic bronchitis symptoms: Results from the BOLD study.Eur. Respir. J.2017505170062110.1183/13993003.00621‑2017 29167298
    [Google Scholar]
  9. KimV. CrinerG.J. Chronic bronchitis and chronic obstructive pulmonary disease.Am. J. Respir. Crit. Care Med.2013187322823710.1183/13993003.00621‑2017 23204254
    [Google Scholar]
  10. KellyF. Air pollution and chronic bronchitis: The evidence firms up.Thorax202176874474510.1136/thoraxjnl‑2021‑216883 33758072
    [Google Scholar]
  11. KotlyarovS. Involvement of the innate immune system in the pathogenesis of chronic obstructive pulmonary disease.Int. J. Mol. Sci.202223298510.3390/ijms23020985 35055174
    [Google Scholar]
  12. AlbanoG.D. GagliardoR.P. MontalbanoA.M. ProfitaM. Overview of the mechanisms of oxidative stress: Impact in inflammation of the airway diseases.Antioxidants20221111223710.3390/antiox11112237 36421423
    [Google Scholar]
  13. KhudiakovaA.D. PolonskayaY.V. ShramkoV.S. Blood adipokines/cytokines in young people with chronic bronchitis and abdominal obesity.Biomolecules20221210150210.3390/biom12101502 36291711
    [Google Scholar]
  14. SeifartC. DempfleA. PlagensA. TNF‐α‐, TNF‐β‐, IL‐6‐, and IL‐10‐promoter polymorphisms in patients with chronic obstructive pulmonary disease.Tissue Antigens20056519310010.1111/j.1399‑0039.2005.00343.x 15663746
    [Google Scholar]
  15. ReidP. SallenaveJ. Cytokines in the pathogenesis of chronic obstructive pulmonary disease.Curr. Pharm. Des.200391253810.2174/1381612033392440 12570672
    [Google Scholar]
  16. FalagasM.E. GeorgiouM. Early investigational antibiotics for the treatment of acute exacerbations of chronic bronchitis.Expert Opin. Investig. Drugs201726331331710.1080/13543784.2017.1283402 28092467
    [Google Scholar]
  17. MacLeodM. PapiA. ContoliM. Chronic obstructive pulmonary disease exacerbation fundamentals: Diagnosis, treatment, prevention and disease impact.Respirology202126653255110.1111/resp.14041 33893708
    [Google Scholar]
  18. DengY. XiL. HanS. Re-evaluation for systematic reviews of traditional Chinese medicine in the treatment of chronic bronchitis.Medicine202310249e3647210.1097/MD.0000000000036472 38065925
    [Google Scholar]
  19. LiB.H. LiZ.Y. LiuM.M. TianJ.Z. CuiQ.H. Progress in traditional Chinese medicine against respiratory viruses: A review.Front. Pharmacol.20211274362310.3389/fphar.2021.743623 34531754
    [Google Scholar]
  20. XiongX. ChuF. LiH. HeQ. Clinical application of the TCM classic formulae for treating chronic bronchitis.J. Tradit. Chin. Med.2011311697210.1016/S0254‑6272(11)60016‑2 21563512
    [Google Scholar]
  21. LinX.X. YinY.Q. ZhangW.Z. HuangJ.H. HuW.S. The efficacy and safety of Shashen-Maidong Decoction combined with Western medicine in the treatment of omicron infected individuals over 85 years old: A retrospective study.Infect. Drug Resist.2023167339734810.2147/IDR.S433815 38045652
    [Google Scholar]
  22. CaiJ. ChenY. WangK. Decoding the key compounds and mechanism of Shashen Maidong decoction in the treatment of lung cancer.BMC Complement. Med. Ther.202323115810.1186/s12906‑023‑03985‑y 37189139
    [Google Scholar]
  23. LiuW. LiZ.Y. TianY. MaT.Y. YuT.F. Pharmacological effects and chemical components of Radix Glehniae: Research advances.J Int Pharm Res2013403291294
    [Google Scholar]
  24. LiS. XuN. FangQ. Glehnia littoralis Fr. Schmidtex Miq.: A systematic review on ethnopharmacology, chemical composition, pharmacology and quality control.J. Ethnopharmacol.202331711683110.1016/j.jep.2023.116831 37369334
    [Google Scholar]
