Skip to content
2000
Volume 32, Issue 5
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Schizophrenia (SCZ) remains a captivating mental disorder marked by complex symptomatology. Despite the success of the current therapeutic options for psychosis, a definitive cure remains elusive. Hence, this review explores mechanisms underlying SCZ pathophysiology, examining their potential as novel therapeutic targets. This is a narrative review of literature that has been critically analyzed following retrieval from PubMed, PubMed Central, and Google Scholar. Nearly 30% of patients of SCZ show no response to first- and second-generation antipsychotic drugs and continue to suffer from cognitive and negative symptoms, including medication-induced adverse effects. Apart from the social and environmental factors, SCZ has been strongly linked to epigenetic factors and alterations in protein expression. Epigenetic modifications include histone modification and DNA methylation. Epigenetic alterations gained through environmental factors, known as molecular scars, also influence, to some extent, the brain functions throughout the life span of a human being. Epigenetic mechanisms are now recognized as significant contributors to the development and progression of SCZ. Epigenetics is critical in SCZ etiology through DNA methylation and histone modification. Herbal medicines offer promise by targeting genetic and epigenetic pathways, albeit with safety concerns. These approaches offer potential as supplementary therapies alongside conventional treatments or alternative preventive measures. By thoroughly investigating these methods, we may uncover new possibilities in SCZ care, ultimately paving the path for more effective and holistic therapeutic approaches.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128362637250621113743
2025-06-27
2026-01-31
Loading full text...

Full text loading...

References

  1. KahnR.S. SommerI.E. MurrayR.M. Schizophrenia.Nat. Rev. Dis. Primers2015111506710.1038/nrdp.2015.6727189524
    [Google Scholar]
  2. MosolovS.N. YaltonskayaP.A. Primary and secondary negative symptoms in Schizophrenia.Front. Psychiatry20221276669210.3389/fpsyt.2021.76669235046851
    [Google Scholar]
  3. KaleemM. FuleR. AlhsoinM. miRNA dysregulation in schizophrenia. KhanA. RatherMA. AshrafGM. Mechanism and Genetic Susceptibility of Neurological DisordersSpringer Singapore201211714410.1007/978‑981‑99‑9404‑5_6
    [Google Scholar]
  4. FuX. LiuY. BaranovaA. ZhangF. Deregulatory miRNA-BDNF network inferred from dynamic expression changes in schizophrenia.Brain Sci.202212216710.3390/brainsci1202016735203931
    [Google Scholar]
  5. Schizophrenia - World Health Organization (WHO)2022Available from: www.who.int/news-room/fact-sheets/detail/schizophrenia.
  6. LoganathanS. MurthyR.S. Living with schizophrenia in India: Gender perspectives.Transcult. Psychiatry201148556958410.1177/136346151141887222123834
    [Google Scholar]
  7. CattsS.V. O’TooleB.I. The treatment of schizophrenia: Can we raise the standard of care?Aust. N. Z. J. Psychiatry201650121128113810.1177/000486741667272527821411
    [Google Scholar]
  8. OjagbemiA. ChilizaB. BelloT. Spontaneous and emergent extrapyramidal syndromes in Black Africans with first-episode schizophrenia and first exposure to antipsychotics.J. Ment. Health202130224024510.1080/09638237.2020.173924232169007
    [Google Scholar]
  9. LaursenT.M. NordentoftM. MortensenP.B. Excess early mortality in schizophrenia.Annu. Rev. Clin. Psychol.201410142544810.1146/annurev‑clinpsy‑032813‑15365724313570
    [Google Scholar]
  10. KhavariB. CairnsM.J. Epigenomic dysregulation in schizophrenia: In search of disease etiology and biomarkers.Cells202098183710.3390/cells908183732764320
    [Google Scholar]
  11. RichettoJ. MeyerU. Epigenetic modifications in schizophrenia and related disorders: Molecular scars of environmental exposures and source of phenotypic variability.Biol. Psychiatry202189321522610.1016/j.biopsych.2020.03.00832381277
    [Google Scholar]
  12. ThomasK.T. ZakharenkoS.S. MicroRNAs in the onset of schizophrenia.Cells20211010267910.3390/cells1010267934685659
    [Google Scholar]
  13. ChaiyakunaprukN. ChongH.Y. TeohS.L. WuD.B-C. KotirumS. ChiouC-F. Global economic burden of schizophrenia: A systematic review.Neuropsychiatr. Dis. Treat.20161235737310.2147/NDT.S9664926937191
