Skip to content
2000
image of Watermelon Rind: Nutritional Composition, Therapeutic Potential, Environmental Impact, and Commercial Applications in Sustainable Industries

Abstract

(watermelon) is a fruit with remarkable therapeutic potential, as each part of it- rind, peel, flesh, and seeds contain bioactive compounds. Despite its wide range of benefits, the utilization of watermelon, particularly its rind, remains limited due to a lack of awareness and an underrated perspective. The rind, situated between the green outer peel and the red flesh, is light green in color and rich in bioactive compounds, minerals, and phytochemicals. These constituents are associated with various therapeutic properties, including antioxidant, antineoplastic, cardiovascular, and neuroprotective effects. In addition to its therapeutic applications, watermelon rind offers significant commercial value in the food, cosmetic, and pharmaceutical industries, as well as in industrial applications such as biofuel production and eco-friendly packaging. Its versatility makes watermelon rind an exciting area of research for uncovering new applications and enhancing existing ones. However, limitations in its usage and handling need to be addressed for its broader adoption. This review comprehensively discusses the global research conducted to date on the nutritional composition, therapeutic potential, environmental impact, and commercial applications of watermelon rind. Additionally, it highlights challenges and future directions for advancing the utilization of this promising 
resource.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128371677250806001232
2025-08-27
2025-10-19
Loading full text...

Full text loading...

References

  1. Assefa A.D. Hur O.S. Ro N.Y. Fruit morphology, citrulline, and arginine levels in diverse watermelon (Citrulluslanatus) germplasm collections. Plants 2020 9 9 1054 10.3390/plants9091054 32824928
    [Google Scholar]
  2. Dubey S. Rajput H. Batta K. Utilization of watermelon rind (Citrulluslanatus) in various food preparations: A review. J AgriSci Food Res 2021 14 141
    [Google Scholar]
  3. Rudich J. Zamski E. Citrulluslanatus. Handbook of flowering. CRC Press 2019 272 274
    [Google Scholar]
  4. Rezagholizade-shirvan A. Shokri S. Dadpour S.M. Amiryousefi M.R. Evaluation of physicochemical, antioxidant, antibacterial activity, and sensory properties of watermelon rind candy. Heliyon 2023 9 6 17300 10.1016/j.heliyon.2023.e17300 37389078
    [Google Scholar]
  5. Mcgregor C. Citrulluslanatusgermplasm of southern Africa. Isr. J. Plant Sci. 2012 60 4 403 413
    [Google Scholar]
  6. Khan A. Vijay R. Singaravelu D.L. Extraction and characterization of natural fibers from Citrulluslanatus climber. J. Nat. Fibers 2022 19 2 621 629 10.1080/15440478.2020.1758281
    [Google Scholar]
  7. Du X. Ramirez J. Watermelon rind and flesh volatile profiles and cultivar difference. Horticulturae 2022 8 2 99 10.3390/horticulturae8020099
    [Google Scholar]
  8. Pérez J. Gómez K. Vega L. Optimization and preliminary physicochemical characterization of pectin extraction from watermelon rind (Citrulluslanatus) with citric acid. Int. J. Food Sci. 2022 2022 1 3068829 35036425
    [Google Scholar]
