Skip to content
2000
image of Elucidating the Complex Etiology of Schizophrenia: Comprehensive Insights into the Therapeutic Roles of Natural Compounds and Pharmacological Interventions

Abstract

Schizophrenia (SCZ) remains a captivating mental disorder marked by complex symptomatology. Despite the success of the current therapeutic options for psychosis, a definitive cure remains elusive. Hence, this review explores mechanisms underlying SCZ pathophysiology, examining their potential as novel therapeutic targets. This is a narrative review of literature that has been critically analyzed following retrieval from PubMed, PubMed Central, and Google Scholar. Nearly 30% of patients of SCZ show no response to first and second-generation antipsychotic drugs and continue to suffer from cognitive and negative symptoms, including medication-induced adverse effects. Apart from the social and environmental factors, SCZ has been strongly linked to epigenetic factors and alterations in protein expression. Epigenetic modifications include histone modification and DNA methylation. Epigenetic alterations gained through environmental factors, known as molecular scars, also influence, to some extent, the brain functions throughout the life span of a human being. Epigenetic mechanisms are now recognized as significant contributors to the development and progression of SCZ. Epigenetics is critical in SCZ etiology through DNA methylation and histone modification. Herbal medicines offer promise by targeting genetic and epigenetic pathways, albeit with safety concerns. These approaches offer potential as supplementary therapies alongside conventional treatments or alternative preventive measures. By thoroughly investigating these methods, we may uncover new possibilities in SCZ care, ultimately paving the path for more effective and holistic therapeutic approaches.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128362637250621113743
2025-06-27
2025-10-14
Loading full text...

Full text loading...

References

  1. Kahn R.S. Sommer I.E. Murray R.M. Schizophrenia. Nat. Rev. Dis. Primers 2015 1 1 15067 10.1038/nrdp.2015.67 27189524
    [Google Scholar]
  2. Mosolov S.N. Yaltonskaya P.A. Primary and secondary negative symptoms in Schizophrenia. Front. Psychiatry 2022 12 766692 10.3389/fpsyt.2021.766692 35046851
    [Google Scholar]
  3. Kaleem M. miRNA dysregulation in schizophrenia 2012 117 44
  4. Fu X. Liu Y. Baranova A. Zhang F. Deregulatory miRNA-BDNF network inferred from dynamic expression changes in schizophrenia. Brain Sci. 2022 12 2 167 10.3390/brainsci12020167 35203931
    [Google Scholar]
  5. Schizophrenia World Health Organization (WHO) [cited 2022 Jan 10]. Available from: www.who.int/news-room/fact-sheets/detail/schizophrenia
    [Google Scholar]
  6. Loganathan S. Murthy R.S. Living with schizophrenia in India: Gender perspectives. Transcult. Psychiatry 2011 48 5 569 584 10.1177/1363461511418872 22123834
    [Google Scholar]
  7. Catts S.V. O’Toole B.I. The treatment of schizophrenia: Can we raise the standard of care? Aust. N. Z. J. Psychiatry 2016 50 12 1128 1138 10.1177/0004867416672725 27821411
    [Google Scholar]
  8. Ojagbemi A. Chiliza B. Bello T. Spontaneous and emergent extrapyramidal syndromes in Black Africans with first-episode schizophrenia and first exposure to antipsychotics. J. Ment. Health 2021 30 2 240 245 10.1080/09638237.2020.1739242 32169007
    [Google Scholar]
  9. Laursen T.M. Nordentoft M. Mortensen P.B. Excess early mortality in schizophrenia. Annu. Rev. Clin. Psychol. 2014 10 1 425 448 10.1146/annurev‑clinpsy‑032813‑153657 24313570
    [Google Scholar]