  25. ChenM.H. ChenX.J. WangM. LinL.G. WangY.T. Ophiopogon japonicus—A phytochemical, ethnomedicinal and pharmacological review.J. Ethnopharmacol.201618119321310.1016/j.jep.2016.01.037 26826325
    [Google Scholar]
  26. HeM. LuoY. ChenL. Shashen maidong decoction: The effect of TNF-α and IL-6 on lung cancer cachexia based on cancer toxicity theory.Am. J. Transl. Res.202113667526758 34306422
    [Google Scholar]
  27. WangJ. MaX. WeiS. Clinical efficacy and safety of Shashen Maidong decoction in the treatment of pediatric mycoplasma pneumonia: A systematic review and meta-analysis.Front. Pharmacol.20211276565610.3389/fphar.2021.765656 34712144
    [Google Scholar]
  28. WanJ.F. Straight ladybell dwarf lilyturf soup syndrome differentiation treatment of chronic bronchitis random parallel control study.J Pract Tradit Chin Intern Med2013
    [Google Scholar]
  29. WangY. FanX. QuH. GaoX. ChengY. Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine.Curr. Top. Med. Chem.201212121356136210.2174/156802612801319034 22690682
    [Google Scholar]
  30. LiX. LiuZ. LiaoJ. ChenQ. LuX. FanX. Network pharmacology approaches for research of Traditional Chinese Medicines.Chin. J. Nat. Med.202321532333210.1016/S1875‑5364(23)60429‑7 37245871
    [Google Scholar]
  31. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  32. ZhaoL. ZhangH. LiN. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  33. YuanH. MaQ. CuiH. How can synergism of traditional medicines benefit from network pharmacology?Molecules2017227113510.3390/molecules22071135 28686181
    [Google Scholar]
  34. LuoT. LuY. YanS. XiaoX. RongX. GuoJ. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective.Chin. J. Integr. Med.2020261728010.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  35. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional Chinese medicine: Review and assessment.Front. Pharmacol.20191012310.3389/fphar.2019.00123 30846939
    [Google Scholar]
  36. JiaoX. JinX. MaY. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine.Comput. Biol. Chem.20219010740210.1016/j.compbiolchem.2020.107402 33338839
    [Google Scholar]
  37. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  38. NoorF. Tahir ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network pharmacology approach for medicinal plants: Review and assessment.Pharmaceuticals202215557210.3390/ph15050572 35631398
    [Google Scholar]
  39. DaiH ShanY YuM Network pharmacology, molecular docking and experimental verification of the mechanism of huangqi-jixuecao herb pair in treatment of peritoneal fibrosis.J Ethnopharmacol2024318Pt A11687410.1016/j.jep.2023.11687437437794
    [Google Scholar]
  40. LoweR. ShirleyN. BleackleyM. DolanS. ShafeeT. Transcriptomics technologies.PLOS Comput. Biol.2017135e100545710.1371/journal.pcbi.1005457 28545146
    [Google Scholar]
  41. ChambersD.C. CarewA.M. LukowskiS.W. PowellJ.E. Transcriptomics and single‐cell RNA‐sequencing.Respirology2019241293610.1111/resp.13412 30264869
    [Google Scholar]
  42. JacquierA. The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs.Nat. Rev. Genet.2009101283384410.1038/nrg2683 19920851
    [Google Scholar]
  43. WangY. LiuM. JafariM. TangJ. A critical assessment of traditional Chinese medicine databases as a source for drug discovery.Front. Pharmacol.202415130369310.3389/fphar.2024.1303693 38738181
    [Google Scholar]
  44. XuX. ZhangW. HuangC. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms13066964 22837674
    [Google Scholar]
  45. WaltersJ.R.F. New advances in the molecular and cellular biology of the small intestine.Curr. Opin. Gastroenterol.200218216116710.1097/00001574‑200203000‑00002 17033281
