Skip to content
2000
Volume 32, Issue 5
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Electrospinning is an innovative process that produces polymeric fibres for a variety of purposes, including controlled hormone administration. These fibres are made from biopolymers like chitosan, cellulose, alginate, and starch, and have attracted interest for their capacity to encapsulate hormones and release them in a regulated way, therefore Increasing bioavailability and stability. The article investigates the utilization of smart electrospun fibers for hormone delivery, alongside a focus on their potential to improve therapeutic results. Electrospun fibres can encapsulate hormones such as insulin, melatonin, and contraceptives for regulated and prolonged release. This method addresses difficulties in traditional hormone delivery, like frequent insulin injections or hormone instability in biological circumstances. Techniques like coaxial electrospinning enable the development of core-shell structures, which further optimize release profiles. The use of these fibres for diabetic management, wound healing, and long-term contraception represents substantial advances in patient care. The flexibility of fibres also allows for precise regulation of drug release kinetics, which improves the efficacy of hormone therapy while reducing adverse effects. Smart electrospun food fibres have enormous promise for the future of hormone administration, providing longer-lasting, more focused, and effective therapies. Their flexibility, along with ongoing advances in electrospinning processes, positions them as a viable tool in contemporary medicine.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128378108250612102634
2025-07-02
2026-01-31
Loading full text...

Full text loading...

References

  1. LiuM. ZhangY. SunS. Recent advances in electrospun for drug delivery purpose.J. Drug Target.201927327028210.1080/1061186X.2018.1481413
    [Google Scholar]
  2. BarhoumA. BechelanyM. MakhloufA.S. Handbook of nanofibers.Cham, SwitzerlandSpringer International Publishing2019343
    [Google Scholar]
  3. LuraghiA. PeriF. MoroniL. Electrospinning for drug delivery applications: A review.J. Control. Release202133446348410.1016/j.jconrel.2021.03.033
    [Google Scholar]
  4. ZelkóR. LamprouD.A. SebeI. Recent development of electrospinning for drug delivery.Pharmaceutics2020121610.3390/books978‑3‑03928‑141‑131861631
    [Google Scholar]
  5. CaloriI.R. BragaG. de JesusP.C.C. BiH. TedescoA.C. Polymer scaffolds as drug delivery systems.Eur. Polym. J.202012910962110.1016/j.eurpolymj.2020.109621
    [Google Scholar]
  6. Contreras-CáceresR. CabezaL. PerazzoliG. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy.Nanomaterials20199465610.3390/nano904065631022935
    [Google Scholar]
  7. SillT.J. von RecumH.A. Electrospinning: Applications in drug delivery and tissue engineering.Biomaterials200829131989200610.1016/j.biomaterials.2008.01.01118281090
    [Google Scholar]
  8. DingY. LiW. ZhangF. LiuZ. EzaziN.Z. LiuD. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy.Adv. Funct. Mater.2019292180285210.1002/adfm.201802852
    [Google Scholar]
  9. LiuZ. RamakrishnaS. LiuX. Electrospinning and emerging healthcare and medicine possibilities.APL Bioeng.20204303090110.1063/5.001230932695956
    [Google Scholar]
  10. AlvesD. AraújoJ.C. FangueiroR. FerreiraD.P. Localized therapeutic approaches based on micro/nanofibers for cancer treatment.Molecules2023287305310.3390/molecules28073053