  10. Khavari B. Cairns M.J. Epigenomic dysregulation in schizophrenia: In search of disease etiology and biomarkers. Cells 2020 9 8 1837 10.3390/cells9081837 32764320
    [Google Scholar]
  11. Richetto J. Meyer U. Epigenetic modifications in schizophrenia and related disorders: Molecular scars of environmental exposures and source of phenotypic variability. Biol. Psychiatry 2021 89 3 215 226 10.1016/j.biopsych.2020.03.008 32381277
    [Google Scholar]
  12. Thomas K.T. Zakharenko S.S. MicroRNAs in the onset of Schizophrenia. Cells 2021 10 10 2679 10.3390/cells10102679 34685659
    [Google Scholar]
  13. Chaiyakunapruk N. Chong H.Y. Teoh S.L. Wu D.B-C. Kotirum S. Chiou C-F. Global economic burden of schizophrenia: A systematic review. Neuropsychiatr. Dis. Treat. 2016 12 357 373 10.2147/NDT.S96649 26937191
    [Google Scholar]
  14. Dachani S.R. Kaleem M. Mujtaba M.A. A comprehensive review of various therapeutic strategies for the management of skin cancer. ACS Omega 2024 9 9 10030 10048 10.1021/acsomega.3c09780 38463249
    [Google Scholar]
  15. Snyder M.A. Gao W.J. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr. Res. 2020 217 60 70 10.1016/j.schres.2019.03.010 30979669
    [Google Scholar]
  16. Lisoway A.J. Chen C.C. Zai C.C. Tiwari A.K. Kennedy J.L. Toward personalized medicine in schizophrenia: Genetics and epigenetics of antipsychotic treatment. Schizophr. Res. 2021 232 112 124 10.1016/j.schres.2021.05.010 34049235
    [Google Scholar]
  17. Montague-Cardoso K. Identifying therapeutic targets for schizophrenia. Commun. Biol. 2021 4 1 742 10.1038/s42003‑021‑02270‑3 34112930
    [Google Scholar]
  18. Voisey J. Mehta D. McLeay R. Clinically proven drug targets differentially expressed in the prefrontal cortex of schizophrenia patients. Brain Behav. Immun. 2017 61 259 265 10.1016/j.bbi.2016.12.006 27940260
    [Google Scholar]
  19. Ahmed S. Roth R.M. Stanciu C.N. Brunette M.F. The impact of THC and CBD in Schizophrenia: A systematic review. Front. Psychiatry 2021 12 694394 10.3389/fpsyt.2021.694394 34366924
    [Google Scholar]
  20. Breier A. Buchanan R.W. D’Souza D. Herpes simplex virus 1 infection and valacyclovir treatment in schizophrenia: Results from the VISTA study. Schizophr. Res. 2019 206 291 299 10.1016/j.schres.2018.11.002 30478008
    [Google Scholar]
  21. Cheslack-Postava K. Brown A.S. Prenatal infection and schizophrenia: A decade of further progress. Schizophr. Res. 2022 247 7 15 10.1016/j.schres.2021.05.014 34016508
    [Google Scholar]
  22. Stilo S.A. Murray R.M. Non-genetic factors in schizophrenia. Curr. Psychiatry Rep. 2019 21 10 100 10.1007/s11920‑019‑1091‑3 31522306
    [Google Scholar]
  23. Nosarti C. Reichenberg A. Murray R.M. Preterm birth and psychiatric disorders in young adult life. Arch. Gen. Psychiatry 2012 69 6 E1 E8 10.1001/archgenpsychiatry.2011.1374 22660967
    [Google Scholar]
  24. Popovic D. Schmitt A. Kaurani L. Childhood trauma in schizophrenia: Current findings and research perspectives. Front. Neurosci. 2019 13 274 10.3389/fnins.2019.00274 30983960
    [Google Scholar]
  25. Stilo S.A. Gayer-Anderson C. Beards S. Further evidence of a cumulative effect of social disadvantage on risk of psychosis. Psychol. Med. 2017 47 5 913 924 10.1017/S0033291716002993 27916012
    [Google Scholar]
  26. Henssler J. Brandt L. Müller M. Migration and schizophrenia: Meta-analysis and explanatory framework. Eur. Arch. Psychiatry Clin. Neurosci. 2020 270 3 325 335 10.1007/s00406‑019‑01028‑7 31161262
    [Google Scholar]
  27. Cui X. McGrath J.J. Burne T.H.J. Eyles D.W. Vitamin D and schizophrenia: 20 years on. Mol. Psychiatry 2021 26 7 2708 2720 10.1038/s41380‑021‑01025‑0 33500553
