Skip to content
2000
image of 
Neuroprotective Effects of Thymol-Loaded Selenium Nanoparticles Against
6-OHDA-Induced Apoptosis and Oxidative Stress in an In Vitro Parkinson’s Disease Model

Abstract

Introduction

Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neurons within the substantia nigra, leading to progressive motor dysfunction. There are still limited disease-modifying options that counteract the process of disease progression. This study aimed to evaluate the neuroprotective effects of thymol, both in its free form and when loaded onto selenium nanoparticles (SeNPs), in a 6-hydroxydopamine (6-OHDA)-induced PD model using SH-SY5Y cells.

Methods

SeNPs were synthesized using a chemical reduction method with ascorbic acid, achieving a 68% entrapment efficiency for thymol. FTIR analysis suggested an interaction between thymol and selenium, which was confirmed by EDX analysis. Nano-Se-thymol particles were observed to be spherical, with a mean size of 135.7 nm and a negative surface charge.

Results

Nano-Se-thymol exhibited low toxicity in normal fibroblast cells and demonstrated greater neuroprotective effects against 6-OHDA-induced cytotoxicity compared to thymol. Nano-Se-thymol significantly reduced ROS generation and increased cell viability compared to 6-OHDA. Furthermore, Nano-Se-thymol decreased the expression of NF-κB inflammatory markers and caspase-3 apoptotic proteins, which were elevated by 6-OHDA, compared to thymol alone.

Discussion

Nano-Se-Thymol significantly attenuates 6-OHDA-induced cytotoxicity in an established model of PD. The neuroprotective efficacy of Nano-Se-Thymol is attributed to its enhanced antioxidant capacity, as evidenced by a significant reduction in ROS levels, along with its ability to inhibit apoptosis and modulate cell cycle progression.

Conclusion

Nano-Se-thymol is a potential disease-modifying agent for the treatment of PD; however, further studies and long-term safety assessments are essential to confirm these benefits and understand the underlying mechanisms.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128380006250630103711
2025-07-16
2025-09-10
Loading full text...

Full text loading...