    [Google Scholar]
  46. WuY. ZhangF. YangK. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping.Nucleic Acids Res.201947D1D1110D111710.1093/nar/gky1021 30380087
    [Google Scholar]
  47. HinzU. From protein sequences to 3D-structures and beyond: The example of the UniProt Knowledgebase.Cell. Mol. Life Sci.20106771049106410.1007/s00018‑009‑0229‑6 20043185
    [Google Scholar]
  48. StelzerG RosenN PlaschkesI The GeneCards suite: From gene data mining to disease genome sequence analyses.Curr Protoc Bioinformatics2016541.30.11.30.3310.1002/cpbi.5
    [Google Scholar]
  49. OhK.K. AdnanM. ChoD.H. Uncovering a hub signaling pathway of antimicrobial-antifungal-anticancer peptides’ axis on short cationic peptides via network pharmacology study.Int. J. Mol. Sci.2022234205510.3390/ijms23042055 35216171
    [Google Scholar]
  50. ShannonP. MarkielA. OzierO. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  51. SzklarczykD. KirschR. KoutrouliM. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  52. ZhouY. ZhouB. PacheL. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  53. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein data bank (PDB): The single global macromolecular structure archive.Methods Mol. Biol.2017160762764110.1007/978‑1‑4939‑7000‑1_26 28573592
    [Google Scholar]
  54. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  55. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  56. CaiL. QinX. XuZ. Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method.ACS Omega201947120361204210.1021/acsomega.9b01142 31460316
    [Google Scholar]
  57. NairA. MorsyM.A. JacobS. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development.Drug Dev. Res.201879837338210.1002/ddr.21461 30343496
    [Google Scholar]
  58. QinL. The value of Shashen maidong decoction in the treatment of advanced lung cancer.Proc Anticancer Res202155525610.26689/par.v5i5.2490
    [Google Scholar]
  59. YuechenL. Shashen maidong decoction clinical observation 112 cases of chronic bronchitis.J Pract Tradit Chin Intern Med2013273940
    [Google Scholar]
  60. GaoY. Effect of Western medicine and Sashen Maidong Decoction on the standardized treatment of COPD.China Stand2021029092
    [Google Scholar]
  61. ZhuJ.X. WenL. ZhongW.J. XiongL. LiangJ. WangH.L. Quercetin, kaempferol and isorhamnetin in Elaeagnus pungens thunb. leaf: Pharmacological activities and quantitative determination studies.Chem. Biodivers.2018158e180012910.1002/cbdv.201800129 29802806
    [Google Scholar]
  62. ChiangM.C. TsaiT.Y. WangC.J. The potential benefits of quercetin for brain health: A review of anti-inflammatory and neuroprotective mechanisms.Int. J. Mol. Sci.2023247632810.3390/ijms24076328 37047299
    [Google Scholar]
  63. AlrumaihiF. AlmatroodiS.A. AlharbiH.O.A. Pharmacological potential of kaempferol, a flavonoid in the management of pathogenesis via modulation of inflammation and other biological activities.Molecules2024299200710.3390/molecules29092007 38731498
    [Google Scholar]
  64. García-MediavillaV. CrespoI. ColladoP.S. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang liver cells.Eur. J. Pharmacol.20075572-322122910.1016/j.ejphar.2006.11.014 17184768
    [Google Scholar]
  65. HsinK.Y. GhoshS. KitanoH. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology.PLoS One2013812e8392210.1371/journal.pone.0083922 24391846
    [Google Scholar]
  66. NelsonS MasonCM The inflammatory response in chronic bronchitis.Semin Respir Crit Care Med.20002120079008610.1055/s‑2000‑984216088721