  9. Lee K.Y. Choo W.S. Extraction optimization and physicochemical properties of pectin from watermelon (Citrulluslanatus) rind: Comparison of hydrochloric and citric acid extraction. J Nutraceuticals Food Sci 2020 5 1 1 10.36648/nutraceuticals.5.1.1
    [Google Scholar]
  10. Wahdan O.A. Bassuony N.I. Abd El-Ghany Z.M. El-Chaghaby G.A. Watermelon white rind as a natural valuable source of phytochemicals and multinutrients. Egypt. J. Nutr. 2017 32 1 87 102 10.21608/enj.2017.335518
    [Google Scholar]
  11. Chakrabarty N. Mourin M.M. Islam N. Assessment of the potential of watermelon rind powder for the value addition of noodles. J. Biosyst. Eng. 2020 45 4 223 231 10.1007/s42853‑020‑00061‑y
    [Google Scholar]
  12. Nnenne S.K. Ubaoji K.I. Ogbodo U.C. Enemor V.H.A. Oladejo A.A. Comparative study on the nutritional and antioxidant components of fruit parts of Citrullus lanatus. Eur. J. Nutr. Food Saf. 2020 12 39 51 10.9734/ejnfs/2020/v12i1130317
    [Google Scholar]
  13. Gladvin G. Sudhaakr G. Swathi V. Santhisri K.V. Mineral and vitamin compositions contents in watermelon peel (Rind). Int. J. Curr. Microbiol. Appl. Sci. 2017 5 5 129 133
    [Google Scholar]
  14. Nkoana D.K. Mashilo J. Shimelis H. Ngwepe R.M. Nutritional, phytochemical compositions and natural therapeutic values of citron watermelon (Citrullus lanatus var. citroides): A review. S. Afr. J. Bot. 2022 145 65 77 10.1016/j.sajb.2020.12.008
    [Google Scholar]
  15. Zia S. Khan M.R. Shabbir M.A. Aadil R.M. An update on functional, nutraceutical and industrial applications of watermelon by-products: A comprehensive review. Trends Food Sci. Technol. 2021 114 275 291 10.1016/j.tifs.2021.05.039
    [Google Scholar]
  16. Alemika T.E. Ojerinde O.S. Samali A. Mustapha B.K. Gamaniel K.S. Nutriceutical potentials of Nigerian grown Citrullus lanatus (Watermelon) seed. J. Pharm. Bioresour. 2018 14 2 253 259 10.4314/jpb.v14i2.20
    [Google Scholar]
  17. Khamis H. Lusweti K. Haji H. Quantification of all trans-lycopene, cis-lycopene and β-carotene from watermelons found in Zanzibar. Afr J Educ Sci Technol 2018 4 4 1 9
    [Google Scholar]
  18. Olayinka B.U. Etejere E.O. Proximate and chemical compositions of watermelon (Citrulluslanatus (Thunb.) Matsum and nakaicv red and cucumber (Cucumissativus L. cvPipino). Int. Food Res. J. 2018 25 3
    [Google Scholar]
  19. Zamuz S. Munekata P.E.S. Gullón B. Rocchetti G. Montesano D. Lorenzo J.M. Citrullus lanatus as source of bioactive components: An up-to-date review. Trends Food Sci. Technol. 2021 111 208 222 10.1016/j.tifs.2021.03.002
    [Google Scholar]
  20. Fadimu G.J. Ghafoor K. Babiker E.E. Al-Juhaimi F. Abdulraheem R.A. Adenekan M.K. Ultrasound-assisted process for optimal recovery of phenolic compounds from watermelon (Citrullus lanatus) seed and peel. J. Food Meas. Charact. 2020 14 3 1784 1793 10.1007/s11694‑020‑00426‑z
    [Google Scholar]
  21. Al-Sayed H.M.A. Ahmed A.R. Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Ann. Agric. Sci. 2013 58 1 83 95 10.1016/j.aoas.2013.01.012
    [Google Scholar]
  22. Albarracín M.M. Leonardo B.M.K. Extraction of bioactive compounds from watermelon pulp and rind by applying cryogenization, lyophilization and ultrasound pretreatments. Available from: https://redcol.minciencias.gov.co/Record/UTADEO2_ae6e824dca5bbeb97e6894aa2a1426c5 2018