    [Google Scholar]
  14. DachaniS.R. KaleemM. MujtabaM.A. A comprehensive review of various therapeutic strategies for the management of skin cancer.ACS Omega202499100301004810.1021/acsomega.3c0978038463249
    [Google Scholar]
  15. SnyderM.A. GaoW.J. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms.Schizophr. Res.2020217607010.1016/j.schres.2019.03.01030979669
    [Google Scholar]
  16. LisowayA.J. ChenC.C. ZaiC.C. TiwariA.K. KennedyJ.L. Toward personalized medicine in schizophrenia: Genetics and epigenetics of antipsychotic treatment.Schizophr. Res.202123211212410.1016/j.schres.2021.05.01034049235
    [Google Scholar]
  17. Montague-CardosoK. Identifying therapeutic targets for schizophrenia.Commun. Biol.20214174210.1038/s42003‑021‑02270‑334112930
    [Google Scholar]
  18. VoiseyJ. MehtaD. McLeayR. Clinically proven drug targets differentially expressed in the prefrontal cortex of schizophrenia patients.Brain Behav. Immun.20176125926510.1016/j.bbi.2016.12.00627940260
    [Google Scholar]
  19. AhmedS. RothR.M. StanciuC.N. BrunetteM.F. The impact of THC and CBD in schizophrenia: A systematic review.Front. Psychiatry20211269439410.3389/fpsyt.2021.69439434366924
    [Google Scholar]
  20. BreierA. BuchananR.W. D’SouzaD. Herpes simplex virus 1 infection and valacyclovir treatment in schizophrenia: Results from the VISTA study.Schizophr. Res.201920629129910.1016/j.schres.2018.11.00230478008
    [Google Scholar]
  21. Cheslack-PostavaK. BrownA.S. Prenatal infection and schizophrenia: A decade of further progress.Schizophr. Res.202224771510.1016/j.schres.2021.05.01434016508
    [Google Scholar]
  22. StiloS.A. MurrayR.M. Non-genetic factors in schizophrenia.Curr. Psychiatry Rep.2019211010010.1007/s11920‑019‑1091‑331522306
    [Google Scholar]
  23. NosartiC. ReichenbergA. MurrayR.M. Preterm birth and psychiatric disorders in young adult life.Arch. Gen. Psychiatry2012696E1E810.1001/archgenpsychiatry.2011.137422660967
    [Google Scholar]
  24. PopovicD. SchmittA. KauraniL. Childhood trauma in schizophrenia: Current findings and research perspectives.Front. Neurosci.20191327410.3389/fnins.2019.0027430983960
    [Google Scholar]
  25. StiloS.A. Gayer-AndersonC. BeardsS. Further evidence of a cumulative effect of social disadvantage on risk of psychosis.Psychol. Med.201747591392410.1017/S003329171600299327916012
    [Google Scholar]
  26. HensslerJ. BrandtL. MüllerM. Migration and schizophrenia: Meta-analysis and explanatory framework.Eur. Arch. Psychiatry Clin. Neurosci.2020270332533510.1007/s00406‑019‑01028‑731161262
    [Google Scholar]
  27. CuiX. McGrathJ.J. BurneT.H.J. EylesD.W. Vitamin D and schizophrenia: 20 years on.Mol. Psychiatry20212672708272010.1038/s41380‑021‑01025‑033500553
    [Google Scholar]
  28. SaraG.E. LargeM.M. MathesonS.L. Stimulant use disorders in people with psychosis: A meta-analysis of rate and factors affecting variation.Aust. N. Z. J. Psychiatry201549210611710.1177/000486741456152625518844
    [Google Scholar]
  29. HowesO.D. MurrayR.M. Schizophrenia: An integrated sociodevelopmental-cognitive model.Lancet201438399291677168710.1016/S0140‑6736(13)62036‑X24315522
    [Google Scholar]
  30. KumarJ. LiddleE.B. FernandesC.C. Glutathione and glutamate in schizophrenia: A 7T MRS study.Mol. Psychiatry202025487388210.1038/s41380‑018‑0104‑729934548
    [Google Scholar]
  31. LewerenzJ. HewettS.J. HuangY. The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities.Antioxid. Redox Signal.201318552255510.1089/ars.2011.439122667998
    [Google Scholar]
  32. HungC.C. LinC.H. LaneH.Y. Cystine/glutamate antiporter in schizophrenia: From molecular mechanism to novel biomarker and treatment.Int. J. Mol. Sci.20212218971810.3390/ijms2218971834575878
    [Google Scholar]
  33. MassieA. BoilléeS. HewettS. KnackstedtL. LewerenzJ. Main path and byways: Non‐vesicular glutamate release by system x c− as an important modifier of glutamatergic neurotransmission.J. Neurochem.201513561062107910.1111/jnc.1334826336934
    [Google Scholar]
  34. WahbehM.H. AvramopoulosD. Gene-environment interactions in schizophrenia: A literature review.Genes20211212185010.3390/genes1212185034946799
    [Google Scholar]
  35. DickersonF. SchroederJ.R. NimgaonkarV. GoldJ. YolkenR. The association between exposure to Herpes Simplex virus type 1 (HSV-1) and cognitive functioning in schizophrenia: A meta-analysis.Psychiatry Res.202029111315710.1016/j.psychres.2020.11315732593064
