Skip to content
2000
Volume 31, Issue 38
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The potential for 3D printing to completely transform future advanced manufacturing systems has been widely acknowledged. Recent developments in 3D printing technology, particularly in the areas of materials, printers, and procedures, have the potential to revolutionize numerous industries and improve our quality of life on a worldwide scale. 4D printed structures evolve and display intelligent behavior based on specific stimulus-smart material interaction mechanisms and the right design of multi-material structures from mathematical modelling. Time, printer, and shape/property/functionality evolution are the goals of 4D printing, which differs from 3D printing in that it is predictable and not dependent on any one factor. These features enable the product to be self-assembled, multi-functional, and self-repairing. The idea behind four-dimensional printing is the creation of sophisticated three-dimensional structures that can change form in response to various external stimuli. The article provides a comprehensive overview of the smart materials, activation mechanisms, and shape-changing processes used in 4D printing. 4D printing items can be engineered for diverse biomedical purposes, including cell scaffolds, vascular stents, bone scaffolds, tracheal stents, and cardiac stents, through various 3D printing methodologies, influenced by diverse challenges. Additionally, the article explores the potential of shape-changing structures and their present uses in several scientific and biomedical areas.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128358473250331175536
2025-11-01
2025-10-27
Loading full text...

Full text loading...

References

  1. ChoiJ. KwonO.C. JoW. LeeH.J. MoonM.W. 4D printing technology: A review. 3D Print.Addit. Manuf.201524159167
    [Google Scholar]
  2. ShinD.G. KimT.H. KimD.E. Review of 4D printing materials and their properties.Int J Precis Eng Manuf-Green Technol20174334935710.1007/s40684‑017‑0040‑z
    [Google Scholar]
  3. YapY.L. YeongW.Y. Additive manufacture of fashion and jewellery products: A mini review.Virtual Phys. Prototyp.20149319520110.1080/17452759.2014.938993
    [Google Scholar]
  4. FarahaniR.D. DubéM. TherriaultD. Three‐dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications.Adv. Mater.201628285794582110.1002/adma.201506215 27135923
    [Google Scholar]
  5. MuX. BertronT. DunnC. Porous polymeric materials by 3D printing of photocurable resin.Mater. Horiz.20174344244910.1039/C7MH00084G
    [Google Scholar]
  6. LiuY. GenzerJ. DickeyM.D. “2D or not 2D”: Shape-programming polymer sheets.Prog. Polym. Sci.2016527910610.1016/j.progpolymsci.2015.09.001
    [Google Scholar]
  7. TibbitsS. 4D printing: Multi‐material shape change.Archit. Des.201484111612110.1002/ad.1710
    [Google Scholar]
  8. MomeniF. LiuX. NiJ. A review of 4D printing.Mater. Des.2017122427910.1016/j.matdes.2017.02.068
    [Google Scholar]
  9. LeistS.K. ZhouJ. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials.Virtual Phys. Prototyp.201611424926210.1080/17452759.2016.1198630
    [Google Scholar]
  10. Sydney GladmanA. MatsumotoE.A. NuzzoR.G. MahadevanL. LewisJ.A. Biomimetic 4D printing.Nat. Mater.201615441341810.1038/nmat4544 26808461
    [Google Scholar]
  11. PeiE. 4D Printing: Dawn of an emerging technology cycle.Assem. Autom.201434431031410.1108/AA‑07‑2014‑062