    [Google Scholar]
  23. Neglo D. Tettey C.O. Essuman E.K. Comparative antioxidant and antimicrobial activities of the peels, rind, pulp and seeds of watermelon (Citrullus lanatus) fruit. Sci Afr 2021 11 00582 10.1016/j.sciaf.2020.e00582
    [Google Scholar]
  24. Oyenihi O.R. Afolabi B.A. Oyenihi A.B. Ogunmokun O.J. Oguntibeju O.O. Hepato- and neuro-protective effects of watermelon juice on acute ethanol-induced oxidative stress in rats. Toxicol. Rep. 2016 3 288 294 10.1016/j.toxrep.2016.01.003 28959549
    [Google Scholar]
  25. Manivannan A. Lee E.S. Han K. Lee H.E. Kim D.S. Versatile nutraceutical potentials of watermelon—A modest fruit loaded with pharmaceutically valuable phytochemicals. Molecules 2020 25 22 5258 10.3390/molecules25225258 33187365
    [Google Scholar]
  26. Han H.S. Song K.B. Antioxidant properties of watermelon (Citrullus lanatus) rind pectin films containing kiwifruit (Actinidia chinensis) peel extract and their application as chicken thigh packaging. Food Packag. Shelf Life 2021 28 100636 10.1016/j.fpsl.2021.100636
    [Google Scholar]
  27. Nadeem M. Navida M. Ameer K. A comprehensive review on the watermelon phytochemical profile and their bioactive and therapeutic effects. Food Science and Preservation 2022 29 4 546 576
    [Google Scholar]
  28. Kataria D. Kaur J. From waste to wellness: Exploring the nutritional composition, health benefits and utilization of watermelon rind. J Food ChemNanotechnol 2023 9 S1 S478 S482
    [Google Scholar]
  29. Naz A. Butt M.S. Sultan M.T. Qayyum M.M. Niaz R.S. Watermelon lycopene and allied health claims. EXCLI J. 2014 13 650 660 26417290
    [Google Scholar]
  30. Ozcan B. Moinard C. Belaïdi E. Watermelon (Citrulluslanatus) and cardiovascular protection: A focus on the effects of citrulline. Ancient and Traditional Foods, Plants, Herbs and Spices used in Cardiovascular Health and Disease. CRC Press 2023 345 357
    [Google Scholar]
  31. Evans R.W. Fernstrom J.D. Thompson J. Morris S.M. Kuller L.H. Biochemical responses of healthy subjects during dietary supplementation with L-arginine. J. Nutr. Biochem. 2004 15 9 534 539 10.1016/j.jnutbio.2004.03.005 15350985
    [Google Scholar]
  32. Johnson J.A. Pohar S.L. Majumdar S.R. Health care use and costs in the decade after identification of type 1 and type 2 diabetes: A population-based study. Diabetes Care 2006 29 11 2403 2408 10.2337/dc06‑0735 17065675
    [Google Scholar]
  33. Míguez L. Mariño G. Rodríguez B. Taboada C. Effects of dietary L-arginine supplementation on serum lipids and intestinal enzyme activities in diabetic rats. J. Physiol. Biochem. 2004 60 1 31 37 10.1007/BF03168218 15352382
    [Google Scholar]
  34. Wu G. Collins J.K. Perkins-Veazie P. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J. Nutr. 2007 137 12 2680 2685 10.1093/jn/137.12.2680 18029483
    [Google Scholar]
  35. Elsayed D.A. Yousof S.M. Khalil I.A. Kolieb E. Zayed M.A. Citrulluslanatus (watermelon) wastes: Maximizing the benefits and saving the environment. Mediterranean fruits Bio-wastes: Chemistry, functionality and technological applications. Cham Springer International Publishing 2022 647 665
    [Google Scholar]