    [Google Scholar]
  28. Sara G.E. Large M.M. Matheson S.L. Stimulant use disorders in people with psychosis: A meta-analysis of rate and factors affecting variation. Aust. N. Z. J. Psychiatry 2015 49 2 106 117 10.1177/0004867414561526 25518844
    [Google Scholar]
  29. Howes O.D. Murray R.M. Schizophrenia: An integrated sociodevelopmental-cognitive model. Lancet 2014 383 9929 1677 1687 10.1016/S0140‑6736(13)62036‑X 24315522
    [Google Scholar]
  30. Kumar J. Liddle E.B. Fernandes C.C. Glutathione and glutamate in schizophrenia: A 7T MRS study. Mol. Psychiatry 2020 25 4 873 882 10.1038/s41380‑018‑0104‑7 29934548
    [Google Scholar]
  31. Lewerenz J. Hewett S.J. Huang Y. The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal. 2013 18 5 522 555 10.1089/ars.2011.4391 22667998
    [Google Scholar]
  32. Hung C.C. Lin C.H. Lane H.Y. Cystine/glutamate antiporter in schizophrenia: From molecular mechanism to novel biomarker and treatment. Int. J. Mol. Sci. 2021 22 18 9718 10.3390/ijms22189718 34575878
    [Google Scholar]
  33. Massie A. Boillée S. Hewett S. Knackstedt L. Lewerenz J. Main path and byways: Non‐vesicular glutamate release by system x c− as an important modifier of glutamatergic neurotransmission. J. Neurochem. 2015 135 6 1062 1079 10.1111/jnc.13348 26336934
    [Google Scholar]
  34. Wahbeh M.H. Avramopoulos D. Gene-environment interactions in schizophrenia: A literature review. Genes 2021 12 12 1850 10.3390/genes12121850 34946799
    [Google Scholar]
  35. Dickerson F. Schroeder J.R. Nimgaonkar V. Gold J. Yolken R. The association between exposure to herpes simplex virus type 1 (HSV-1) and cognitive functioning in schizophrenia: A meta-analysis. Psychiatry Res. 2020 291 113157 10.1016/j.psychres.2020.113157 32593064
    [Google Scholar]
  36. Banerjee D. Viswanath B. Neuropsychiatric manifestations of COVID-19 and possible pathogenic mechanisms: Insights from other coronaviruses. Asian J. Psychiatr. 2020 54 102350 10.1016/j.ajp.2020.102350
    [Google Scholar]
  37. Tripathy S. Singh N. Singh A. Kar S.K. COVID-19 and psychotic symptoms: The view from psychiatric immunology. Curr. Behav. Neurosci. Rep. 2021 8 4 172 178 10.1007/s40473‑021‑00235‑8 34631364
    [Google Scholar]
  38. Kaleem M. Perwaiz M. Nur S.M. Epigenetics of triple-negative breast cancer via natural compounds. Curr. Med. Chem. 2022 29 8 1436 1458 10.2174/0929867328666210707165530 34238140
    [Google Scholar]
  39. Harvey Z.H. Chen Y. Jarosz D.F. Protein-based inheritance: Epigenetics beyond the chromosome. Mol. Cell 2018 69 2 195 202 10.1016/j.molcel.2017.10.030 29153393
    [Google Scholar]
  40. Shorter K.R. Miller B.H. Epigenetic mechanisms in schizophrenia. Mol. Neuropsychiatry 2019 5 1 6 12 10.1016/j.pbiomolbio.2015.04.008 31019914
    [Google Scholar]
  41. Karacetin G. Bayoglu B. Eseroglu Soylemez T. BDNF Val66Met polymorphism is associated with negative symptoms in early-onset schizophrenia spectrum and other psychotic disorders. Eur. J. Psychiatry 2022 36 1 26 34 10.1016/j.ejpsy.2021.04.002
    [Google Scholar]
  42. Yang Y. Zhang L. Guo D. Association of DTNBP1 With Schizophrenia: Findings From Two Independent Samples Of Han Chinese Population. Front. Psychiatry 2020 11 446 10.3389/fpsyt.2020.00446 32581860
    [Google Scholar]
  43. Xu M. Wong A.H.C. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol. Sin. 2018 39 5 733 753 10.1038/aps.2017.172 29565038
    [Google Scholar]
  44. Hashimoto T. Arion D. Unger T. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol. Psychiatry 2008 13 2 147 161 10.1038/sj.mp.4002011 17471287