References

  1. Feigin V.L. Abajobir A.A. Abate K.H. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017 16 11 877 897 10.1016/S1474‑4422(17)30299‑5 28931491
    [Google Scholar]
  2. Dorsey E.R. Elbaz A. Nichols E. Global, regional, and national burden of Parkinson’s disease, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018 17 11 939 953 10.1016/S1474‑4422(18)30295‑3 30287051
    [Google Scholar]
  3. Ou Z. Pan J. Tang S. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front. Public Health 2021 9 776847 10.3389/fpubh.2021.776847 34950630
    [Google Scholar]
  4. Surmeier D.J. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018 285 19 3657 3668 10.1111/febs.14607 30028088
    [Google Scholar]
  5. Chen R. Berardelli A. Bhattacharya A. Clinical neurophysiology of Parkinson’s disease and parkinsonism. Clin. Neurophysiol. Pract. 2022 7 201 227 10.1016/j.cnp.2022.06.002 35899019
    [Google Scholar]
  6. Grimes D. Fitzpatrick M. Gordon J. Canadian guideline for Parkinson disease. CMAJ 2019 191 36 E989 E1004 10.1503/cmaj.181504 31501181
    [Google Scholar]
  7. Armstrong M.J. Okun M.S. Diagnosis and treatment of Parkinson disease: A review. JAMA 2020 323 6 548 560 10.1001/jama.2019.22360 32044947
    [Google Scholar]
  8. Cerri S. Blandini F. An update on the use of non-ergot dopamine agonists for the treatment of Parkinson’s disease. Expert Opin. Pharmacother. 2020 21 18 2279 2291 10.1080/14656566.2020.1805432 32804544
    [Google Scholar]
  9. Vijiaratnam N. Simuni T. Bandmann O. Morris H.R. Foltynie T. Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol. 2021 20 7 559 572 10.1016/S1474‑4422(21)00061‑2 34146514
    [Google Scholar]
  10. Ribba B. Simuni T. Marek K. Modeling of Parkinson’s disease progression and implications for detection of disease modification in treatment trials. J. Parkinsons Dis. 2024 14 6 1225 1235 10.3233/JPD‑230446 39058452
    [Google Scholar]
  11. Verschuur C.V.M. Suwijn S.R. Boel J.A. Randomized delayed-start trial of levodopa in Parkinson’s disease. N. Engl. J. Med. 2019 380 4 315 324 10.1056/NEJMoa1809983 30673543
    [Google Scholar]
  12. Dawson VL Dawson TM Promising disease-modifying therapies for Parkinson’s disease. Sci Transl Med 2019 11 (520) eaba1659 10.1126/scitranslmed.aba1659 31776289
    [Google Scholar]
  13. Miao Z. Bai J. Shen L. Singla R.K. The combination of tradition and future: Data-driven natural-product-based treatments for Parkinson’s disease. Evid. Based Complement. Alternat. Med. 2021 2021 1 8 10.1155/2021/9990020 34335855
    [Google Scholar]
  14. Kowalczyk A. Przychodna M. Sopata S. Bodalska A. Fecka I. Thymol and thyme essential oil—new insights into selected therapeutic applications. Molecules 2020 25 18 4125 10.3390/molecules25184125 32917001
    [Google Scholar]
  15. Gholami-Ahangaran M. Ahmadi-Dastgerdi A. Azizi S. Basiratpour A. Zokaei M. Derakhshan M. Thymol and carvacrol supplementation in poultry health and performance. Vet. Med. Sci. 2022 8 1 267 288 10.1002/vms3.663 34761555
    [Google Scholar]
  16. Timalsina B. Haque M.N. Choi H.J. Dash R. Moon I.S. Thymol in Trachyspermum ammi seed extract exhibits neuroprotection, learning, and memory enhancement in scopolamine‐induced Alzheimer’s disease mouse model. Phytother. Res. 2023 37 7 2811 2826 10.1002/ptr.7777 36808768
    [Google Scholar]
  17. Batool A. Saleem S. Naqvi F. Hasan K.A. Naqvi F. Haider S. Thymol mitigates cadmium-induced behavioral and cognitive deficits by up-regulating hippocampal BDNF levels in rats. Pak. J. Pharm. Sci. 2022 35 2 671 678 [PMID: 35668569
    [Google Scholar]
  18. Azizi Z. Salimi M. Amanzadeh A. Majelssi N. Naghdi N. Carvacrol and thymol attenuate cytotoxicity induced by amyloid β25-35 via activating protein kinase c and inhibiting oxidative stress in PC12 cells. Iran. Biomed. J. 2020 24 4 243 250 10.29252/ibj.24.4.243 32306722
    [Google Scholar]
  19. Ogaly H.A. Abdel-Rahman R.F. Mohamed M.A.E. Ahmed-Farid O.A. Khattab M.S. Abd-Elsalam R.M. Thymol ameliorated neurotoxicity and cognitive deterioration in a thioacetamide-induced hepatic encephalopathy rat model; Involvement of the BDNF/CREB signaling pathway. Food Funct. 2022 13 11 6180 6194 10.1039/D1FO04292K 35583008