    [Google Scholar]
  12. HawkesE. AnB. BenbernouN.M. Programmable matter by folding.Proc. Natl. Acad. Sci. USA201010728124411244510.1073/pnas.0914069107 20616049
    [Google Scholar]
  13. PeiE. LohG.H. Technological considerations for 4D printing: An overview.Prog Addit Manuf201831-29510710.1007/s40964‑018‑0047‑1
    [Google Scholar]
  14. TibbitsS. McKnellyC. OlguinC. DikovskyD. HirschS. 4D printing and universal transformation.Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) 2014
    [Google Scholar]
  15. GurungD. Technological comparison of 3D and 4D printing: Analytical study. Degree Thesis Degree Programme in Plastics Technology2017
    [Google Scholar]
  16. ZhouY. HuangW.M. KangS.F. From 3D to 4D printing: Approaches and typical applications.J. Mech. Sci. Technol.201529104281428810.1007/s12206‑015‑0925‑0
    [Google Scholar]
  17. ZhangZ. DemirK.G. GuG.X. Developments in 4D-printing: A review on current smart materials, technologies, and applications.Int. J. Smart Nano Mater.201910320522410.1080/19475411.2019.1591541
    [Google Scholar]
  18. López-ValdeolivasM. LiuD. BroerD.J. Sánchez-SomolinosC. 4D printed actuators with soft‐robotic functions.Macromol. Rapid Commun.2018395170071010.1002/marc.201700710 29210486
    [Google Scholar]
  19. LuiY.S. SowW.T. TanL.P. WuY. LaiY. LiH. 4D printing and stimuli-responsive materials in biomedical aspects.Acta Biomater.201992193610.1016/j.actbio.2019.05.005 31071476
    [Google Scholar]
  20. KuksenokO. BalazsA.C. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers.Mater. Horiz.201631536210.1039/C5MH00212E
    [Google Scholar]
  21. BakarichS.E. GorkinR.III PanhuisM. SpinksG.M. 4D printing with mechanically robust, thermally actuating hydrogels.Macromol. Rapid Commun.201536121211121710.1002/marc.201500079 25864515
    [Google Scholar]
  22. ZafarM.Q. ZhaoH. 4D printing: Future insight in additive manufacturing.Met. Mater. Int.202026556458510.1007/s12540‑019‑00441‑w
    [Google Scholar]
  23. MomeniF. NiJ. Laws of 4D printing.Engineering2020691035105510.1016/j.eng.2020.01.015
    [Google Scholar]
  24. KhooZ.X. TeohJ.E.M. LiuY. 3D printing of smart materials: A review on recent progresses in 4D printing.Virtual Phys. Prototyp.201510310312210.1080/17452759.2015.1097054
    [Google Scholar]
  25. RavivD. ZhaoW. McKnellyC. Active printed materials for complex self-evolving deformations.Sci. Rep.201441742210.1038/srep07422 25522053
    [Google Scholar]
  26. ZhangQ. YanD. ZhangK. HuG. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique.Sci. Rep.201551893610.1038/srep08936 25757881
    [Google Scholar]
  27. HoaS.V. RoscaD.I. Formation of letters in the alphabet using 4D printing of composites.Mater. Today Commun.20202510111510.1016/j.mtcomm.2020.101115
    [Google Scholar]
  28. XiaY. HeY. ZhangF. LiuY. LengJ. A review of shape memory polymers and composites: Mechanisms, materials, and applications.Adv. Mater.2021336200071310.1002/adma.202000713 32969090
    [Google Scholar]
  29. KiharaS. KöperI. MataJ.P. McGillivrayD.J. Reviewing nanoplastic toxicology: It’s an interface problem.Adv. Colloid Interface Sci.202128810233710.1016/j.cis.2020.102337 33385776
    [Google Scholar]
  30. Rodríguez-HernándezA.G. ChiodoniA. BocchiniS. Vazquez-DuhaltR. 3D printer waste, a new source of nanoplastic pollutants.Environ. Pollut.202026711560910.1016/j.envpol.2020.115609 33254724