    [Google Scholar]
  45. Purves-Tyson T.D. Brown A.M. Weissleder C. Rothmond D.A. Shannon Weickert C. Reductions in midbrain GABAergic and dopamine neuron markers are linked in schizophrenia. Mol. Brain 2021 14 1 96 10.1186/s13041‑021‑00805‑7 34174930
    [Google Scholar]
  46. Belforte J.E. Zsiros V. Sklar E.R. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 2010 13 1 76 83 10.1038/nn.2447 19915563
    [Google Scholar]
  47. Nahar L. Delacroix B.M. Nam H.W. The role of parvalbumin interneurons in neurotransmitter balance and neurological disease. Front. Psychiatry 2021 12 679960 10.3389/fpsyt.2021.679960 34220586
    [Google Scholar]
  48. Metzner C. Zurowski B. Steuber V. The role of parvalbumin-positive interneurons in auditory steady-state response deficits in schizophrenia. Sci. Rep. 2019 9 1 18525 10.1038/s41598‑019‑53682‑5 31811155
    [Google Scholar]
  49. Guo J.U. Su Y. Zhong C. Ming G. Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011 145 3 423 434 10.1016/j.cell.2011.03.022 21496894
    [Google Scholar]
  50. Grayson D.R. Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 2013 38 1 138 166 10.1038/npp.2012.125 22948975
    [Google Scholar]
  51. Kato T. Iwamoto K. Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders. Neuropharmacology 2014 80 133 139 10.1016/j.neuropharm.2013.12.019 24389572
    [Google Scholar]
  52. Negrón-Oyarzo I. Lara-Vásquez A. Palacios-García I. Fuentealba P. Aboitiz F. Schizophrenia and reelin: A model based on prenatal stress to study epigenetics, brain development and behavior. Biol. Res. 2016 49 1 16 10.1186/s40659‑016‑0076‑5 26968981
    [Google Scholar]
  53. Lott S.A. Burghardt P.R. Burghardt K.J. Bly M.J. Grove T.B. Ellingrod V.L. The influence of metabolic syndrome, physical activity and genotype on catechol-O-methyl transferase promoter-region methylation in schizophrenia. Pharmacogenomics J. 2013 13 3 264 271 10.1038/tpj.2012.6 22391769
    [Google Scholar]
  54. Gavin D.P. Akbarian S. Epigenetic and post-transcriptional dysregulation of gene expression in schizophrenia and related disease. Neurobiol. Dis. 2012 46 2 255 262 10.1016/j.nbd.2011.12.008 22182689
    [Google Scholar]
  55. Dempster E.L. Pidsley R. Schalkwyk L.C. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum. Mol. Genet. 2011 20 24 4786 4796 10.1093/hmg/ddr416 21908516
    [Google Scholar]
  56. Bayraktar G. Kreutz M.R. Neuronal DNA methyltransferases: Epigenetic mediators between synaptic activity and gene expression? Neuroscientist 2018 24 2 171 185 10.1177/1073858417707457 28513272
    [Google Scholar]
  57. Kaleem M. Thool M. Dumore N.G. Management of triple-negative breast cancer by natural compounds through different mechanistic pathways. Front. Genet. 2024 15 1440430 10.3389/fgene.2024.1440430 39130753
    [Google Scholar]
  58. Kaleem M. Kayali A. Sheikh R.A. In vitro and in vivo preventive effects of thymoquinone against breast cancer: Role of DNMT1. Molecules 2024 29 2 434 10.3390/molecules29020434 38257347
    [Google Scholar]
  59. Omran Z.H. Dalhat M. Abdullah O. Targeting post-translational modifications of the p73 protein: A promising therapeutic strategy for tumors. Cancers 2021 13 8 1916 10.3390/cancers13081916 33921128
    [Google Scholar]
  60. Chen X. Xu J. Li B. Guo W. Zhang J. Hu J. Olfactory impairment in first-episode schizophrenia: A case-control study, and sex dimorphism in the relationship between olfactory impairment and psychotic symptoms. BMC Psychiatry 2018 18 1 199 10.1186/s12888‑018‑1786‑8 29914416
    [Google Scholar]