  36. Benmeziane F. Derradji. Composition, bioactive potential and food applications of watermelon (Citrullus lanatus) seeds - a review. J. Food Meas. Charact. 2023 17 5 5045 5061 10.1007/s11694‑023‑02012‑5
    [Google Scholar]
  37. Bellary A.N. Indiramma A.R. Prakash M. Baskaran R. Rastogi N.K. Anthocyanin infused watermelon rind and its stability during storage. Innov. Food Sci. Emerg. Technol. 2016 33 554 562 10.1016/j.ifset.2015.10.010
    [Google Scholar]
  38. Widodo S. Gawarti G. Innovation of watermelon skin to watermelon skin slice jam. 1st International Conference on Social, Applied Science and Technology in Home Economics (ICONHOMECS 2017) 2018 10.2991/iconhomecs‑17.2018.15
    [Google Scholar]
  39. Gbaa S.T. Ahemen S.A. Eke M.O. Ochelle P.O. Effect of watermelon rind (Citrulluslanatus) addition on the chemical and sensory quality of sorghum based mumu. Asian Food Sci J 2019 11 1 15 10.9734/afsj/2019/v11i430066
    [Google Scholar]
  40. Adegunwa M.O. Oloyede I.O. Adebanjo L.A. Alamu E.O. Quality attribute of plantain (Musa paradisiaca) sponge-cake supplemented with watermelon (Citrullus lanatus) rind flour. Cogent Food Agric. 2019 5 1 1631582 10.1080/23311932.2019.1631582
    [Google Scholar]
  41. Badr S.A. Quality and antioxidant properties of pan bread enriched with watermelon rind powder. Curr. Sci. Int. 2015 4 1 117 126
    [Google Scholar]
  42. Hussain N. Azhar N. Rajoo S. Effects of thermosonication on watermelon rind-honey beverage. Ital. J. Food Sci. 2019 31
    [Google Scholar]
  43. Erhirhie E.O. Ekene N.E. Medicinal values on Citrulluslanatus (watermelon): Pharmacological review. Int. J. Res. Pharm. Biomed. Sci. 2013 4 4 1305 1312
    [Google Scholar]
  44. Alamsyah N. Djamil R. Rahmat D. Antioxidant activity of combination banana peel (Musa paradisiaca) and watermelon rind (Citrullus vulgaris) extract in lotion dosage form. Asian J. Pharm. Clin. Res. 2016 9 9 300 304 10.22159/ajpcr.2016.v9s3.14926
    [Google Scholar]
  45. Okzelia S.D. Azzahara S.A. Kosasih K. Yanti S.I. Formulation and evaluation of gelatin nanoparticle moisturizing gel from mesocarp extract of watermelon [citrulluslanatus (thunb.) matsum. &nakai] as an antioxidant. J Sci Islam Repub Iran 2023 34 3 205 215
    [Google Scholar]
  46. Simamora F.S. Janice J. Amir W.P. Effectiveness test of white skin extract cream from red watermelon (CitrullusLanatus) on increasing elasticity, sebum and hydration in white mice (MusMusculus) skin. Int J Health Pharm 2023 3 2 322 330
    [Google Scholar]
  47. El-attar E. Galala A. Gohar A. Badria F. Cycloartane glycoside: A new lactate dehydrogenase inhibitor, from the aerial part of agriculture waste of watermelon. World J Pharm Sci 2015 3 689 695
    [Google Scholar]
  48. Rimando A.M. Perkins-Veazie P.M. Determination of citrulline in watermelon rind. J. Chromatogr. A 2005 1078 1-2 196 200 10.1016/j.chroma.2005.05.009 16007998
    [Google Scholar]
  49. Sangwan K. Garhwal R. Mehra R. Development and characterization of W/O/W double emulsion of watermelon rind powder. Lebensm. Wiss. Technol. 2023 182 114848 10.1016/j.lwt.2023.114848
    [Google Scholar]
  50. Awad M.S. Usage of watermelon rind (Citrulluslanatus) in functional food production. J Appl Sci 2017 7 4 1170 1178
    [Google Scholar]