    [Google Scholar]
  31. FuP. LiH. GongJ. 4D printing of polymers: Techniques, materials, and prospects.Prog. Polym. Sci.202212610150610.1016/j.progpolymsci.2022.101506
    [Google Scholar]
  32. KimK. ZhuW. QuX. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.ACS Nano20148109799980610.1021/nn503268f 25046646
    [Google Scholar]
  33. MeierH. HaberlandC. FrenzelJ. ZarnettaR. Selective laser melting of NiTi shape memory components. In: Innovative developments in design and manufacturing.CRC Press200925125610.1201/9780203859476.ch35
    [Google Scholar]
  34. ChuaC.K. LeongK.F. 3D 3D Printing and additive manufacturing: Principles and applications (with companion media pack)-of rapid prototyping.World Scientific Publishing Company2014
    [Google Scholar]
  35. MiyashitaS. GuitronS. LudersdorferM. SungC.R. RusD. An untethered miniature origami robot that self-folds, walks, swims, and degrades. In2015.IEEE Int. Conf. Robot. Autom.201514901496
    [Google Scholar]
  36. RyuJ. D’AmatoM. CuiX. LongK.N. Jerry QiH. DunnM.L. Photo-origami-Bending and folding polymers with light.Appl. Phys. Lett.20121001616190810.1063/1.3700719
    [Google Scholar]
  37. LiuY. BoylesJ.K. GenzerJ. DickeyM.D. Self-folding of polymer sheets using local light absorption.Soft Matter2012861764176910.1039/C1SM06564E
    [Google Scholar]
  38. MuX. SowanN. TumbicJ.A. BowmanC.N. MatherP.T. QiH.J. Photo-induced bending in a light-activated polymer laminated composite.Soft Matter201511132673268210.1039/C4SM02592J 25690905
    [Google Scholar]
  39. GrossB.C. ErkalJ.L. LockwoodS.Y. ChenC. SpenceD.M. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences.Anal. Chem.20148673240325310.1021/ac403397r
    [Google Scholar]
  40. BoseS. VahabzadehS. BandyopadhyayA. Bone tissue engineering using 3D printing.Mater. Today2013161249650410.1016/j.mattod.2013.11.017
    [Google Scholar]
  41. GoldsteinT. SmithL. SmithB. GrandeD. ZeltsmanD. Integrating biodegradable 3-dimensional-printing into tracheal reconstruction.Open J Regen Med20154273310.4236/ojrm.2015.43004
    [Google Scholar]
  42. GeQ. QiH.J. DunnM.L. Active materials by four-dimension printing.Appl. Phys. Lett.20131031313190110.1063/1.4819837
    [Google Scholar]
  43. PeiE. 4D printing - Revolution or fad?Assem. Autom.201434212312710.1108/AA‑02‑2014‑014
    [Google Scholar]
  44. LendleinA. KelchS. Shape-memory polymers as stimuli-sensitive implant materials.Clin. Hemorheol. Microcirc.2005322105116 15764819
    [Google Scholar]
  45. LiuC. QinH. MatherP.T. Review of progress in shape-memory polymers.J. Mater. Chem.200717161543155810.1039/b615954k
    [Google Scholar]
  46. LuoX. MatherP.T. Preparation and characterization of shape memory elastomeric composites.Macromolecules200942197251725310.1021/ma9015888
    [Google Scholar]
  47. XieT. Tunable polymer multi-shape memory effect.Nature2010464728626727010.1038/nature08863 20220846
    [Google Scholar]
  48. GeQ. LuoX. RodriguezE.D. Thermomechanical behavior of shape memory elastomeric composites.J. Mech. Phys. Solids2012601678310.1016/j.jmps.2011.09.011
    [Google Scholar]
  49. TobushiH. HaraH. YamadaE. HayashiS. Thermomechanical properties in a thin film of shape memory polymer of polyurethane series.Smart Mater. Struct.19965448349110.1088/0964‑1726/5/4/012
    [Google Scholar]