  61. Chase K.A. Gavin D.P. Guidotti A. Sharma R.P. Histone methylation at H3K9: Evidence for a restrictive epigenome in schizophrenia. Schizophr. Res. 2013 149 1-3 15 20 10.1016/j.schres.2013.06.021 23815974
    [Google Scholar]
  62. Ibi D. González-Maeso J. Epigenetic signaling in schizophrenia. Cell. Signal. 2015 27 10 2131 2136 10.1016/j.cellsig.2015.06.003 26120009
    [Google Scholar]
  63. Venugopal D. Shivakumar V. Subbanna M. Impact of antipsychotic treatment on methylation status of Interleukin-6 [IL-6] gene in Schizophrenia. J. Psychiatr. Res. 2018 104 88 95 10.1016/j.jpsychires.2018.07.002 30005373
    [Google Scholar]
  64. Ryu H.Y. Hochstrasser M. Histone sumoylation and chromatin dynamics. Nucleic Acids Res. 2021 49 11 6043 6052 10.1093/nar/gkab280 33885816
    [Google Scholar]
  65. Lee H.T. Oh S. Ro D.H. Yoo H. Kwon Y.W. The key role of DNA methylation and histone acetylation in epigenetics of atherosclerosis. J. Lipid Atheroscler. 2020 9 3 419 434 10.12997/jla.2020.9.3.419 33024734
    [Google Scholar]
  66. Kaleem M. Epigenetic basis of polyphenols in cancer prevention and therapy. In:Polyphenols-based Nanotherapeutics for Cancer Management. Singapore Springer 2021 10.1007/978‑981‑16‑4935‑6_6
    [Google Scholar]
  67. Xavier M.J. Roman S.D. Aitken R.J. Nixon B. Transgenerational inheritance: How impacts to the epigenetic and genetic information of parents affect offspring health. Hum. Reprod. Update 2019 25 5 519 541 10.1093/humupd/dmz017 31374565
    [Google Scholar]
  68. Guan J.S. Haggarty S.J. Giacometti E. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009 459 7243 55 60 10.1038/nature07925 19424149
    [Google Scholar]
  69. Hollins S.L. Zavitsanou K. Walker F.R. Cairns M.J. Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure. Transl. Psychiatry 2014 4 9 e452 10.1038/tp.2014.99 25268256
    [Google Scholar]
  70. Wockner L.F. Noble E.P. Lawford B.R. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl. Psychiatry 2014 4 1 e339 10.1038/tp.2013.111 24399042
    [Google Scholar]
  71. Wockner L.F. Morris C.P. Noble E.P. Brain-specific epigenetic markers of schizophrenia. Transl. Psychiatry 2015 5 11 e680 10.1038/tp.2015.177 26575221
    [Google Scholar]
  72. Rice M.W. Smith K.L. Roberts R.C. Perez-Costas E. Melendez-Ferro M. Assessment of cytochrome C oxidase dysfunction in the substantia nigra/ventral tegmental area in schizophrenia. PLoS One 2014 9 6 e100054 10.1371/journal.pone.0100054 24941246
    [Google Scholar]
  73. Ni P. Chung S. Mitochondrial Dysfunction in Schizophrenia. BioEssays 2020 42 6 1900202 10.1002/bies.201900202 32338416
    [Google Scholar]
  74. Gandal M.J. Zhang P. Hadjimichael E. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018 362 6420 eaat8127 10.1126/science.aat8127 30545856
    [Google Scholar]
  75. Benson M.A. Tinsley C.L. Waite A.J. Ryanodine receptors are part of the myospryn complex in cardiac muscle. Sci. Rep. 2017 7 1 6312 10.1038/s41598‑017‑06395‑6 28740084
    [Google Scholar]
  76. van Kesteren C F MG. Gremmels H. de Witte L.D. Immune involvement in the pathogenesis of schizophrenia: A meta-analysis on postmortem brain studies. Transl. Psychiatry 2017 7 3 e1075 10.1038/tp.2017.4 28350400
    [Google Scholar]
  77. Hwang Y. Kim J. Shin J-Y. Gene expression profiling by mRNA sequencing reveals increased expression of immune/] inflammation-related genes in the hippocampus of individuals with schizophrenia. Transl. Psychiatry 2013 3 10 e321 10.1038/tp.2013.94 24169640
    [Google Scholar]
  78. Stark T. Ruda-Kucerova J. Iannotti F.A. Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology 2019 146 212 221 10.1016/j.neuropharm.2018.11.035 30496751