    [Google Scholar]
  36. BanerjeeD. ViswanathB. Neuropsychiatric manifestations of COVID-19 and possible pathogenic mechanisms: Insights from other coronaviruses.Asian J. Psychiatr.20205410235010.1016/j.ajp.2020.102350
    [Google Scholar]
  37. TripathyS. SinghN. SinghA. KarS.K. COVID-19 and psychotic symptoms: The view from psychiatric immunology.Curr. Behav. Neurosci. Rep.20218417217810.1007/s40473‑021‑00235‑834631364
    [Google Scholar]
  38. KaleemM. PerwaizM. NurS.M. Epigenetics of triple-negative breast cancer via natural compounds.Curr. Med. Chem.20222981436145810.2174/092986732866621070716553034238140
    [Google Scholar]
  39. HarveyZ.H. ChenY. JaroszD.F. Protein-based inheritance: Epigenetics beyond the chromosome.Mol. Cell201869219520210.1016/j.molcel.2017.10.03029153393
    [Google Scholar]
  40. ShorterK.R. MillerB.H. Epigenetic mechanisms in schizophrenia.Mol. Neuropsychiatry20195161210.1016/j.pbiomolbio.2015.04.00831019914
    [Google Scholar]
  41. KaracetinG. BayogluB. Eseroglu SoylemezT. BDNF Val66Met polymorphism is associated with negative symptoms in early-onset schizophrenia spectrum and other psychotic disorders.Eur. J. Psychiatry2022361263410.1016/j.ejpsy.2021.04.002
    [Google Scholar]
  42. YangY. ZhangL. GuoD. Association of DTNBP1 with schizophrenia: Findings from two independent samples of han Chinese population.Front. Psychiatry20201144610.3389/fpsyt.2020.0044632581860
    [Google Scholar]
  43. XuM. WongA.H.C. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia.Acta Pharmacol. Sin.201839573375310.1038/aps.2017.17229565038
    [Google Scholar]
  44. HashimotoT. ArionD. UngerT. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia.Mol. Psychiatry200813214716110.1038/sj.mp.400201117471287
    [Google Scholar]
  45. Purves-TysonT.D. BrownA.M. WeisslederC. RothmondD.A. Shannon WeickertC. Reductions in midbrain GABAergic and dopamine neuron markers are linked in schizophrenia.Mol. Brain20211419610.1186/s13041‑021‑00805‑734174930
    [Google Scholar]
  46. BelforteJ.E. ZsirosV. SklarE.R. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes.Nat. Neurosci.2010131768310.1038/nn.244719915563
    [Google Scholar]
  47. NaharL. DelacroixB.M. NamH.W. The role of parvalbumin interneurons in neurotransmitter balance and neurological disease.Front. Psychiatry20211267996010.3389/fpsyt.2021.67996034220586
    [Google Scholar]
  48. MetznerC. ZurowskiB. SteuberV. The role of parvalbumin-positive interneurons in auditory steady-state response deficits in schizophrenia.Sci. Rep.2019911852510.1038/s41598‑019‑53682‑531811155
    [Google Scholar]
  49. GuoJ.U. SuY. ZhongC. MingG. SongH. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain.Cell2011145342343410.1016/j.cell.2011.03.02221496894
    [Google Scholar]
  50. GraysonD.R. GuidottiA. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders.Neuropsychopharmacology201338113816610.1038/npp.2012.12522948975
    [Google Scholar]
  51. KatoT. IwamotoK. Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders.Neuropharmacology20148013313910.1016/j.neuropharm.2013.12.01924389572
    [Google Scholar]
  52. Negrón-OyarzoI. Lara-VásquezA. Palacios-GarcíaI. FuentealbaP. AboitizF. Schizophrenia and reelin: A model based on prenatal stress to study epigenetics, brain development and behavior.Biol. Res.20164911610.1186/s40659‑016‑0076‑526968981
    [Google Scholar]
  53. LottS.A. BurghardtP.R. BurghardtK.J. BlyM.J. GroveT.B. EllingrodV.L. The influence of metabolic syndrome, physical activity and genotype on catechol-O-methyl transferase promoter-region methylation in schizophrenia.Pharmacogenomics J.201313326427110.1038/tpj.2012.622391769
    [Google Scholar]
  54. GavinD.P. AkbarianS. Epigenetic and post-transcriptional dysregulation of gene expression in schizophrenia and related disease.Neurobiol. Dis.201246225526210.1016/j.nbd.2011.12.00822182689
    [Google Scholar]
  55. DempsterE.L. PidsleyR. SchalkwykL.C. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder.Hum. Mol. Genet.201120244786479610.1093/hmg/ddr41621908516
    [Google Scholar]
  56. BayraktarG. KreutzM.R. Neuronal DNA methyltransferases: Epigenetic mediators between synaptic activity and gene expression?Neuroscientist201824217118510.1177/107385841770745728513272