  50. LiuY. GallK. DunnM.L. McCluskeyP. Thermomechanics of shape memory polymer nanocomposites.Mech. Mater.2004361092994010.1016/j.mechmat.2003.08.012
    [Google Scholar]
  51. LiuY. GallK. DunnM.L. GreenbergA.R. DianiJ. Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling.Int. J. Plast.200622227931310.1016/j.ijplas.2005.03.004
    [Google Scholar]
  52. YakackiC.M. ShandasR. LanningC. RechB. EcksteinA. GallK. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications.Biomaterials200728142255226310.1016/j.biomaterials.2007.01.030 17296222
    [Google Scholar]
  53. WangZ. HansenC. GeQ. Programmable, pattern-memorizing polymer surface.Adv. Mater.201123323669367310.1002/adma.201101571 21739491
    [Google Scholar]
  54. QiH.J. NguyenT.D. CastroF. YakackiC.M. ShandasR. Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers.J. Mech. Phys. Solids20085651730175110.1016/j.jmps.2007.12.002
    [Google Scholar]
  55. ZongC. ZhaoY. JiH. Patterning surfaces on azo‐based multilayer films via surface wrinkling combined with visible light irradiation.Macromol. Rapid Commun.201637151288129410.1002/marc.201600229 27336189
    [Google Scholar]
  56. SunJ.Y. ZhaoX. IlleperumaW.R.K. Highly stretchable and tough hydrogels.Nature2012489741413313610.1038/nature11409 22955625
    [Google Scholar]
  57. NaficyS. GatelyR. GorkinR.III XinH. SpinksG.M. 4D printing of reversible shape morphing hydrogel structures.Macromol. Mater. Eng.20173021160021210.1002/mame.201600212
    [Google Scholar]
  58. ThakurS. ChaudharyJ. KumarV. ThakurV.K. Progress in pectin based hydrogels for water purification: Trends and challenges.J. Environ. Manage.201923821022310.1016/j.jenvman.2019.03.002 30851560
    [Google Scholar]
  59. MohammadinejadR. MalekiH. LarrañetaE. Status and future scope of plant-based green hydrogels in biomedical engineering.Appl. Mater. Today20191621324610.1016/j.apmt.2019.04.010
    [Google Scholar]
  60. HongS. SycksD. ChanH.F. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures.Adv. Mater.201527274035
    [Google Scholar]
  61. MillerJ.S. StevensK.R. YangM.T. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues.Nat. Mater.201211976877410.1038/nmat3357 22751181
    [Google Scholar]
  62. MurphyS.V. SkardalA. AtalaA. Evaluation of hydrogels for bio‐printing applications.J. Biomed. Mater. Res. A2013101A127228410.1002/jbm.a.34326 22941807
    [Google Scholar]
  63. Hanson ShepherdJ.N. ParkerS.T. ShepherdR.F. GilletteM.U. LewisJ.A. NuzzoR.G. 3D microperiodic hydrogel scaffolds for robust neuronal cultures.Adv. Funct. Mater.2011211475410.1002/adfm.201001746 21709750
    [Google Scholar]
  64. HanD. LuZ. ChesterS.A. LeeH. Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography.Sci. Rep.201881196310.1038/s41598‑018‑20385‑2 29386555
    [Google Scholar]
  65. WuJ.J. HuangL.M. ZhaoQ. XieT. 4D printing: History and recent progress.Chin. J. Polym. Sci.201836556357510.1007/s10118‑018‑2089‑8
    [Google Scholar]
  66. KoernerH. PriceG. PearceN.A. AlexanderM. VaiaR.A. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers.Nat. Mater.20043211512010.1038/nmat1059 14743213
    [Google Scholar]
  67. HeZ. SatarkarN. XieT. ChengY.T. HiltJ.Z. Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations.Adv. Mater.201123283192319610.1002/adma.201100646 21638345
    [Google Scholar]
  68. QuadriniF. SqueoE.A. Solid-state foaming of epoxy resin.J. Cell. Plast.200844216117310.1177/0021955X07082486
    [Google Scholar]