    [Google Scholar]
  11. LiW YinY ZhouH Recent advances in electrospinning techniques for precise medicine.Cyborg and Bionic Systems20245010110.34133/cbsystems.0101
    [Google Scholar]
  12. DhingraD. MichaelM. RajputH. PatilR.T. Dietary fibre in foods: A review.J. Food Sci. Technol.201249325526610.1007/s13197‑011‑0365‑5
    [Google Scholar]
  13. SeddiqiH. OliaeiE. HonarkarH. Cellulose and its derivatives: Towards biomedical applications.Cellulose20212841893193110.1007/s10570‑020‑03674‑w
    [Google Scholar]
  14. MartinsJ.T. RamosÓ.L. PinheiroA.C. Edible bio-based nanostructures: Delivery, absorption and potential toxicity.Food Eng. Rev.20157449151310.1007/s12393‑015‑9116‑0
    [Google Scholar]
  15. AngelN. LiS. YanF. KongL. Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications.Trends Food Sci. Technol.202212030832410.1016/j.tifs.2022.01.003
    [Google Scholar]
  16. PillaiC.K.S. SharmaC.P. Electrospinning of chitin and chitosan nanofibres.Trends Biomater. Artif. Organs2009233175197
    [Google Scholar]
  17. WengL. XieJ. Smart electrospun nanofibers for controlled drug release: Recent advances and new perspectives.Curr. Pharm. Des.201521151944195910.2174/138161282166615030215195925732665
    [Google Scholar]
  18. ErgucE.I. Tascioglu-AliyevA. EntezariB. Gurer-OrhanH. The role of biotransformation in the activity of endocrine disruptors.Curr. Drug Metab.2021228e030621193821[http://10.2174/1389200222666210603114617
    [Google Scholar]
  19. IshH. TsurugizawaT. Ogiue-IkedaM. Local production of sex hormones and their modulation of hippocampal synaptic plasticity.Neuroscientist200713432333410.1177/1073858407013004060117644764
    [Google Scholar]
  20. LawS.L. HuangK.J. ChouV.H.Y. Stability of desmopressin loaded in liposomes.J. Liposome Res.2003133-426927710.1081/LPR‑12002639214670232
    [Google Scholar]
  21. AbdulhussainR. AdebisiA. ConwayB.R. Asare-AddoK. Electrospun nanofibers: Exploring process parameters, polymer selection, and recent applications in pharmaceuticals and drug delivery.J. Drug Deliv. Sci. Technol.20239010515610.1016/j.jddst.2023.105156
    [Google Scholar]
  22. KrogstadE.A. WoodrowK.A. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery.Int. J. Pharm.20144751-228229110.1016/j.ijpharm.2014.08.03925169075
    [Google Scholar]
  23. MiP. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics.Theranostics202010104557458810.7150/thno.3806932292515
    [Google Scholar]
  24. ManoJ.F. Stimuli-responsive polymeric systems for biomedical applications.Adv. Eng. Mater.200810651552710.1002/adem.200700355
    [Google Scholar]
  25. FerreiraM.P.S. GonçalvesA.S. AntunesJ.C. BessaJ. CunhaF. FangueiroR. Fibrous structures: An overview of their responsiveness to external stimuli towards intended application.Polymers20241610134510.3390/polym16101345
    [Google Scholar]
  26. KamsaniN.H. HarisM.S. PandeyM. TaherM. RullahK. Biomedical application of responsive ‘smart’ electrospun nanofibers in drug delivery system: A minireview.Arab. J. Chem.202114710319910.1016/j.arabjc.2021.103199
    [Google Scholar]
  27. Bachs-HerreraA. YousefzadeO. Del ValleL.J. PuiggaliJ. Melt electrospinning of polymers: Blends, nanocomposites, additives and applications.SwitzerlandApplied Sciences2021
    [Google Scholar]
  28. BhardwajN. KunduS.C. Electrospinning: A fascinating fiber fabrication technique.Biotechnol. Adv.201028332534710.1016/j.biotechadv.2010.01.00420100560
    [Google Scholar]