    [Google Scholar]
  57. KaleemM. ThoolM. DumoreN.G. Management of triple-negative breast cancer by natural compounds through different mechanistic pathways.Front. Genet.202415144043010.3389/fgene.2024.144043039130753
    [Google Scholar]
  58. KaleemM. KayaliA. SheikhR.A. In vitro and in vivo preventive effects of thymoquinone against breast cancer: Role of DNMT1.Molecules202429243410.3390/molecules2902043438257347
    [Google Scholar]
  59. OmranZ.H. DalhatM. AbdullahO. Targeting post-translational modifications of the p73 protein: A promising therapeutic strategy for tumors.Cancers2021138191610.3390/cancers1308191633921128
    [Google Scholar]
  60. ChenX. XuJ. LiB. GuoW. ZhangJ. HuJ. Olfactory impairment in first-episode schizophrenia: A case-control study, and sex dimorphism in the relationship between olfactory impairment and psychotic symptoms.BMC Psychiatry201818119910.1186/s12888‑018‑1786‑829914416
    [Google Scholar]
  61. ChaseK.A. GavinD.P. GuidottiA. SharmaR.P. Histone methylation at H3K9: Evidence for a restrictive epigenome in schizophrenia.Schizophr. Res.20131491-3152010.1016/j.schres.2013.06.02123815974
    [Google Scholar]
  62. IbiD. González-MaesoJ. Epigenetic signaling in schizophrenia.Cell. Signal.201527102131213610.1016/j.cellsig.2015.06.00326120009
    [Google Scholar]
  63. VenugopalD. ShivakumarV. SubbannaM. Impact of antipsychotic treatment on methylation status of Interleukin-6 [IL-6] gene in schizophrenia.J. Psychiatr. Res.2018104889510.1016/j.jpsychires.2018.07.00230005373
    [Google Scholar]
  64. RyuH.Y. HochstrasserM. Histone sumoylation and chromatin dynamics.Nucleic Acids Res.202149116043605210.1093/nar/gkab28033885816
    [Google Scholar]
  65. LeeH.T. OhS. RoD.H. YooH. KwonY.W. The key role of DNA methylation and histone acetylation in epigenetics of atherosclerosis.J. Lipid Atheroscler.20209341943410.12997/jla.2020.9.3.41933024734
    [Google Scholar]
  66. KaleemM. Epigenetic basis of polyphenols in cancer prevention and therapy.Polyphenols-based Nanotherapeutics for Cancer Management.SingaporeSpringer202110.1007/978‑981‑16‑4935‑6_6
    [Google Scholar]
  67. XavierM.J. RomanS.D. AitkenR.J. NixonB. Transgenerational inheritance: How impacts to the epigenetic and genetic information of parents affect offspring health.Hum. Reprod. Update201925551954110.1093/humupd/dmz01731374565
    [Google Scholar]
  68. GuanJ.S. HaggartyS.J. GiacomettiE. HDAC2 negatively regulates memory formation and synaptic plasticity.Nature20094597243556010.1038/nature0792519424149
    [Google Scholar]
  69. HollinsS.L. ZavitsanouK. WalkerF.R. CairnsM.J. Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure.Transl. Psychiatry201449e45210.1038/tp.2014.9925268256
    [Google Scholar]
  70. WocknerL.F. NobleE.P. LawfordB.R. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients.Transl. Psychiatry201441e33910.1038/tp.2013.11124399042
    [Google Scholar]
  71. WocknerL.F. MorrisC.P. NobleE.P. Brain-specific epigenetic markers of schizophrenia.Transl. Psychiatry2015511e68010.1038/tp.2015.17726575221
    [Google Scholar]
  72. RiceM.W. SmithK.L. RobertsR.C. Perez-CostasE. Melendez-FerroM. Assessment of cytochrome C oxidase dysfunction in the substantia nigra/ventral tegmental area in schizophrenia.PLoS One201496e10005410.1371/journal.pone.010005424941246
    [Google Scholar]
  73. NiP. ChungS. Mitochondrial dysfunction in schizophrenia.BioEssays2020426190020210.1002/bies.20190020232338416
    [Google Scholar]
  74. GandalM.J. ZhangP. HadjimichaelE. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder.Science20183626420eaat812710.1126/science.aat812730545856
    [Google Scholar]
  75. BensonM.A. TinsleyC.L. WaiteA.J. Ryanodine receptors are part of the myospryn complex in cardiac muscle.Sci. Rep.201771631210.1038/s41598‑017‑06395‑628740084
    [Google Scholar]
  76. van KesterenC.F.M.G. GremmelsH. de WitteL.D. Immune involvement in the pathogenesis of schizophrenia: A meta-analysis on postmortem brain studies.Transl. Psychiatry201773e107510.1038/tp.2017.428350400
    [Google Scholar]
  77. HwangY. KimJ. ShinJ-Y. Gene expression profiling by mRNA sequencing reveals increased expression of immune/] inflammation-related genes in the hippocampus of individuals with schizophrenia.Transl. Psychiatry2013310e32110.1038/tp.2013.9424169640
    [Google Scholar]