    [Google Scholar]
  20. Peng X. Zhang X. Sharma G. Dai C. Thymol as a potential neuroprotective agent: Mechanisms, efficacy, and future prospects. J. Agric. Food Chem. 2024 72 13 6803 6814 10.1021/acs.jafc.3c06461 38507708
    [Google Scholar]
  21. Liang D. Li F. Fu Y. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation 2014 37 1 214 222 10.1007/s10753‑013‑9732‑x 24057926
    [Google Scholar]
  22. Zhou E. Fu Y. Wei Z. Yu Y. Zhang X. Yang Z. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia 2014 96 131 137 10.1016/j.fitote.2014.04.016 24785965
    [Google Scholar]
  23. El-Hadi A.A. Ahmed H.M. Zaki R.A. Mohsen A.M. Enhanced enzymatic activity of Strepromyces griseoplanus L-asparginase cia its incorporation in an oil-based nanocarrier. Int J Appl Pharm 2020 2020 203 210 10.22159/ijap.2020v12i5.38360
    [Google Scholar]
  24. Mohsen A.M. Nagy Y.I. Shehabeldine A.M. Okba M.M. Thymol-Loaded Eudragit RS30D cationic nanoparticles-based hydrogels for topical application in wounds: In vitro and in vivo evaluation. Pharmaceutics 2022 15 1 19 10.3390/pharmaceutics15010019 36678648
    [Google Scholar]
  25. Li A. Tyson J. Patel S. Emerging nanotechnology for treatment of Alzheimer’s and Parkinson’s disease. Front. Bioeng. Biotechnol. 2021 9 672594 10.3389/fbioe.2021.672594 34113606
    [Google Scholar]
  26. Abousamra M.M. Mohsen A.M. Solid lipid nanoparticles and nanostructured lipid carriers of tolnaftate: Design, optimization and in-vitro evaluation. Int. J. Pharm. Pharm. Sci. 2016 8 1 380 385
    [Google Scholar]
  27. Einafshar E. Haghighi Asl A. Ramezani M. Hashemnia A. Malekzadeh A. Synthesis and characterization of multifunctional graphene oxide with gamma-cyclodextrin and SPION as new nanocarriers for drug delivery. Applied Chemistry Today 2019 14 51 35 50
    [Google Scholar]
  28. Mikhailova E.O. Selenium nanoparticles: Green synthesis and biomedical application. Molecules 2023 28 24 8125 10.3390/molecules28248125 38138613
    [Google Scholar]
  29. Hosnedlova B. Kepinska M. Skalickova S. Nano-selenium and its nanomedicine applications: A critical review. Int. J. Nanomedicine 2018 13 2107 2128 10.2147/IJN.S157541 29692609
    [Google Scholar]
  30. Kalčec N. Peranić N. Mamić I. Selenium nanoparticles as potential drug-delivery systems for the treatment of Parkinson’s disease. ACS Appl. Nano Mater. 2023 6 19 17581 17592 10.1021/acsanm.3c02749
    [Google Scholar]
  31. Umapathy S. Pan I. Issac P.K. Selenium nanoparticles as neuroprotective agents: Insights into molecular mechanisms for Parkinson’s disease treatment. Mol. Neurobiol. 2024 1 28 10.1007/s12035‑024‑04253‑x 38837103
    [Google Scholar]
  32. Salaramoli S. Amiri H. Joshaghani H.R. Hosseini M. Hashemy S.I. Bio-synthesized selenium nanoparticles ameliorate brain oxidative stress in Parkinson disease rat models. Metab. Brain Dis. 2023 38 6 2055 2064 10.1007/s11011‑023‑01222‑6 37133801
    [Google Scholar]
  33. Kazemi M. Akbari A. Soleimanpour S. Feizi N. Darroudi M. The role of green reducing agents in gelatin-based synthesis of colloidal selenium nanoparticles and investigation of their antimycobacterial and photocatalytic properties. J. Cluster Sci. 2019 30 3 767 775 10.1007/s10876‑019‑01537‑4
    [Google Scholar]
  34. Zhang S.Y. Zhang J. Wang H.Y. Chen H.Y. Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater. Lett. 2004 58 21 2590 2594 10.1016/j.matlet.2004.03.031
    [Google Scholar]
  35. Vahdati M. Tohidi Moghadam T. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci. Rep. 2020 10 1 510 10.1038/s41598‑019‑57333‑7 31949299
    [Google Scholar]
  36. Kazemian Kakhki M. Mirzavi F. Jalili-Nik M. Einafshar E. Nadi Yazdi H. Soukhtanloo M. Anticancer effects of beta-cyclodextrin-graphene oxide nanoparticles loaded with selenium on human malignant glioblastoma cells. Bionanoscience 2024 14 2 1075 1087 10.1007/s12668‑024‑01351‑x
    [Google Scholar]
  37. Einafshar E. Asl A.H. Nia A.H. Mohammadi M. Malekzadeh A. Ramezani M. New cyclodextrin-based nanocarriers for drug delivery and phototherapy using an irinotecan metabolite. Carbohydr. Polym. 2018 194 103 110 10.1016/j.carbpol.2018.03.102 29801817