  29. HuX. LiuS. ZhouG. HuangY. XieZ. JingX. Electrospinning of polymeric nanofibers for drug delivery applications.J. Control. Release2014185122110.1016/j.jconrel.2014.04.01824768792
    [Google Scholar]
  30. HaiderA. HaiderS. KangI.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology.Arab. J. Chem.20181181165118810.1016/j.arabjc.2015.11.015
    [Google Scholar]
  31. Al-AbduljabbarA. FarooqI. Electrospun polymer nanofibers: Processing, properties, and applications.Polymers20231516510.3390/polym1501006536616414
    [Google Scholar]
  32. DzenisY. Spinning continuous fibers for nanotechnology.Science200430456791917191910.1126/science.1099074
    [Google Scholar]
  33. ZhangC. FengF. ZhangH. Emulsion electrospinning: Fundamentals, food applications and prospects.Trends Food Sci. Technol.20188017518610.1016/j.tifs.2018.08.005
    [Google Scholar]
  34. BruniG.P. de OliveiraJ.P. Gómez-MascaraqueL.G. Electrospun β-carotene–loaded SPI:PVA fiber mats produced by emulsion-electrospinning as bioactive coatings for food packaging.Food Packag. Shelf Life20202310042610.1016/j.fpsl.2019.100426
    [Google Scholar]
  35. LianS. LamprouD. ZhaoM. Electrospinning technologies for the delivery of Biopharmaceuticals: Current status and future trends.Int. J. Pharm.202465112364110.1016/j.ijpharm.2023.123641
    [Google Scholar]
  36. QuH. WeiS. GuoZ. Coaxial electrospun nanostructures and their applications. J Mater.Chem. Mater.20131381810.1039/C3TA12390A
    [Google Scholar]
  37. PantB. ParkM. ParkS.J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review.Pharmaceutics201911730510.3390/pharmaceutics1107030531266186
    [Google Scholar]
  38. SongJ. LiZ. WuH. Blowspinning: A new choice for nanofibers.ACS Appl. Mater. Interfaces20201230334473346410.1021/acsami.0c05740
    [Google Scholar]
  39. LimJ. ChoiS. KimH.S. Behavior of melt electrospinning/blowing for polypropylene fiber fabrication.Polym. Int.202372112012510.1002/pi.6453
    [Google Scholar]
  40. BarhoumA. PalK. RahierH. UludagH. KimI.S. BechelanyM. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications.Appl. Mater. Today20191713510.1016/j.apmt.2019.06.015
    [Google Scholar]
  41. AminyanR. BazgirS. Fabrication and characterization of nanofibrous polyacrylic acid superabsorbent using gas-assisted electrospinning technique.React. Funct. Polym.201914113314410.1016/j.reactfunctpolym.2019.05.012
    [Google Scholar]
  42. BrownT.D. DaltonP.D. HutmacherD.W. Melt electrospinning today: An opportune time for an emerging polymer process.Prog. Polym. Sci.20165611616610.1016/j.progpolymsci.2016.01.001
    [Google Scholar]
  43. RaeiH. JahanshahiM. MoradH. Three-layer sandwich-like drug-loaded nanofibers of insulin, titanium oxide nanotubes and nitroglycerin as a promising wound healing candidate.Mater. Chem. Phys.202229212676710.1016/j.matchemphys.2022.126767
    [Google Scholar]
  44. YuM. DongR.H. YanX. Recent advances in needleless electrospinning of ultrathin fibers: From academia to industrial production.Macromol. Mater. Eng.20173027170000210.1002/mame.201700002
    [Google Scholar]
  45. El-SayedH. VineisC. VaresanoA. A critique on multi-jet electrospinning: State of the art and future outlook.Nanotechnol. Rev.20198123624510.1515/ntrev‑2019‑0022
    [Google Scholar]
  46. KimY.M. AhnK.R. SungY.B. RaiS.J. Manufacturing device and the method of preparing for the nanofibers viaelectro-blown spinning process.US Patent 20050067732A12011
    [Google Scholar]