  78. StarkT. Ruda-KucerovaJ. IannottiF.A. Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia.Neuropharmacology201914621222110.1016/j.neuropharm.2018.11.03530496751
    [Google Scholar]
  79. GulchinaY. XuS.J. SnyderM.A. ElefantF. GaoW.J. Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia.J. Neurochem.2017143332033310.1111/jnc.1410128628228
    [Google Scholar]
  80. SuY. LianJ. ChenS. ZhangW. DengC. Epigenetic histone acetylation modulating prenatal Poly I:C induced neuroinflammation in the prefrontal cortex of rats: A study in a maternal immune activation model.Front. Cell. Neurosci.202216103710510.3389/fncel.2022.103710536519081
    [Google Scholar]
  81. EmsleyR. ChilizaB. AsmalL. HarveyB.H. The nature of relapse in schizophrenia.BMC Psychiatry20131315010.1186/1471‑244X‑13‑5023394123
    [Google Scholar]
  82. LeonardB.E. SchwarzM. MyintA.M. The metabolic syndrome in schizophrenia: Is inflammation a contributing cause?J. Psychopharmacol.2012265_suppl334110.1177/026988111143162222472311
    [Google Scholar]
  83. AlphsL. NasrallahH.A. BossieC.A. Factors associated with relapse in schizophrenia despite adherence to long-acting injectable antipsychotic therapy.Int. Clin. Psychopharmacol.201631420220910.1097/YIC.000000000000012526974214
    [Google Scholar]
  84. InfantinoV. PappalardoI. SantarsieroA. TripathiS. SinghG. de OliveiraM.R. Brain mitochondria as a therapeutic target for carnosic acid.J. Integr. Neurosci.20242335310.31083/j.jin230305338538219
    [Google Scholar]
  85. OjagbemiA. GurejeO. The klhizophrenia.Curr. Psychiatry Rep.202022127110.1007/s11920‑020‑01196‑733089431
    [Google Scholar]
  86. PaulB.D. SnyderS.H. Therapeutic applications of cysteamine and cystamine in neurodegenerative and neuropsychiatric diseases.Front. Neurol.201910131510.3389/fneur.2019.0131531920936
    [Google Scholar]
  87. YoshimuraR. HoriH. KatsukiA. AtakeK. NakamuraJ. Serum levels of brain-derived neurotrophic factor (BDNF), proBDNF and plasma 3-methoxy-4-hydroxyphenylglycol levels in chronic schizophrenia.Ann. Gen. Psychiatry2016151110.1186/s12991‑015‑0084‑926770258
    [Google Scholar]
  88. SinghJ. VermaR. RaghavR. SarkarS. SoodM. JainR. Brain-derived neurotrophic factor (BDNF) levels in first-episode schizophrenia and healthy controls: A comparative study.Asian J. Psychiatr.20205410237010.1016/j.ajp.2020.10237033271690
    [Google Scholar]
  89. SakamotoF.L. RibeiroR.M.R. BuenoA.A. SantosH.O. Psychotropic effects of L-theanine and its clinical properties: From the management of anxiety and stress to a potential use in schizophrenia.Pharmacol. Res.201914710439510.1016/j.phrs.2019.10439531412272
    [Google Scholar]
  90. Al-NemaM. GauravA. AkowuahG. Discovery of natural product inhibitors of phosphodiesterase 10A as novel therapeutic drug for schizophrenia using a multistep virtual screening.Comput. Biol. Chem.201877526310.1016/j.compbiolchem.2018.09.00130240986
    [Google Scholar]
  91. CaoYL -ZhuL ZhangH Total barley maiya alkaloids prevent increased prolactin levels caused by antipsychotic drugs and reduce dopamine receptor D2 via epigenetic mechanisms.Front. Pharmacol.20221388852210.3389/fphar.2022.88852235865960
    [Google Scholar]
  92. PiyabhanP. WetchatengT. Bacopa monnieri (Brahmi) enhanced cognitive function and prevented cognitive impairment by increasing VGLUT2 immunodensity in prefrontal cortex of sub-chronic phencyclidine rat model of schizophrenia.J. Med. Assoc. Thai.201598Suppl. 3S7S1526387382
    [Google Scholar]
  93. SakamotoS. UjikeH. TakakiM. Adjunctive yokukansan treatment improved cognitive functions in a patient with schizophrenia.J. Neuropsychiatry Clin. Neurosci.2013253E39E4010.1176/appi.neuropsych.1207016624026738
    [Google Scholar]
  94. TakashiT. UchidaH. SuzukiT. MimuraM. Effectiveness of saikokaryukotsuboreito (herbal medicine) for antipsychotic-induced sexual dysfunction in male patients with schizophrenia: A description of two cases.Case Rep. Psychiatry201420141310.1155/2014/78467124587934
    [Google Scholar]
  95. ZhangX.Y. ZhouD.F. CaoL.Y. WuG.Y. The effects of Ginkgo biloba extract added to haloperidol on peripheral T cell subsets in drug-free schizophrenia: A double-blind, placebo-controlled trial.Psychopharmacology20061881121710.1007/s00213‑006‑0476‑216906395
    [Google Scholar]