    [Google Scholar]
  79. Gulchina Y. Xu S.J. Snyder M.A. Elefant F. Gao W.J. Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia. J. Neurochem. 2017 143 3 320 333 10.1111/jnc.14101 28628228
    [Google Scholar]
  80. Su Y. Lian J. Chen S. Zhang W. Deng C. Epigenetic histone acetylation modulating prenatal Poly I:C induced neuroinflammation in the prefrontal cortex of rats: A study in a maternal immune activation model. Front. Cell. Neurosci. 2022 16 1037105 10.3389/fncel.2022.1037105 36519081
    [Google Scholar]
  81. Emsley R. Chiliza B. Asmal L. Harvey B.H. The nature of relapse in schizophrenia. BMC Psychiatry 2013 13 1 50 10.1186/1471‑244X‑13‑50 23394123
    [Google Scholar]
  82. Leonard B.E. Schwarz M. Myint A.M. The metabolic syndrome in schizophrenia: is inflammation a contributing cause? J. Psychopharmacol. 2012 26 (5_suppl) 33 41 (Suppl.) 10.1177/0269881111431622 22472311
    [Google Scholar]
  83. Alphs L. Nasrallah H.A. Bossie C.A. Factors associated with relapse in schizophrenia despite adherence to long-acting injectable antipsychotic therapy. Int. Clin. Psychopharmacol. 2016 31 4 202 209 10.1097/YIC.0000000000000125 26974214
    [Google Scholar]
  84. Infantino V. Pappalardo I. Santarsiero A. Tripathi S. Singh G. de Oliveira M.R. Brain mitochondria as a therapeutic target for carnosic acid. J. Integr. Neurosci. 2024 23 3 53 10.31083/j.jin2303053 38538219
    [Google Scholar]
  85. Ojagbemi A. Gureje O. The klhizophrenia. Curr. Psychiatry Rep. 2020 22 12 71 10.1007/s11920‑020‑01196‑7 33089431
    [Google Scholar]
  86. Paul B.D. Snyder S.H. Therapeutic applications of cysteamine and cystamine in neurodegenerative and neuropsychiatric diseases. Front. Neurol. 2019 10 1315 10.3389/fneur.2019.01315 31920936
    [Google Scholar]
  87. Yoshimura R. Hori H. Katsuki A. Atake K. Nakamura J. Serum levels of brain-derived neurotrophic factor (BDNF), proBDNF and plasma 3-methoxy-4-hydroxyphenylglycol levels in chronic schizophrenia. Ann. Gen. Psychiatry 2016 15 1 1 10.1186/s12991‑015‑0084‑9 26770258
    [Google Scholar]
  88. Singh J. Verma R. Raghav R. Sarkar S. Sood M. Jain R. Brain-derived neurotrophic factor (BDNF) levels in first-episode schizophrenia and healthy controls: A comparative study. Asian J. Psychiatr. 2020 54 102370 10.1016/j.ajp.2020.102370 33271690
    [Google Scholar]
  89. Lopes Sakamoto F. Metzker Pereira Ribeiro R. Amador Bueno A. Oliveira Santos H. Psychotropic effects of L-theanine and its clinical properties: From the management of anxiety and stress to a potential use in schizophrenia. Pharmacol. Res. 2019 147 104395 10.1016/j.phrs.2019.104395 31412272
    [Google Scholar]
  90. Al-Nema M. Gaurav A. Akowuah G. Discovery of natural product inhibitors of phosphodiesterase 10A as novel therapeutic drug for schizophrenia using a multistep virtual screening. Comput. Biol. Chem. 2018 77 52 63 10.1016/j.compbiolchem.2018.09.001 30240986
    [Google Scholar]
  91. Cao YL Zhu L Zhang H et al Total barley maiya alkaloids prevent increased prolactin levels caused by antipsychotic drugs and reduce dopamine receptor D2 via epigenetic mechanisms. Front. Pharmacol. 2022 13 888522 10.3389/fphar.2022.888522 35865960
    [Google Scholar]
  92. Piyabhan P Wetchateng T. Bacopa monnieri (Brahmi) enhanced cognitive function and prevented cognitive impairment by increasing VGLUT2 immunodensity in prefrontal cortex of sub-chronic phencyclidine rat model of schizophrenia. J Med Assoc Thai 2015 98 S7-S15 (Suppl. 3) 26387382
    [Google Scholar]
  93. Sakamoto S. Ujike H. Takaki M. Adjunctive yokukansan treatment improved cognitive functions in a patient with schizophrenia. J. Neuropsychiatry Clin. Neurosci. 2013 25 3 E39 E40 10.1176/appi.neuropsych.12070166 24026738