  47. LuoC.J. StoyanovS.D. StrideE. PelanE. EdirisingheM. Electrospinning versus fibre production methods: From specifics to technological convergence.Chem. Soc. Rev.201241134708473510.1039/c2cs35083a22618026
    [Google Scholar]
  48. WangL. AhmadZ. HuangJ. LiJ.S. ChangM.W. Multi-compartment centrifugal electrospinning based composite fibers.Chem. Eng. J.201733054154910.1016/j.cej.2017.07.179
    [Google Scholar]
  49. AhmedJ. GultekinogluM. EdirisingheM. Recent developments in the use of centrifugal spinning and pressurized gyration for biomedical applications.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024161191610.1002/wnan.191637553260
    [Google Scholar]
  50. BuzgoM. MickovaA. DoupnikM. RampichovaM. Blend electrospinning, coaxial electrospinning, and emulsion electrospinning techniques.Core-Shell Nanostructures for Drug Delivery and Theranostics.CambridgeWoodhead Publishing201810.1016/B978‑0‑08‑102198‑9.00011‑9
    [Google Scholar]
  51. KurpanikR. Rapacz-KmitaA. Ścisłowska-CzarneckaA. Stodolak-ZychE. Emulsion electrospinning – method to introduce proteins for biomedical applications.Eng Biomat2021162202510.34821/eng.biomat
    [Google Scholar]
  52. HanD. StecklA.J. Coaxial electrospinning formation of complex polymer fibers and their applications.ChemPlusChem201984101453149710.1002/cplu.20190028131943926
    [Google Scholar]
  53. AbdelhadyS. HonsyK.M. KurakulaM. Electro spun- nanofibrous mats: A modern wound dressing matrix with a potential of drug delivery and therapeutics.J. Eng. Fibers Fabrics201510415589250150100041110.1177/155892501501000411
    [Google Scholar]
  54. MuX. ZhengY. LiX. XinB. LinL. Effects of temperature on melt electrospinning: Experiment and simulation study.Fibers Polym.202122496497110.1007/s12221‑021‑0465‑4
    [Google Scholar]
  55. NagyZ.K. BaloghA. DrávavölgyiG. Solvent-free melt electrospinning for preparation of fast dissolving drug delivery system and comparison with solvent-based electrospun and melt extruded systems.J. Pharm. Sci.2013102250851710.1002/jps.2337423161110
    [Google Scholar]
  56. BalanV. VerestiucL. Strategies to improve chitosan hemocompatibility: A review.Eur. Polym. J.20145317118810.1016/j.eurpolymj.2014.01.033
    [Google Scholar]
  57. JayakumarR. MenonD. ManzoorK. NairS.V. TamuraH. Biomedical applications of chitin and chitosan based nanomaterials—A short review.Carbohydr. Polym.201082222723210.1016/j.carbpol.2010.04.074
    [Google Scholar]
  58. GaoY TruongYB ZhuY KyratzisIL Electrospun antibacterial nanofibers: Production, activity, and in vivo applications.J Appl Polym Sci201413118app.4079710.1002/app.40797
    [Google Scholar]
  59. GengX. KwonO. JangJ. Electrospinning of chitosan dissolved in concentrated acetic acid solution.Biomaterials200526275427543210.1016/j.biomaterials.2005.01.06615860199
    [Google Scholar]
  60. HomayoniH. RavandiS.A.H. ValizadehM. Electrospinning of chitosan nanofibers: Processing optimization.Carbohydr. Polym.200977365666110.1016/j.carbpol.2009.02.008
    [Google Scholar]
  61. PakravanM. HeuzeyM.C. AjjiA. Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning.Biomacromolecules201213241242110.1021/bm201444v22229633
    [Google Scholar]
  62. SchiffmanJ.D. SchauerC.L. One-step electrospinning of cross-linked chitosan fibers.Biomacromolecules2007892665266710.1021/bm700698317696400
    [Google Scholar]
  63. AusteroM.S. DoniusA.E. WegstU.G.K. SchauerC.L. New crosslinkers for electrospun chitosan fibre mats. I. Chemical analysis.J. R. Soc. Interface20129752551256210.1098/rsif.2012.024122628209
    [Google Scholar]