  96. OhH.K. ParkS.J. BaeS.G. Kami-ondam-tang, a traditional herbal prescription, attenuates the prepulse inhibition deficits and cognitive impairments induced by MK-801 in mice.J. Ethnopharmacol.2013146260060710.1016/j.jep.2013.01.03223376282
    [Google Scholar]
  97. XuY. LianY. LiJ. KangPiLao decoction modulates cognitive and emotional disorders in rats with central fatigue through the GABA/Glu pathway.Front. Pharmacol.20221393916910.3389/fphar.2022.93916936120289
    [Google Scholar]
  98. FuruyaM. MiyaokaT. TsumoriT. Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat.J. Neuroinflammation201310190910.1186/1742‑2094‑10‑14524305622
    [Google Scholar]
  99. AhmedM.N. AzamM.N.K. Traditional knowledge and formulations of medicinal plants used by the traditional medical practitioners of Bangladesh to treat schizophrenia like psychosis.Schizophr. Res. Treatment2014201411010.1155/2014/67981025101175
    [Google Scholar]
  100. MahmoodD. AleneziS.K. AnwarM.J. AzamF. QureshiK.A. JaremkoM. New paradigms of old psychedelics in schizophrenia.Pharmaceuticals202215564010.3390/ph1505064035631466
    [Google Scholar]
  101. LeeJ.G. ShinB.S. LeeY.C. ParkS.W. KimY.H. Clinical effectiveness of the Kampo medicine kamishoyosan for adjunctive treatment of tardive dyskinesia in patients with schizophrenia: A 16‐week open trial.Psychiatry Clin. Neurosci.200761550951410.1111/j.1440‑1819.2007.01700.x17875029
    [Google Scholar]
  102. GuoX. ChenZ.H. WangH.L. WSKY, a traditional Chinese decoction, rescues cognitive impairment associated with NMDA receptor antagonism by enhancing BDNF/ERK/CREB signaling.Mol. Med. Rep.20151142927293410.3892/mmr.2014.308625503442
    [Google Scholar]
  103. KooB. BaeH.J. GooN. A botanical drug composed of three herbal materials attenuates the sensorimotor gating deficit and cognitive impairment induced by MK-801 in mice.J. Pharm. Pharmacol.202072114916010.1111/jphp.1319931713882
    [Google Scholar]
  104. GrizzellJ.A. PatelS. BarretoG.E. EcheverriaV. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.Prog. Neuropsychopharmacol. Biol. Psychiatry201778758110.1016/j.pnpbp.2017.05.01028536070
    [Google Scholar]
  105. NairV. ArjumanA. DorababuP. GopalakrishnaH.N. Chakradhar RaoU. MohanL. Effect of NR-ANX-C (a polyherbal formulation) on haloperidol induced catalepsy in albino mice.Indian J. Med. Res.2007126548048418160755
    [Google Scholar]
  106. TopyurekM. TibboP.G. GoodK. Regular caffeine intake in patients with schizophrenia: Cognition and symptomatology.Clin. Schizophr. Relat. Psychoses2020141192410.3371/CSRP.TMTP.092520
    [Google Scholar]
  107. LeeM.R. YunB.S. ParkS.Y. Anti-amnesic effect of Chong–Myung–Tang on scopolamine-induced memory impairments in mice.J. Ethnopharmacol.20101321707410.1016/j.jep.2010.07.04120673844
    [Google Scholar]
  108. ShinB.Y. Ameliorating effect of a herbal medicinal prescription, Kyung-Ok-Ko, on scopolamine-induced memory impairment in mice.J. Tradit. Med.2009138372373010.11339/jtm.26.35
    [Google Scholar]
  109. MendhiS.M. GhotiM.S. ThoolM.A. TekadeR.M. A review: In – silico approaches in predictive toxicology.Int. J. Pharm. Sci. Rev. Res.20217029110910.47583/ijpsrr.2021.v70i02.012
    [Google Scholar]
  110. FatimaU. RoyS. AhmadS. Pharmacological attributes of Bacopa monnieri extract: Current updates and clinical manifestation.Front. Nutr.2022997237910.3389/fnut.2022.97237936061899
    [Google Scholar]
  111. WangL. HanX. ZhengX. Ginsenoside 20(S)-Rg3 upregulates tumor suppressor VHL gene expression by suppressing DNMT3A-mediated promoter methylation in ovarian cancer cells.Nan Fang Yi Ke Da Xue Xue Bao202141110010610.12122/j.issn.1673‑4254.2021.01.1433509760
    [Google Scholar]
  112. OliveiraD. JohanssonB. OliveiraR. Ginkgo biloba, DNA damage and DNA repair: Overview.Handbook of Nutrition, Diet, and Epigenetics.ChamSpringer20191997201510.1007/978‑3‑319‑55530‑0_11
    [Google Scholar]
  113. FangM. ChenD. YangC.S. Dietary polyphenols may affect DNA methylation.J. Nutr.20071371223S228S10.1093/jn/137.1.223S17182830
    [Google Scholar]
  114. EbisawaS. AndohT. ShimadaY. KuraishiY. Yokukansan improves mechanical allodynia through the regulation of interleukin-6 expression in the spinal cord in mice with neuropathic pain.Evid. Based Complement. Alternat. Med.201520151810.1155/2015/87068725866544
    [Google Scholar]