  51. Kumar C.C. Mythily R. Chandraju S. Studies on sugars extracted from watermelon (Citrullus lanatus) rind, a remedy for related waste and its management. Int J Chem Anal Sci 2012 3 8 1527 1529
    [Google Scholar]
  52. Ekloh E. Yafetto L. Fermentation and valorization of watermelon (Citrullus lanatus) rind wastes into livestock feed using Aspergillus niger and Mucor sp. Sci Afr 2024 23 02035 10.1016/j.sciaf.2023.e02035
    [Google Scholar]
  53. Agbana J.A. Ete A.O. Ojodomo M.A. Ajala O. Ensiling improves the nutritive value of watermelon rinds (Citrulluslanatus) for use as livestock feed. Int. J. Agric. Rural Dev. 2022 25 2 6468 6473
    [Google Scholar]
  54. Scapini T. Bonatto C. Dalastra C. Bioethanol and biomethane production from watermelon waste: A circular economy strategy. Biomass Bioenergy 2023 170 106719 10.1016/j.biombioe.2023.106719
    [Google Scholar]
  55. Alex S. Saira A. Nair D.S. Bioethanol production from watermelon rind by fermentation using Saccharomyces cerevisiae and Zymomonasmobilis. Indian J. Biotechnol. 2017 16 663 666
    [Google Scholar]
  56. Shetty A.A. Rana R. Buckseth T. Preetham S.P. Waste utilization in cucurbits: A review. Waste Biomass Valoriz. 2012 3 3 363 368 10.1007/s12649‑012‑9114‑x
    [Google Scholar]
  57. Syaubari Abubakar Asnawi T.M. Zaki M. Khadafi M. Harmanita I. Synthesis and characterization of biodegradable plastic from watermelon rind starch and chitosan by using glycerol as plasticizer. Mater. Today Proc. 2022 63 S501 S506 10.1016/j.matpr.2022.04.535
    [Google Scholar]
  58. Todhanakasem T. Jaiprayat C. Sroysuwan T. Active thermoplastic starch film with watermelon rind extract for future biodegradable food packaging. Polymers 2022 14 16 3232 10.3390/polym14163232 36015489
    [Google Scholar]
  59. O’Connell D.W. Birkinshaw C. O’Dwyer T.F. Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol. 2008 99 15 6709 6724 10.1016/j.biortech.2008.01.036 18334292
    [Google Scholar]
  60. Marín Rangel V.M. Cortés Martínez R. Cuevas Villanueva R.A. As (V) biosorption in an aqueous solution using chemically treated lemon (Citrus aurantifoliaswingle) residues. J. Food Sci. 2012 77 1 T10 T14 10.1111/j.1750‑3841.2011.02466.x 22122309
    [Google Scholar]
  61. Aibinu A.M. Folorunso T.A. Saka A.A. Ogunfowora L.A. Iwuozor K.O. Ighalo J.O. Green synthesis of CuO nanocomposite from watermelon (Citrullus lanatus) rind for the treatment of aquaculture effluent. Reg. Stud. Mar. Sci. 2022 52 102308 10.1016/j.rsma.2022.102308
    [Google Scholar]
  62. Sharma H.K. Sofi I.R. Wani K.A. Low cost absorbents, techniques, and heavy metal removal efficiency. Biostimulation Remediation Technologies for Groundwater Contaminants. IGI Global 2018 50 79 10.4018/978‑1‑5225‑4162‑2.ch003
    [Google Scholar]
  63. Reddy N.A. Lakshmipathy R. Sarada N.C. Application of Citrullus lanatus rind as biosorbent for removal of trivalent chromium from aqueous solution. Alex. Eng. J. 2014 53 4 969 975 10.1016/j.aej.2014.07.006
    [Google Scholar]
  64. Jawad A.H. Ngoh Y.S. Radzun K.A. Utilization of watermelon (Citrullus lanatus) rinds as a natural low-cost biosorbent for adsorption of methylene blue: Kinetic, equilibrium and thermodynamic studies. J. Taibah Univ. Sci. 2018 12 4 371 381 10.1080/16583655.2018.1476206
    [Google Scholar]