  64. GudjónsdóttirM. GacutanM.D. MendesA.C. ChronakisI.S. JespersenL. KarlssonA.H. Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis.Food Chem.201518416717510.1016/j.foodchem.2015.03.08825872440
    [Google Scholar]
  65. IgnatovaM. ManolovaN. RashkovI. Electrospun antibacterial chitosan-based fibers.Macromol. Biosci.201313786087210.1002/mabi.20130005823754600
    [Google Scholar]
  66. SunK. LiZ.H. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning.Express Polym. Lett.20115434236110.3144/expresspolymlett.2011.34
    [Google Scholar]
  67. LancuškiA. VasilyevG. PutauxJ.L. ZussmanE. Rheological properties and electrospinnability of high-amylose starch in formic acid.Biomacromolecules20151682529253610.1021/acs.biomac.5b0081726192477
    [Google Scholar]
  68. KongL. ZieglerG.R. Fabrication of pure starch fibers by electrospinning.Food Hydrocoll.201436202510.1016/j.foodhyd.2013.08.021
    [Google Scholar]
  69. KongL. ZieglerG.R. Role of molecular entanglements in starch fiber formation by electrospinning.Biomacromolecules20121382247225310.1021/bm300396j22708795
    [Google Scholar]
  70. KongL. ZieglerG.R. Formation of starch-guest inclusion complexes in electrospun starch fibers.Food Hydrocoll.20143821121910.1016/j.foodhyd.2013.12.018
    [Google Scholar]
  71. SilvaI. GurruchagaM. GoñiI. Fernández-GutiérrezM. VázquezB. RománJ.S. Scaffolds based on hydroxypropyl starch: Processing, morphology, characterization, and biological behavior.J. Appl. Polym. Sci.201312731475148410.1002/app.37551
    [Google Scholar]
  72. TuzlakogluK. BolgenN. SalgadoA.J. GomesM.E. PiskinE. ReisR.L. Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering.J. Mater. Sci. Mater. Med.200516121099110410.1007/s10856‑005‑4713‑8
    [Google Scholar]
  73. LindmanB. KarlströmG. StigssonL. On the mechanism of dissolution of cellulose.J. Mol. Liq.20101561768110.1016/j.molliq.2010.04.016
    [Google Scholar]
  74. FreyM.W. Electrospinning cellulose and cellulose derivatives.Polym. Rev.200848237839110.1080/15583720802022281
    [Google Scholar]
  75. HuangX.J. ChenP.C. HuangF. OuY. ChenM.R. XuZ.K. Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane.J. Mol. Catal., B Enzym.2011703-49510010.1016/j.molcatb.2011.02.010
    [Google Scholar]
  76. TaepaiboonP. RungsardthongU. SupapholP. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E.Eur. J. Pharm. Biopharm.200767238739710.1016/j.ejpb.2007.03.01817498935
    [Google Scholar]
  77. WangX. KimY.G. DrewC. KuB.C. KumarJ. SamuelsonL.A. Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors.Nano Lett.20044233133410.1021/nl034885z
    [Google Scholar]
  78. HuW. LiuS. ChenS. WangH. Preparation and properties of photochromic bacterial cellulose nanofibrous membranes.Cellulose201118365566110.1007/s10570‑011‑9520‑4
    [Google Scholar]
  79. MaZ. KotakiM. RamakrishnaS. Electrospun cellulose nanofiber as affinity membrane.J. Membr. Sci.20052651–211512310.1016/j.memsci.2005.04.044
    [Google Scholar]
  80. MaZ. RamakrishnaS. Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification.J. Membr. Sci.20083191-2232810.1016/j.memsci.2008.03.045
    [Google Scholar]
  81. FuJ. PangZ. YangJ. HuangF. CaiY. WeiQ. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application.Appl. Surf. Sci.2015349354210.1016/j.apsusc.2015.04.215
    [Google Scholar]
  82. Abka-khajoueiR. TounsiL. ShahabiN. PatelA.K. AbdelkafiS. MichaudP. Structures, properties and applications of alginates.Mar. Drugs202220636410.3390/md2006036435736167
    [Google Scholar]