  115. RitsnerM.S. MiodownikC. RatnerY. L-theanine relieves positive, activation, and anxiety symptoms in patients with schizophrenia and schizoaffective disorder: An 8-week, randomized, double-blind, placebo-controlled, 2-center study.J. Clin. Psychiatry2011721344210.4088/JCP.09m05324gre21208586
    [Google Scholar]
  116. MasilamoniGJ UthayathasS KoenigG LeventhalL PapaSM Effects of a novel phosphodiesterase 10A inhibitor in non-human primates: A therapeutic approach for schizophrenia with improved side effect profile.Neuropharmacol2016110Pt A44945710.1016/j.neuropharm.2016.08.012
    [Google Scholar]
  117. FroestlW. MuhsA. PfeiferA. Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors.J. Alzheimers Dis.201232479388710.3233/JAD‑2012‑12118622886028
    [Google Scholar]
  118. GrangerK. Addressing methodological challenges in cias to enhance clinical trial success.Schizophr. Bull.201945S14110.1093/schbul/sbz022.131
    [Google Scholar]
  119. GriebelG. PichatP. PruniauxM.P. SAR110894, a potent histamine H3-receptor antagonist, displays procognitive effects in rodents.Pharmacol. Biochem. Behav.2012102220321410.1016/j.pbb.2012.04.00422542742
    [Google Scholar]
  120. DanishM. RaziaK. KolappaP.K. MohdA. Protective effects of histamine H3-receptor ligands in schizophrenic behaviors in experimental models.Pharmacol. Rep.201264119120410.1016/S1734‑1140(12)70746‑622580536
    [Google Scholar]
  121. MahmoodD. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: A current preclinical & clinical perspective.Int. J. Health Sci.201610454355410.12816/004890627833522
    [Google Scholar]
  122. OchiS. InoueS. YoshinoY. ShimizuH. IgaJ. UenoS. Efficacy of asenapine in schizophrenia resistant to clozapine combined with electroconvulsive therapy: A case report.Clin. Psychopharmacol. Neurosci.201917455956310.9758/cpn.2019.17.4.55931671497
    [Google Scholar]
  123. RehanS.T. SiddiquiA.H. KhanZ. Samidorphan/olanzapine combination therapy for schizophrenia: Efficacy, tolerance and adverse outcomes of regimen, evidence-based review of clinical trials.Ann. Med. Surg.20227910411510.1016/j.amsu.2022.10411535860157
    [Google Scholar]
  124. CitromeL. DurgamS. EdwardsJ.B. Lumateperone for the treatment of Schizophrenia.J. Clin. Psychiatry2023842325910.4088/JCP.22r1463133012872
    [Google Scholar]
  125. WangL. ZhangY. WangC. A natural product with high affinity to sigma and 5-HT7 receptors as novel therapeutic drug for negative and cognitive symptoms of schizophrenia.Neurochem. Res.201944112536254510.1007/s11064‑019‑02873‑731529334
    [Google Scholar]
  126. CardosoC. AfonsoC. BandarraN.M. Dietary DHA and health: Cognitive function ageing.Nutr. Res. Rev.201629228129410.1017/S095442241600018427866493
    [Google Scholar]
  127. BitterI. LiebermanJ.A. GaudouxF. Randomized, double-blind, placebo-controlled study of F17464, a preferential D3 antagonist, in the treatment of acute exacerbation of schizophrenia.Neuropsychopharmacology201944111917192410.1038/s41386‑019‑0355‑230822774
    [Google Scholar]
  128. FourrierC. SinghalG. BauneB.T. Neuroinflammation and cognition across psychiatric conditions.CNS Spectr.201924141510.1017/S109285291800149930714555
    [Google Scholar]
  129. ThornD.A. ZhangC. ZhangY. LiJ.X. The trace amine associated receptor 1 agonist RO5263397 attenuates the induction of cocaine behavioral sensitization in rats.Neurosci. Lett.2014566677110.1016/j.neulet.2014.02.02424561093
    [Google Scholar]
  130. MeltzerH.Y. ElkisH. VanoverK. Pimavanserin, a selective serotonin (5-HT)2A-inverse agonist, enhances the efficacy and safety of risperidone, 2mg/day, but does not enhance efficacy of haloperidol, 2mg/day: Comparison with reference dose risperidone, 6mg/day.Schizophr. Res.20121412-314415210.1016/j.schres.2012.07.02922954754
    [Google Scholar]
  131. KeefeRSE Cognitive effects of MIN-101 in patients with schizophrenia and negative symptoms: Results from a randomized controlled trial.J Clin Psychiatry201879317m1175310.4088/JCP.17m11753
    [Google Scholar]
  132. CitromeL. A review of the pharmacology, efficacy and tolerability of recently approved and upcoming oral antipsychotics: An evidence-based medicine approach.CNS Drugs2013271187991110.1007/s40263‑013‑0105‑724062193
    [Google Scholar]
  133. KaneJ.M. KinonB.J. ForrayC. Efficacy and safety of Lu AF35700 in treatment-resistant schizophrenia: A randomized, active-controlled trial with open-label extension.Schizophr. Res.202224827127810.1016/j.schres.2022.09.01236115192