  65. Bhattacharjee C. Dutta S. Saxena V.K. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environ. Adv. 2020 2 100007 10.1016/j.envadv.2020.100007
    [Google Scholar]
  66. Lakshmipathy R. Sarada N.C. Metal ion free watermelon (Citrullus lanatus) rind as adsorbent for the removal of lead and copper ions from aqueous solution. Desalination Water Treat. 2016 57 33 15362 15372 10.1080/19443994.2015.1072064
    [Google Scholar]
  67. Liu C. Ngo H.H. Guo W. Watermelon rind: Agro-waste or superior biosorbent? Appl. Biochem. Biotechnol. 2012 167 6 1699 1715 10.1007/s12010‑011‑9521‑7 22222432
    [Google Scholar]
  68. Prakash Maran J. Sivakumar V. Thirugnanasambandham K. Sridhar R. Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydr. Polym. 2014 101 786 791 10.1016/j.carbpol.2013.09.062 24299839
    [Google Scholar]
  69. Wusigale L.L. Luo Y. Casein and pectin: Structures, interactions, and applications. Trends Food Sci. Technol. 2020 97 391 403 10.1016/j.tifs.2020.01.027
    [Google Scholar]
  70. Yapo B.M. Rhamnogalacturonan-I: A structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym. Rev. 2011 51 4 391 413 10.1080/15583724.2011.615962
    [Google Scholar]
  71. Sari A.M. Ishartani D. Dewanty P.S. Effects of microwave power and irradiation time on pectin extraction from watermelon rinds (Citrullus lanatus) with acetic acid using microwave assisted extraction method. IOP Conf. Ser. Earth Environ. Sci. 2018 102 012085
    [Google Scholar]
  72. Méndez D.A. Fabra M.J. Gómez-Mascaraque L. López-Rubio A. Martinez-Abad A. Modelling the extraction of pectin towards the valorisation of watermelon rind waste. Foods 2021 10 4 738 10.3390/foods10040738 33807203
    [Google Scholar]
  73. Arif A.R. Natsir H. Rohani H. Karim A. Effect of pH fermentation on production of bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method. J. Phys. Conf. Ser. 2018 979 012015
    [Google Scholar]
  74. Kassim M.A. Hussin A.H. Meng T.K. Kamaludin R. Zaki M.S. Zakaria W.Z. Valorisation of watermelon (Citrulluslanatus) rind waste into bioethanol: An optimization and kinetic studies. Int. J. Environ. Sci. Technol. 2022 1 4
    [Google Scholar]
  75. Bazié D. Konaté K. Roger D. Physical and phytochemical properties of the rind of five watermelon cultivars. Food Nutr. Sci. 2022 13 12 1036 1051 10.4236/fns.2022.1312072
    [Google Scholar]
  76. Long D.Q. Trieu T.M. Tran T.T. Ton N.M. Man Le V.V. Kakvoćatjesteninebogatevlaknima, obogaćeneprahomkorelubenicerazličitihveličinačestica. [Quality of High-Fibre Pasta Supplemented with Watermelon Rind Powder with Different Particle Sizes] Food Technol. Biotechnol. 2024 62 1 59 71 10.17113/ftb.62.01.24.8196 38601961
    [Google Scholar]
  77. Ho L.H. Effect of watermelon rind powder on physicochemical, textural, and sensory properties of wet yellow noodles. CYTA J. Food 2016 14 3 465 472
    [Google Scholar]
  78. Çelik C. Isik F. Quality characteristics of gluten-free muffins fortified with watermelon rind powder. Food Sci Technol 2023 43 113822 10.1590/fst.113822
    [Google Scholar]
  79. Volino-Souza M. Oliveira G.V. Conte-Junior C.A. Figueroa A. Alvares T.S. Current evidence of watermelon (Citrullus lanatus) ingestion on vascular health: A food science and technology perspective. Nutrients 2022 14 14 2913 10.3390/nu14142913 35889869