  83. NieH. HeA. ZhengJ. XuS. LiJ. HanC.C. Effects of chain conformation and entanglement on the electrospinning of pure alginate.Biomacromolecules2008951362136510.1021/bm701349j18433165
    [Google Scholar]
  84. BoninoC.A. KrebsM.D. SaquingC.D. Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems.Carbohydr. Polym.201185111111910.1016/j.carbpol.2011.02.002
    [Google Scholar]
  85. AhmadW. BoyajianJ.L. AbosalhaA. High-molecular-weight dextran-type exopolysaccharide produced by the novel Apilactobacillus waqarii improves metabolic syndrome: In vitro and in vivo analyses.Int. J. Mol. Sci.202223201269210.3390/ijms23201269236293544
    [Google Scholar]
  86. RitcharoenW. ThaiyingY. SaejengY. Electrospun dextran fibrous membranes.Cellulose200815343544410.1007/s10570‑008‑9199‑3
    [Google Scholar]
  87. LeeK.Y. JeongL. KangY.O. LeeS.J. ParkW.H. Electrospinning of polysaccharides for regenerative medicine.Adv. Drug Deliv. Rev.200961121020103210.1016/j.addr.2009.07.006
    [Google Scholar]
  88. MendesA.C. GorzelannyC. HalterN. SchneiderS.W. ChronakisI.S. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.Int. J. Pharm.20165101485610.1016/j.ijpharm.2016.06.01627286632
    [Google Scholar]
  89. XuW. YangW. YangY. Electrospun starch acetate nanofibers: Development, properties, and potential application in drug delivery.Biotechnol. Prog.20092561788179510.1002/btpr.24219637387
    [Google Scholar]
  90. SunX. JiaD. KangW. ChengB. LiY. Research on electrospinning process of pullulan nanofibers.Appl. Mech. Mater.2013270198201
    [Google Scholar]
  91. Aceituno-MedinaM. MendozaS. LagaronJ.M. López-RubioA. Development and characterization of food-grade electrospun fibers from amaranth protein and pullulan blends.Food Res. Int.201354166767410.1016/j.foodres.2013.07.055
    [Google Scholar]
  92. GuoC. ZhouL. LvJ. Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites.Polym. Polymer Compos.201321744945610.1177/096739111302100706
    [Google Scholar]
  93. JiningL. IslamM. KorvinkJ.G. An overview of the electrospinning of polymeric nanofibers for biomedical applications related to drug delivery.Adv. Eng. Mater.2024261230129710.1002/adem.202301297
    [Google Scholar]
  94. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules2619590534641447
    [Google Scholar]
  95. ZhangQ. LiY. LinZ.Y. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications.Drug Discov. Today20172291351136610.1016/j.drudis.2017.05.007
    [Google Scholar]
  96. AdelI.M. ElMeligyM.F. ElkasabgyN.A. Conventional and recent trends of scaffolds fabrication: A superior mode for tissue engineering.Pharmaceutics202214230610.3390/pharmaceutics1402030635214038
    [Google Scholar]
  97. StojanovS. BerlecA. Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications.Front. Bioeng. Biotechnol.2020813010.3389/fbioe.2020.0013032158751
    [Google Scholar]
  98. WenP. WenY. ZongM.H. LinhardtR.J. WuH. Encapsulation of bioactive compound in electrospun fibers and its potential application.J. Agric. Food Chem.201765429161917910.1021/acs.jafc.7b02956
    [Google Scholar]
  99. WuJ. ZhangZ. GuJ. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers.J. Control. Release202032033734610.1016/j.jconrel.2020.01.02031931048
    [Google Scholar]
  100. JuárezB.A. Fleischmann-de la ParraP. Rayo-MercadoK.T.E. Ponce-LopezT. Comparison between insulin delivery methods: Subcutaneous, inhaled, oral, and buccal.Proceed Scient Res Univer Anáh202111627110.36105/psrua.2021v1n1.08
    [Google Scholar]