    [Google Scholar]
  38. Naser N.A. Muhammad K. Ameer A. Zahraa K. Solvent effects on the electronic absorption spectra of thymol. Chem. Educ. 2015 20 176 182
    [Google Scholar]
  39. Shariat Razavi S.A. Vafaei F. Ebrahimi S.M. The protective effect of parthenolide in an in vitro model of Parkinson’s disease through its regulation of nuclear factor-kappa B and oxidative stress. Mol. Biol. Rep. 2024 51 1 819 10.1007/s11033‑024‑09779‑w 39017801
    [Google Scholar]
  40. Kamiloglu S. Sari G. Ozdal T. Capanoglu E. Guidelines for cell viability assays. Food Front. 2020 1 3 332 349 10.1002/fft2.44
    [Google Scholar]
  41. Alavi M.S. Fanoudi S. Hosseini A. Jalili-Nik M. Bagheri A. Sadeghnia H.R. Everolimus attenuates glutamate-induced PC12 cells death. Int. J. Neurosci. 2023 133 4 457 466 10.1080/00207454.2021.1929210 33998365
    [Google Scholar]
  42. Einafshar E. Mobasheri L. Hasanpour M. Rashidi R. Ghorbani A. Pro-apoptotic effect of chloroform fraction of Moraea sisyrinchium bulb against glioblastoma cells. Biomed. Pharmacother. 2024 170 115931 10.1016/j.biopha.2023.115931 38016363
    [Google Scholar]
  43. Crowley L.C. Chojnowski G. Waterhouse N.J. Measuring the DNA content of cells in apoptosis and at different cell-cycle stages by propidium iodide staining and flow cytometry. Cold Spring Harb. Protoc. 2016 2016 10 10.1101/pdb.prot087247 27698234
    [Google Scholar]
  44. Alavi M.S. Al-Asady A.M. Abbasinezhad-Moud F. Rajabian A. Rastegartizabi Z. Sadeghnia H.R. Oligoprotective activity of levetiracetam against glutamate toxicity: An in vitro study. Curr. Pharm. Des. 2025 31 1 57 64 10.2174/0113816128327215240827071257 39279708
    [Google Scholar]
  45. Amiri H. Javid H. Einafshar E. Development and evaluation of PLGA nanoparticles surfaced modified with chitosan-folic acid for improved delivery of resveratrol to prostate cancer cells. Bionanoscience 2024 14 2 988 998 10.1007/s12668‑024‑01345‑9
    [Google Scholar]
  46. Alavi M.S. Negah S.S. Ghorbani A. Hosseini A. Sadeghnia H.R. Levetiracetam promoted rat embryonic neurogenesis via NMDA receptor-mediated mechanism in vitro. Life Sci. 2021 284 119923 10.1016/j.lfs.2021.119923 34481865
    [Google Scholar]
  47. Dinno A. Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J. 2015 15 1 292 300 10.1177/1536867X1501500117
    [Google Scholar]
  48. Zamani Z. Alipour D. Moghimi H.R. Mortazavi S.A.R. Saffary M. Development and evaluation of thymol microparticles using cellulose derivatives as controlled release dosage form. Iran. J. Pharm. Res. 2015 14 4 1031 1040 [PMID: 26664369
    [Google Scholar]
  49. Mekkawy A.I. Fathy M. Mohamed H.B. Evaluation of different surface coating agents for selenium nanoparticles: Enhanced anti-inflammatory activity and drug loading capacity. Drug Des. Devel. Ther. 2022 16 1811 1825 10.2147/DDDT.S360344 35719212
    [Google Scholar]
  50. Einafshar E. Javid H. Amiri H. Akbari-Zadeh H. Hashemy S.I. Curcumin loaded β-cyclodextrin-magnetic graphene oxide nanoparticles decorated with folic acid receptors as a new theranostic agent to improve prostate cancer treatment. Carbohydr. Polym. 2024 340 122328 10.1016/j.carbpol.2024.122328 38857995
    [Google Scholar]
  51. Bisht N. Phalswal P. Khanna P.K. Selenium nanoparticles: A review on synthesis and biomedical applications. Materials Advances 2022 3 3 1415 1431 10.1039/D1MA00639H
    [Google Scholar]
  52. Agilan S. Velauthapillai D. Muthukumarasamy N. Thambidurai M. Senthil T. Balasundaraprabhu R. Synthesis and characterization of selenium nanowires. Int. Sch. Res. Notices 2011 2011 3 5890 10.5402/2011/5890
    [Google Scholar]
  53. Pouyamanesh G. Ameli N. Metanat Y. Thymol enhances] 5-fluorouracil cytotoxicity by reducing migration and increasing apoptosis and cell cycle arrest in esophageal cancer cells: An in-vitro study. Indian J. Clin. Biochem. 2024 2024 1 12 10.1007/s12291‑024‑01219‑7
    [Google Scholar]
  54. Yu B. Zhang Y. Zheng W. Fan C. Chen T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg. Chem. 2012 51 16 8956 8963 10.1021/ic301050v 22873404
    [Google Scholar]