  69. RastogiP. KandasubramanianB. Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing.Chem. Eng. J.201936626430410.1016/j.cej.2019.02.085
    [Google Scholar]
  70. TrubyR.L. LewisJ.A. Printing soft matter in three dimensions.Nature2016540763337137810.1038/nature21003 27974748
    [Google Scholar]
  71. NakamuraM. KobayashiA. TakagiF. Biocompatible inkjet printing technique for designed seeding of individual living cells.Tissue Eng.20051111-121658166610.1089/ten.2005.11.1658 16411811
    [Google Scholar]
  72. MaldaJ. VisserJ. MelchelsF.P. 25th anniversary article: Engineering hydrogels for biofabrication.Adv. Mater.201325365011502810.1002/adma.201302042 24038336
    [Google Scholar]
  73. YangY. ChenY. WeiY. LiY. Novel design and three-dimensional printing of variable stiffness robotic grippers.J. Mech. Robot.20168606101010.1115/1.4033728
    [Google Scholar]
  74. ShafferS. YangK. VargasJ. Di PrimaM.A. VoitW. On reducing anisotropy in 3D printed polymers via ionizing radiation.Polymer201455235969597910.1016/j.polymer.2014.07.054
    [Google Scholar]
  75. LyS.T. KimJ.Y. 4D printing - Fused deposition modeling printing with thermal-responsive shape memory polymers.Int J Precis Eng Manuf-Green Technol20174326727210.1007/s40684‑017‑0032‑z
    [Google Scholar]
  76. BodaghiM. DamanpackA.R. LiaoW.H. Adaptive metamaterials by functionally graded 4D printing.Mater. Des.2017135263610.1016/j.matdes.2017.08.069
    [Google Scholar]
  77. FuQ. SaizE. TomsiaA.P. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration.Acta Biomater.20117103547355410.1016/j.actbio.2011.06.030 21745606
    [Google Scholar]
  78. CampbellJ. McGuinnessI. WirzH. SharonA. Sauer-BudgeA.F. Multimaterial and multiscale three-dimensional bioprinter.J. Nanotechnol. Eng. Med.20156202100510.1115/1.4031230
    [Google Scholar]
  79. KuangX. ChenK. DunnC.K. WuJ. LiV.C.F. QiH.J. 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing.ACS Appl. Mater. Interfaces20181087381738810.1021/acsami.7b18265 29400445
    [Google Scholar]
  80. ZarekM. LayaniM. CoopersteinI. SachyaniE. CohnD. MagdassiS. 3D printing: 3D printing of shape memory polymers for flexible electronic devices.Adv. Mater.20162822416610.1002/adma.201670148 27273436
    [Google Scholar]
  81. MelchelsF.P.W. FeijenJ. GrijpmaD.W. A review on stereolithography and its applications in biomedical engineering.Biomaterials201031246121613010.1016/j.biomaterials.2010.04.050 20478613
    [Google Scholar]
  82. ChoongY.Y.C. MaleksaeediS. EngH. WeiJ. SuP.C. 4D printing of high performance shape memory polymer using stereolithography.Mater. Des.201712621922510.1016/j.matdes.2017.04.049
    [Google Scholar]
  83. XieR. LiD. ChaoS. An inexpensive stereolithography technology with high power UV‐LED light.Rapid Prototyping J.201117644145010.1108/13552541111184170
    [Google Scholar]
  84. GeQ. SakhaeiA.H. LeeH. DunnC.K. FangN.X. DunnM.L. Multimaterial 4D printing with tailorable shape memory polymers.Sci. Rep.2016613111010.1038/srep31110 27499417
    [Google Scholar]
  85. WangW. YaoL. ZhangT. ChengC.Y. LevineD. IshiiH. Transformative appetite: Shape-changing food transforms from 2D to 3D by water interaction through cooking.Proceedings of the 2017 CHI conference on human factors in computing systems2017 May 2 pp61236132
    [Google Scholar]
  86. GeQ. DunnC.K. QiH.J. DunnM.L. Active origami by 4D printing.Smart Mater. Struct.201423909400710.1088/0964‑1726/23/9/094007