  101. XuL. SheybaniN. RenS. BowlinG.L. YeudallW.A. YangH. Semi-interpenetrating network (sIPN) co-electrospun gelatin/insulin fiber formulation for transbuccal insulin delivery.Pharm. Res.201532127528510.1007/s11095‑014‑1461‑925030186
    [Google Scholar]
  102. LancinaM.G. ShankarR.K. YangH. Chitosan nanofibers for transbuccal insulin delivery.J. Biomed. Mater. Res. A201710551252125910.1002/jbm.a.3598428000386
    [Google Scholar]
  103. PandaB.P. WeiM.X. ShivashekaregowdaN.K.H. PatnaikS. Design, fabrication and characterization of pva/plga electrospun nanofibers carriers for improvement of drug delivery of gliclazide in type-2 diabetes.Proceedings20217811410.3390/IECP2020‑08689
    [Google Scholar]
  104. StephansenK. García-DíazM. JessenF. ChronakisI.S. NielsenH.M. Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein.Int. J. Pharm.20154951586610.1016/j.ijpharm.2015.08.07626320547
    [Google Scholar]
  105. StephansenK. García-DíazM. JessenF. ChronakisI.S. NielsenH.M. Interactions between surfactants in solution and electrospun protein fibers: Effects on release behavior and fiber properties.Mol. Pharm.201613374875510.1021/acs.molpharmaceut.5b0061426389817
    [Google Scholar]
  106. VoronovaA. PrietoC. Pardo-FiguerezM. Photothermal activatable mucoadhesive fiber mats for on-demand delivery of insulin via buccal and corneal mucosa.ACS Appl. Bio Mater.20225277177810.1021/acsabm.1c0116135026943
    [Google Scholar]
  107. LeeC.H. HungK.C. HsiehM.J. Core-shell insulin-loaded nanofibrous scaffolds for repairing diabetic wounds.Nanomedicine20202410212310.1016/j.nano.2019.10212331711999
    [Google Scholar]
  108. WaltherM. RohdeF. KielholzT. WindbergsM. Physico-chemical analysis of electrospun fibers – A systematic approach.Eur. J. Pharm. Biopharm.2022171607110.1016/j.ejpb.2022.01.00135007695
    [Google Scholar]
  109. SharmaA. GuptaA. RathG. GoyalA. MathurR.B. DhakateS.R. Electrospun composite nanofiber-based transmucosal patch for anti-diabetic drug delivery.J. Mater. Chem. B Mater. Biol. Med.20131273410341810.1039/c3tb20487a32260931
    [Google Scholar]
  110. MirmajidiT. ChoganF. RezayanA.H. SharifiA.M. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin.Int. J. Pharm.202159612021310.1016/j.ijpharm.2021.12021333493599
    [Google Scholar]
  111. YaoZ. QianY. JinY. Biomimetic multilayer polycaprolactone/sodium alginate hydrogel scaffolds loaded with melatonin facilitate tendon regeneration.Carbohydr. Polym.202227711886510.1016/j.carbpol.2021.11886534893270
    [Google Scholar]
  112. DolciL.S. PeroneR.C. Di GesùR. Design and in vitro study of a dual drug-loaded delivery system produced by electrospinning for the treatment of acute injuries of the central nervous system.Pharmaceutics202113684810.3390/pharmaceutics1306084834201089
    [Google Scholar]
  113. CelebiogluA. WangN. KilicM.E. DurgunE. UyarT. Orally fast disintegrating cyclodextrin/prednisolone inclusion-complex nanofibrous webs for potential steroid medications.Mol. Pharm.202118124486450010.1021/acs.molpharmaceut.1c0067734780196
    [Google Scholar]
  114. VlachouM. KikionisS. SiamidiA. Fabrication and characterization of electrospun nanofibers for the modified release of the chronobiotic hormone melatonin.Curr. Drug Deliv.2018161798510.2174/156720181566618091409570130215335
    [Google Scholar]
  115. CableJ.K. GriderM.H. Physiology, Progesterone.Treasure Island, FloridaStatPearls2020
    [Google Scholar]