    [Google Scholar]
  67. VitenbergaZ. PilmaneM. BabjoniševaA. The evaluation of inflammatory, anti-inflammatory and regulatory factors contributing to the pathogenesis of COPD in airways.Pathol. Res. Pract.201921519710510.1016/j.prp.2018.10.029 30392917
    [Google Scholar]
  68. HubeauC. KuberaJ.E. Masek-HammermanK. WilliamsC.M.M. Interleukin-6 neutralization alleviates pulmonary inflammation in mice exposed to cigarette smoke and poly(I:C).Clin. Sci.20131251048349310.1042/CS20130110 23738811
    [Google Scholar]
  69. GarthJ. BarnesJ.W. KrickS. Targeting cytokines as evolving treatment strategies in chronic inflammatory airway diseases.Int. J. Mol. Sci.20181911340210.3390/ijms19113402 30380761
    [Google Scholar]
  70. GaoF. ZhangT. ZhangH. Explore bioactive ingredients and potential mechanism of Houpo Mahuang decoction for chronic bronchitis based on UHPLC-Q exactive orbitrap HRMS, network pharmacology, and experiment verification.J. Ethnopharmacol.202330311592410.1016/j.jep.2022.115924 36414217
    [Google Scholar]
  71. ChoyE.H. De BenedettiF. TakeuchiT. HashizumeM. JohnM.R. KishimotoT. Translating IL-6 biology into effective treatments.Nat. Rev. Rheumatol.202016633534510.1038/s41584‑020‑0419‑z 32327746
    [Google Scholar]
  72. AliyuM. ZohoraF.T. AnkaA.U. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach.Int. Immunopharmacol.202211110913010.1016/j.intimp.2022.109130 35969896
    [Google Scholar]
  73. CalabreseL.H. Rose-JohnS. IL-6 biology: Implications for clinical targeting in rheumatic disease.Nat. Rev. Rheumatol.2014101272072710.1038/nrrheum.2014.127 25136784
    [Google Scholar]
  74. MatsukuraS. KokubuF. NodaH. TokunagaH. AdachiM. Expression of IL-6, IL-8, and RANTES on human bronchial epithelial cells, NCI-H292, induced by influenza virus A.J. Allergy Clin. Immunol.19969861080108710.1016/S0091‑6749(96)80195‑3 8977509
    [Google Scholar]
  75. AzizM. FatimaR. AssalyR. Elevated interleukin‐6 and severe COVID‐19: A meta‐analysis.J. Med. Virol.202092112283228510.1002/jmv.25948 32343429
    [Google Scholar]
  76. AghasafariP. GeorgeU. PidapartiR. A review of inflammatory mechanism in airway diseases.Inflamm. Res.2019681597410.1007/s00011‑018‑1191‑2 30306206
    [Google Scholar]
  77. MengW.S. SunJ. LuY. Biancaea decapetala (Roth) O.Deg. extract exerts an anti-inflammatory effect by regulating the TNF/Akt/NF-κB pathway.Phytomedicine202311915498310.1016/j.phymed.2023.154983 37586161
    [Google Scholar]
  78. ZegeyeM.M. LindkvistM. FälkerK. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells.Cell Commun. Signal.20181615510.1186/s12964‑018‑0268‑4 30185178
    [Google Scholar]
  79. Costa-PereiraA.P. Regulation of IL-6-type cytokine responses by MAPKs.Biochem. Soc. Trans.2014421596210.1042/BST20130267 24450628
    [Google Scholar]
  80. XuS. YuC. MaX. IL-6 promotes nuclear translocation of HIF-1α to aggravate chemoresistance of ovarian cancer cells.Eur. J. Pharmacol.202189417381710.1016/j.ejphar.2020.173817 33345849
    [Google Scholar]
  81. McCleanN. HasdayJ.D. ShapiroP. Progress in the development of kinase inhibitors for treating asthma and COPD.Adv. Pharmacol.20239814517810.1016/bs.apha.2023.04.004 37524486
    [Google Scholar]
  82. ZhouL. IvanovI.I. SpolskiR. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways.Nat. Immunol.20078996797410.1038/ni1488 17581537
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128363449250526092829
Loading
/content/journals/cpd/10.2174/0113816128363449250526092829
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test