    [Google Scholar]
  87. FilipovE.T. PaulinoG.H. TachiT. Origami tubes with reconfigurable polygonal cross-sections.Proc.- Royal Soc., Math. Phys. Eng. Sci.201647221852015060710.1098/rspa.2015.0607 26997894
    [Google Scholar]
  88. LiuY. ParkJ. LangR.J. Parylene origami structure for intraocular implantation.2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII).Piscataway, NJ, 16 Jun20131549155210.1109/Transducers.2013.6627077
    [Google Scholar]
  89. FeltonS. TolleyM. DemaineE. RusD. WoodR. A method for building self-folding machines.Science2014345619764464610.1126/science.1252610 25104380
    [Google Scholar]
  90. HuangW.M. YangB. AnL. LiC. ChanY.S. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism.Appl. Phys. Lett.2005861111410510.1063/1.1880448
    [Google Scholar]
  91. Chae JungY. Hwa SoH. Whan ChoJ. Water‐responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane.J. Macromol. Sci. Part B Phys.200645445346110.1080/00222340600767513
    [Google Scholar]
  92. SuJ.W. TaoX. DengH. 4D printing of a self-morphing polymer driven by a swellable guest medium.Soft Matter201814576577210.1039/C7SM01796K 29302670
    [Google Scholar]
  93. ChengF. YinR. ZhangY. YenC.C. YuY. Fully plastic microrobots which manipulate objects using only visible light.Soft Matter20106153447344910.1039/c0sm00012d
    [Google Scholar]
  94. LendleinA. JiangH. JüngerO. LangerR. Light-induced shape-memory polymers.Nature2005434703587988210.1038/nature03496 15829960
    [Google Scholar]
  95. IrieM. KunwatchakunD. Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives.Macromolecules198619102476248010.1021/ma00164a003
    [Google Scholar]
  96. GaoB. YangQ. ZhaoX. JinG. MaY. XuF. 4D bioprinting for biomedical applications.Trends Biotechnol.201634974675610.1016/j.tibtech.2016.03.004 27056447
    [Google Scholar]
  97. ZhouW. QiaoZ. Nazarzadeh ZareE. 4D-printed dynamic materials in biomedical applications: chemistry, challenges, and their future perspectives in the clinical sector.J. Med. Chem.202063158003802410.1021/acs.jmedchem.9b02115 32255358
    [Google Scholar]
  98. MorganN.B. Medical shape memory alloy applications—the market and its products.Mater. Sci. Eng. A20043781-2162310.1016/j.msea.2003.10.326
    [Google Scholar]
  99. DuerigT.W. The use of superelasticity in modern medicine.MRS Bull.200227210110410.1557/mrs2002.44
    [Google Scholar]
  100. HatamiH. AlmahmeedW. KesharwaniP. SahebkarA. Exploring the potential of 3D and 4D printing in advancing stent manufacturing for cardiovascular diseases.Eur. Polym. J.202421211303510.1016/j.eurpolymj.2024.113035
    [Google Scholar]
  101. DuerigT. PeltonA. StöckelD. An overview of nitinol medical applications.Mater. Sci. Eng. A1999273-27514916010.1016/S0921‑5093(99)00294‑4
    [Google Scholar]
  102. SmallW. BuckleyP.R. WilsonT.S. Shape memory polymer stent with expandable foam: A new concept for endovascular embolization of fusiform aneurysms.IEEE Trans. Biomed. Eng.20075461157116010.1109/TBME.2006.889771 17549908
    [Google Scholar]
  103. RaffG.L. GallagherM.J. O’NeillW.W. GoldsteinJ.A. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography.J. Am. Coll. Cardiol.200546355255710.1016/j.jacc.2005.05.056 16053973
    [Google Scholar]
  104. WischkeC. LendleinA. Shape-memory polymers as drug carriers--a multifunctional system.Pharm. Res.201027452752910.1007/s11095‑010‑0062‑5 20127394