  55. Srivastava P. Braganca J.M. Kowshik M. In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti‐proliferative properties against HeLa cell line. Biotechnol. Prog. 2014 30 6 1480 1487 10.1002/btpr.1992 25219897
    [Google Scholar]
  56. Khurana A. Tekula S. Saifi M.A. Venkatesh P. Godugu C. Therapeutic applications of selenium nanoparticles. Biomed. Pharmacother. 2019 111 802 812 10.1016/j.biopha.2018.12.146 30616079
    [Google Scholar]
  57. Skalickova S. Milosavljevic V. Cihalova K. Horky P. Richtera L. Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition 2017 33 83 90 10.1016/j.nut.2016.05.001 27356860
    [Google Scholar]
  58. Dong-Chen X. Yong C. Yang X. Chen-Yu S. Li-Hua P. Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023 8 1 73 10.1038/s41392‑023‑01353‑3 36810524
    [Google Scholar]
  59. Bernstein A.I. Garrison S.P. Zambetti G.P. O’Malley K.L. 6-OHDA generated ROS induces DNA damage and p53- and PUMA-dependent cell death. Mol. Neurodegener. 2011 6 1 2 10.1186/1750‑1326‑6‑2 21211034
    [Google Scholar]
  60. Nourmohammadi S. Yousefi S. Manouchehrabadi M. Farhadi M. Azizi Z. Torkaman-Boutorabi A. Thymol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease via inhibiting oxidative stress. BMC Complement Med Ther 2022 22 1 40 10.1186/s12906‑022‑03524‑1 35144603
    [Google Scholar]
  61. Abu-Elfotuh K. Hamdan A.M.E. Mohammed A.A. Neuroprotective effects of some nutraceuticals against manganese-induced Parkinson’s disease in rats: Possible modulatory effects on TLR4/NLRP3/NF-κB, GSK-3β, Nrf2/HO-1, and apoptotic pathways. Pharmaceuticals 2022 15 12 1554 10.3390/ph15121554 36559006
    [Google Scholar]
  62. Miroliaee A.E. Esmaily H. Vaziri-Bami A. Baeeri M. Shahverdi A.R. Abdollahi M. Amelioration of experimental colitis by a novel nanoselenium-silymarin mixture. Toxicol. Mech. Methods 2011 21 3 200 208 10.3109/15376516.2010.547887 21247366
    [Google Scholar]
  63. Battin E.E. Brumaghim J.L. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem. Biophys. 2009 55 1 1 23 10.1007/s12013‑009‑9054‑7 19548119
    [Google Scholar]
  64. Javed H. Azimullah S. Meeran M.F.N. Ansari S.A. Ojha S. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s disease. Int. J. Mol. Sci. 2019 20 7 1538 10.3390/ijms20071538 30934738
    [Google Scholar]
  65. Hunot S. Brugg B. Ricard D. Nuclear translocation of NF-κB is increased in dopaminergic neurons of patients with Parkinson disease. Proc. Natl. Acad. Sci. USA 1997 94 14 7531 7536 10.1073/pnas.94.14.7531 9207126
    [Google Scholar]
  66. Deng X.Y. Li H.Y. Chen J.J. Thymol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in mice. Behav. Brain Res. 2015 291 12 19 10.1016/j.bbr.2015.04.052 25958231
    [Google Scholar]
  67. Dai C. Tian E. Hao Z. Aflatoxin B1 toxicity and protective effects of curcumin: Molecular mechanisms and clinical implications. Antioxidants 2022 11 10 2031 10.3390/antiox11102031 36290754
    [Google Scholar]
  68. Wang Q. Shen Z. Qi G. Zhao Y. Zhang H. Wang R. Thymol alleviates AGEs-induced podocyte injury by a pleiotropic effect via NF-κB-mediated by RhoA/ROCK signalling pathway. Cell Adhes. Migr. 2020 14 1 42 56 10.1080/19336918.2020.1721172
    [Google Scholar]
  69. Woodgate A. MacGibbon G. Walton M. Dragunow M. The toxicity of 6-hydroxydopamine on PC12 and P19 cells. Brain Res. Mol. Brain Res. 1999 69 1 84 92 10.1016/s0169‑328x(99)00103‑5 10350640
    [Google Scholar]
  70. Plesca D. Mazumder S. Almasan A. DNA damage response and apoptosis. Methods Enzymol. 2008 446 107 122 10.1016/S0076‑6879(08)01606‑6 18603118
    [Google Scholar]
  71. Hanrott K. Gudmunsen L. O’Neill M.J. Wonnacott S. 6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J. Biol. Chem. 2006 281 9 5373 5382 10.1074/jbc.M511560200 16361258
    [Google Scholar]
  72. Mei J. Niu C. Effects of CDNF on 6-OHDA-induced apoptosis in PC12 cells via modulation of Bcl-2/Bax and caspase-3 activation. Neurol. Sci. 2014 35 8 1275 1280 10.1007/s10072‑014‑1700‑1 24633814
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128380006250630103711
Loading
/content/journals/cpd/10.2174/0113816128380006250630103711
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test