  116. KolatorovaL. VitkuJ. SuchoparJ. HillM. ParizekA. Progesterone: A steroid with wide range of effects in physiology as well as human medicine.Int. J. Mol. Sci.20222314798910.3390/ijms23147989
    [Google Scholar]
  117. KaruppannanC. SivarajM. KumarJ.G. SeeranganR. BalasubramanianS. GopalD.R. Fabrication of progesterone-loaded nanofibers for the drug delivery applications in bovine.Nanoscale Res. Lett.201712111610.1186/s11671‑016‑1781‑228228001
    [Google Scholar]
  118. BrakoF. Raimi-AbrahamB.T. MahalingamS. CraigD.Q.M. EdirisingheM. The development of progesterone-loaded nanofibers using pressurized gyration: A novel approach to vaginal delivery for the prevention of pre-term birth.Int. J. Pharm.20185401-2313910.1016/j.ijpharm.2018.01.04329408268
    [Google Scholar]
  119. MofidfarM. PrausnitzM.R. Electrospun transdermal patch for contraceptive hormone delivery.Curr. Drug Deliv.201916657758310.2174/156720181666619030811201030848203
    [Google Scholar]
  120. Noirrit-EsclassanE. ValeraM-C. TremollieresF. Critical role of estrogens on bone homeostasis in both male and female: From physiology to medical implications.Int. J. Mol. Sci.2021224156810.3390/ijms2204156833557249
    [Google Scholar]
  121. YasirM. ŠopíkT. LoveckáL. KimmerD. SedlaříkV. The adsorption, kinetics, and interaction mechanisms of various types of estrogen on electrospun polymeric nanofiber membranes.Nanotechnology202233707570210.1088/1361‑6528/ac357b34727533
    [Google Scholar]
  122. SteffiC. WangD. KongC.H. Estradiol-loaded poly (ε-caprolactone)/silk fibroin electrospun microfibers decrease osteoclast activity and retain osteoblast function.ACS Appl. Mater. Interfaces201810129988999810.1021/acsami.8b0185529513524
    [Google Scholar]
  123. WeinM.N. KronenbergH.M. Regulation of bone remodeling by parathyroid hormone.Cold Spring Harb. Perspect. Med.201888a03123710.1101/cshperspect.a03123729358318
    [Google Scholar]
  124. SilvaB.C. BilezikianJ.P. Parathyroid hormone: Anabolic and catabolic actions on the skeleton.Curr. Opin. Pharmacol.201522415010.1016/j.coph.2015.03.00525854704
    [Google Scholar]
  125. ChenR. WangJ. Electrospunned nanofiber membranes of PTH-related peptide loaded biopolymers for osteoporotic bone defect repair.Mater. Des.20242442211317910.1016/j.matdes.2024.113179
    [Google Scholar]
  126. YinL. ZhuY. HeM. ChangY. XuF. LaiH.C. Preparation and characteristics of electrospinning PTH‐Fc/PLCL/SF membranes for bioengineering applications.J. Biomed. Mater. Res. A2020108115716510.1002/jbm.a.3680131566865
    [Google Scholar]
  127. XueJ. WuT. DaiY. XiaY. Electrospinning and electrospun nanofibers: Methods, materials, and applications.Chem. Rev.201911985298541510.1021/acs.chemrev.8b0059330916938
    [Google Scholar]
  128. RashidT.U. GorgaR.E. KrauseW.E. Mechanical properties of electrospun fibers—a critical review.Adv. Eng. Mater.2021239210015310.1002/adem.202100153
    [Google Scholar]
  129. GavaliP. DesaiJ. ShahP. SawarkarS. Transmucosal delivery of peptides and proteins through nanofibers: Current status and emerging developments.AAPS PharmSciTech20242547410.1208/s12249‑024‑02794‑x38575778
    [Google Scholar]
  130. FrizzellH. OhlsenT.J. WoodrowK.A. Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and pH-controlled release for peroral delivery of biologic therapeutics.Int. J. Pharm.201753319911010.1016/j.ijpharm.2017.09.04328941831
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128378108250612102634
Loading
/content/journals/cpd/10.2174/0113816128378108250612102634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test