    [Google Scholar]
  105. NeffeA.T. HanhB.D. SteuerS. LendleinA. Polymer networks combining controlled drug release, biodegradation, and shape memory capability.Adv. Mater.20092132-333394339810.1002/adma.200802333 20882503
    [Google Scholar]
  106. TranN.Q. JoungY.K. LihE. ParkK.D. In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing.Biomacromolecules20111282872288010.1021/bm200326g 21591793
    [Google Scholar]
  107. SongA. RaneA.A. ChristmanK.L. Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing.Acta Biomater.201281415010.1016/j.actbio.2011.10.004 22023748
    [Google Scholar]
  108. VazquezO.R. AvilaI.O. DíazJ.C.S. HernandezE. An overview of mechanical tests for polymeric biomaterial scaffolds used in tissue engineering.J Res Updates Polym Sci20164416817810.6000/1929‑5995.2015.04.04.1
    [Google Scholar]
  109. MassoumiB. HatamzadehM. FirouziN. JaymandM. Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(ε-caprolactone) for tissue engineering applications.Mater. Sci. Eng. C20199830031010.1016/j.msec.2018.12.114 30813032
    [Google Scholar]
  110. LinC. LvJ. LiY. 4D‐printed biodegradable and remotely controllable shape memory occlusion devices.Adv. Funct. Mater.20192951190656910.1002/adfm.201906569
    [Google Scholar]
  111. BaoM. LouX. ZhouQ. DongW. YuanH. ZhangY. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering.ACS Appl. Mater. Interfaces2014642611262110.1021/am405101k 24476093
    [Google Scholar]
  112. SharmaC. DindaA.K. PotdarP.D. ChouC.F. MishraN.C. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.Mater. Sci. Eng. C20166441642710.1016/j.msec.2016.03.060 27127072
    [Google Scholar]
  113. Parke-HoubenR. FoxC.H. ZhengL.L. Interpenetrating polymer network hydrogel scaffolds for artificial cornea periphery.J. Mater. Sci. Mater. Med.201526210710.1007/s10856‑015‑5442‑2 25665845
    [Google Scholar]
  114. JavaidM. HaleemA. 4D printing applications in medical field: A brief review.Clin. Epidemiol. Glob. Health20197331732110.1016/j.cegh.2018.09.007
    [Google Scholar]
  115. MutluR. AliciG. in het PanhuisM. SpinksG. Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger.2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)7 Jul201579079510.1109/AIM.2015.7222634
    [Google Scholar]
  116. CampbellTA Next wave: 4D printing programming the material world.
    [Google Scholar]
  117. TibbitsS. A model for intelligence of large-scale self-assembly.In: ACADIA 2011: Integration Through Computation.January201134234910.52842/conf.acadia.2011.342
    [Google Scholar]
  118. HartL.R. HarriesJ.L. GreenlandB.W. ColquhounH.M. HayesW. Healable supramolecular polymers.Polym. Chem.20134184860487010.1039/c3py00081h
    [Google Scholar]
  119. BauerS. Bauer-GogoneaS. GrazI. KaltenbrunnerM. KeplingerC. SchwödiauerR. 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters.Adv. Mater.201426114916210.1002/adma.201303349 24307641
    [Google Scholar]
  120. HighleyC.B. RodellC.B. BurdickJ.A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels.Adv. Mater.2015273450755079
    [Google Scholar]
  121. YangJ. BaiR. ChenB. SuoZ. Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics.Adv. Funct. Mater.2020302190169310.1002/adfm.201901693
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128358473250331175536
Loading
/content/journals/cpd/10.2174/0113816128358473250331175536
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test