    [Google Scholar]
  80. Petkowicz C.L.O. Vriesmann L.C. Williams P.A. Pectins from food waste: Extraction, characterization and properties of watermelon rind pectin. Food Hydrocoll. 2017 65 57 67 10.1016/j.foodhyd.2016.10.040
    [Google Scholar]
  81. Ijaz A. Tufail T. Saeed F. Afzaal M. Shahid M.Z. Suleria H.A. Health benefits of watermelon (Citrulluslanatus). Bioactive Compounds from Multifarious Natural Foods for Human Health. Apple Academic Press 2022 77 98
    [Google Scholar]
  82. Liu D. Yang H. Yuan Y. Comparative transcriptome analysis provides insights into yellow rind formation and preliminary mapping of the Clyr (yellow rind) gene in watermelon. Front Plant Sci 2020 11 192 10.3389/fpls.2020.00192 32218790
    [Google Scholar]
  83. Miyittah M.K. Kwadzo M. Gyamfua A.P. Dodor D.E. Health risk factors associated with pesticide use by watermelon farmers in Central region, Ghana. Environ. Syst. Res. 2020 9 1 10 10.1186/s40068‑020‑00170‑9
    [Google Scholar]
  84. Aderiye B.I. David O.M. Fagbohun E.D. Faleye F.J. Okunade O.E. Inhibitory potency of watermelon (Citrullus lanatus Linn.) rind extract on bacteria and fungi and evaluation of its fatty acid content. Int. J. Life Sci. 2021 10 1 8 15
    [Google Scholar]
  85. Gagliardi J.V. Millner P.D. Lester G. Ingram D. On-farm and postharvest processing sources of bacterial contamination to melon rinds. J. Food Prot. 2003 66 1 82 87 10.4315/0362‑028X‑66.1.82 12540185
    [Google Scholar]
  86. Ukuku D.O. Mukhopadhyay S. Olanya M. Reducing transfer of Salmonella and aerobic mesophilic bacteria on melon rinds surfaces to fresh juice by washing with chlorine: Effect of waiting period before refrigeration of prepared juice. Front. Sustain. Food Syst. 2018 2 78 10.3389/fsufs.2018.00078
    [Google Scholar]
  87. Athanasiadis V. Chatzimitakos T. Kalompatsios D. Recent advances in the antibacterial activities of Citrullus lanatus (Watermelon) by-products. Appl. Sci. 2023 13 19 11063 10.3390/app131911063
    [Google Scholar]
  88. Rico X. Gullón B. Alonso J.L. Yáñez R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res. Int. 2020 132 109086 10.1016/j.foodres.2020.109086 32331642
    [Google Scholar]
  89. Kaur J. Brar D.S. Nanda V. Exploring the potential of osmotic dehydration with honey to develop value-addedfood from watermelon (Citrullus lanatus) rind. Turk. J. Agric. For. 2023 47 6 1058 1077 10.55730/1300‑011X.3148
    [Google Scholar]
  90. Caceres-Hernandez D. Gutierrez R. Kung K. Recent advances in automatic feature detection and classification of fruits including with a special emphasis on Watermelon (Citrillus lanatus): A review. Neurocomputing 2023 526 62 79 10.1016/j.neucom.2023.01.005
    [Google Scholar]
  91. Ngwepe R.M. Mashilo J. Shimelis H. Progress in genetic improvement of citron watermelon (Citrullus lanatus var. citroides): A review. Genet. Resour. Crop Evol. 2019 66 3 735 758 10.1007/s10722‑018‑0724‑4
    [Google Scholar]
  92. El-Shafie A.S. Hassan S.S. Akther N. El-Azazy M. Watermelon rinds as cost-efficient adsorbent for acridine orange: A response surface methodological approach. Environ. Sci. Pollut. Res. Int. 2021 30 28 71554 71573 10.1007/s11356‑021‑13652‑9 33829381
    [Google Scholar]