    [Google Scholar]
  134. CitromeL. Cariprazine: Chemistry, pharmacodynamics, pharmacokinetics, and metabolism, clinical efficacy, safety, and tolerability.Expert Opin. Drug Metab. Toxicol.20139219320610.1517/17425255.2013.75921123320989
    [Google Scholar]
  135. GomesF.V. GraceA.A. Beyond dopamine receptor antagonism: New targets for schizophrenia treatment and prevention.Int. J. Mol. Sci.2021229446710.3390/ijms2209446733922888
    [Google Scholar]
  136. MartínezA.L. BreaJ. RicoS. de los FrailesM.T. LozaM.I. Cognitive deficit in schizophrenia: From etiology to novel treatments.Int. J. Mol. Sci.20212218990510.3390/ijms2218990534576069
    [Google Scholar]
  137. WangQ. DongX. WangY. LiX. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: A meta-analysis of randomized controlled trials.Arch. Women Ment. Health2018211314110.1007/s00737‑017‑0773‑228849318
    [Google Scholar]
  138. TsegayE.W. DemiseD.G. HailuN.A. GufueZ.H. Serotonin type 6 and 7 receptors as a novel therapeutic target for the treatment of schizophrenia.Neuropsychiatr. Dis. Treat.2020162499250910.2147/NDT.S26342433149591
    [Google Scholar]
  139. GirgisR.R. ZoghbiA.W. JavittD.C. LiebermanJ.A. The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: A critical and comprehensive review.J. Psychiatr. Res.2019108578310.1016/j.jpsychires.2018.07.00630055853
    [Google Scholar]
  140. DeianaS. HauberW. MunsterA. Pro-cognitive effects of the GlyT1 inhibitor Bitopertin in rodents.Eur. J. Pharmacol.202293517530610.1016/j.ejphar.2022.17530636183855
    [Google Scholar]
  141. PeiJ.C. LuoD.Z. GauS.S. ChangC.Y. LaiW.S. Directly and indirectly targeting the glycine modulatory site to modulate NMDA receptor function to address unmet medical needs of patients with schizophrenia.Front. Psychiatry20211274205810.3389/fpsyt.2021.74205834658976
    [Google Scholar]
  142. PillingerT. RogdakiM. McCutcheonR.A. HathwayP. EgertonA. HowesO.D. Altered glutamatergic response and functional connectivity in treatment resistant schizophrenia: the effect of riluzole and therapeutic implications.Psychopharmacology201923671985199710.1007/s00213‑019‑5188‑530820633
    [Google Scholar]
  143. WatanabeY. YamadaS. OtsuboT. KikuchiT. Brexpiprazole for the treatment of schizophrenia in adults: An overview of its clinical efficacy and safety and a psychiatrist’s perspective.Drug Des. Devel. Ther.2020145559557410.2147/DDDT.S24085933376301
    [Google Scholar]
  144. WangY. HeY. YangF. TPN672: A novel serotonin-dopamine receptor modulator for the treatment of schizophrenia.J. Pharmacol. Exp. Ther.20213781203010.1124/jpet.120.00041433975897
    [Google Scholar]
  145. OhnishiT. BalanS. ToyoshimaM. Investigation of betaine as a novel psychotherapeutic for schizophrenia.EBioMedicine20194543244610.1016/j.ebiom.2019.05.06231255657
    [Google Scholar]
  146. NairP.C. MinersJ.O. McKinnonR.A. Binding of SEP-363856 within TAAR1 and the 5HT1A receptor: Implications for the design of novel antipsychotic drugs.Mol. Psychiatry2022271889410.1038/s41380‑021‑01250‑734376825
    [Google Scholar]
  147. SmithS.M. UslanerJ.M. HutsonP.H. The therapeutic potential of D-amino acid oxidase (DAAO) inhibitors.Open Med. Chem. J.201043910.2174/187410450100402000320648222
    [Google Scholar]
  148. SinghA. Xanomeline and trospium: A potential fixed drug combination (FDC) for schizophrenia-A brief review of current data.Innov. Clin. Neurosci.20221910-12434736591549
    [Google Scholar]
  149. YangA. TsaiS.J. New targets for schizophrenia treatment beyond the dopamine hypothesis.Int. J. Mol. Sci.2017188168910.3390/ijms1808168928771182
    [Google Scholar]
  150. ChoyK.H.C. ShacklefordD.M. MaloneD.T. Positive allosteric modulation of the muscarinic M1 receptor improves efficacy of antipsychotics in mouse glutamatergic deficit models of behavior.J. Pharmacol. Exp. Ther.2016359235436510.1124/jpet.116.23578827630144
    [Google Scholar]
  151. FosterD.J. BryantZ.K. ConnP.J. Targeting muscarinic receptors to treat schizophrenia.Behav. Brain Res.202140511320110.1016/j.bbr.2021.11320133647377
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128362637250621113743
Loading
/content/journals/cpd/10.2174/0113816128362637250621113743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test