  93. Tsuchiya Y. Watermelon Citrullus lanatus (Thunb.) Matsum. etNakai Cultivation in Japan: Current state, problems and prospects. ACS Agric. Conspec. Sci. 2022 87 3 185 190
    [Google Scholar]
  94. Singhai H. Rathee S. Jain S.K. Patil U.K. The potential of natural products in the management of cardiovascular disease. Curr. Pharm. Des. 2024 30 8 624 638 10.2174/0113816128295053240207090928 38477208
    [Google Scholar]
  95. Sen D. Rathee S. Pandey V. Jain S.K. Patil U.K. Comprehensive insights into pathophysiology of Alzheimer’s disease: Herbal approaches for mitigating neurodegeneration. Curr. Alzheimer Res. 2025 21 9 625 648 10.2174/0115672050309057240404075003 38623983
    [Google Scholar]
  96. Sahu A. Rathee S. Jain S.K. Patil U.K. Exploring the promising role of guggulipid in rheumatoid arthritis management: An in-depth analysis. Curr. Rheumatol. Rev. 2024 20 5 469 487 10.2174/0115733971280984240101115203 38284718
    [Google Scholar]
  97. Manikishore M. Maurya S.K. Rathee S. Patil U.K. Genome editing approaches using zinc finger nucleases (ZFNs) for the treatment of motor neuron diseases. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010307288240526071810 38847163
    [Google Scholar]
  98. Rathee S. Patil U.K. Jain S.K. Exploring the potential of dietary phytochemicals in cancer prevention: A comprehensive review. J Explor Res Pharmacol 2024 9 1 51 64 10.14218/JERP.2023.00050
    [Google Scholar]
  99. Yadav D.K. Rathee S. Sharma V. Patil U.K. A comprehensive review on insect repellent agents: Medicinal plants and synthetic compounds. Antiinflamm. Antiallergy Agents Med. Chem. 2024 10.2174/0118715230322355240903072704
    [Google Scholar]
  100. Pandey V. Sen D. Rathee S. Unlocking toll-like receptors: Targeting therapeutics for respiratory tract infections and inflammatory disorders. Recent Adv Inflamm Allergy Drug Discov 2024 18 10.2174/0127722708329138240926073013
    [Google Scholar]
  101. Rathee S. Sen D. Pandey V. Jain S.K. Advances in understanding and managing Alzheimer’s disease: From pathophysiology to innovative therapeutic strategies. Curr. Drug Targets 2024 25 11 752 774 10.2174/0113894501320096240627071400 39039673
    [Google Scholar]
  102. Pandey V. Rathee S. Sen D. Jain S.K. Patil U.K. Phytovesicular nanoconstructs for advanced delivery of medicinal metabolites: an in-depth review. Curr. Drug Targets 2024 25 13 847 865 10.2174/0113894501310832240815071618
    [Google Scholar]
  103. Jain S.K. Molecular docking analysis of d-glucosamine and rivastigmine tartrate targeting Alzheimer’s disease-associated proteins: An in silico approach. Asian J. Pharm. 2024 18 2 10.22377/ajp.v18i02.5458
    [Google Scholar]
  104. Sahu A. Rathee S. Saraf S. Jain S.K. A review on the recent advancements and artificial intelligence in tablet technology. Curr. Drug Targets 2024 25 6 416 430 10.2174/0113894501281290231221053939 38213164
    [Google Scholar]
  105. Sen D. Rathee S. Pandey V. Jain S.K. Exploring saffron’s therapeutic potential: Insights on phytochemistry, bioactivity, and clinical implications. Curr. Pharm. Des. 2024 10.2174/0113816128337941240928181943
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128371677250806001232
Loading
/content/journals/cpd/10.2174/0113816128371677250806001232
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test