    [Google Scholar]
  94. Takashi T. Uchida H. Suzuki T. Mimura M. Effectiveness of saikokaryukotsuboreito (herbal medicine) for antipsychotic-induced sexual dysfunction in male patients with schizophrenia: A description of two cases. Case Rep. Psychiatry 2014 2014 1 3 10.1155/2014/784671 24587934
    [Google Scholar]
  95. Zhang X.Y. Zhou D.F. Cao L.Y. Wu G.Y. The effects of Ginkgo biloba extract added to haloperidol on peripheral T cell subsets in drug-free schizophrenia: A double-blind, placebo-controlled trial. Psychopharmacology 2006 188 1 12 17 10.1007/s00213‑006‑0476‑2 16906395
    [Google Scholar]
  96. Oh H.K. Park S.J. Bae S.G. Kami-ondam-tang, a traditional herbal prescription, attenuates the prepulse inhibition deficits and cognitive impairments induced by MK-801 in mice. J. Ethnopharmacol. 2013 146 2 600 607 10.1016/j.jep.2013.01.032 23376282
    [Google Scholar]
  97. Xu Y. Lian Y. Li J. KangPiLao decoction modulates cognitive and emotional disorders in rats with central fatigue through the GABA/Glu pathway. Front. Pharmacol. 2022 13 939169 10.3389/fphar.2022.939169 36120289
    [Google Scholar]
  98. Furuya M. Miyaoka T. Tsumori T. Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat. J. Neuroinflammation 2013 10 1 909 10.1186/1742‑2094‑10‑145 24305622
    [Google Scholar]
  99. Ahmed M.N. Kabidul Azam M.N. Traditional knowledge and formulations of medicinal plants used by the traditional medical practitioners of bangladesh to treat schizophrenia like psychosis. Schizophr. Res. Treatment 2014 2014 1 10 10.1155/2014/679810 25101175
    [Google Scholar]
  100. Mahmood D. Alenezi S.K. Anwar M.J. Azam F. Qureshi K.A. Jaremko M. New paradigms of old psychedelics in schizophrenia. Pharmaceuticals 2022 15 5 640 10.3390/ph15050640 35631466
    [Google Scholar]
  101. Lee J.G. Shin B.S. Lee Y.C. Park S.W. Kim Y.H. Clinical effectiveness of the Kampo medicine kamishoyosan for adjunctive treatment of tardive dyskinesia in patients with schizophrenia: A 16‐week open trial. Psychiatry Clin. Neurosci. 2007 61 5 509 514 10.1111/j.1440‑1819.2007.01700.x 17875029
    [Google Scholar]
  102. Guo X. Chen Z.H. Wang H.L. WSKY, a traditional Chinese decoction, rescues cognitive impairment associated with NMDA receptor antagonism by enhancing BDNF/ERK/CREB signaling. Mol. Med. Rep. 2015 11 4 2927 2934 10.3892/mmr.2014.3086 25503442
    [Google Scholar]
  103. Koo B. Bae H.J. Goo N. A botanical drug composed of three herbal materials attenuates the sensorimotor gating deficit and cognitive impairment induced by MK-801 in mice. J. Pharm. Pharmacol. 2020 72 1 149 160 10.1111/jphp.13199 31713882
    [Google Scholar]
  104. Grizzell J.A. Patel S. Barreto G.E. Echeverria V. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017 78 75 81 10.1016/j.pnpbp.2017.05.010 28536070
    [Google Scholar]
  105. Nair V. Arjuman A. Dorababu P. Gopalakrishna H.N. Chakradhar Rao U. Mohan L. Effect of NR-ANX-C (a polyherbal formulation) on haloperidol induced catalepsy in albino mice. Indian J. Med. Res. 2007 126 5 480 484 [PMID: 18160755
    [Google Scholar]
  106. Topyurek M. Tibbo P.G. Good K. Regular caffeine intake in patients with schizophrenia: Cognition and symptomatology. Clin. Schizophr. Relat. Psychoses 2020 14 1 19 24 10.3371/CSRP.TMTP.092520
    [Google Scholar]
  107. Lee M.R. Yun B.S. Park S.Y. Anti-amnesic effect of Chong–Myung–Tang on scopolamine-induced memory impairments in mice. J. Ethnopharmacol. 2010 132 1 70 74 10.1016/j.jep.2010.07.041 20673844
    [Google Scholar]
  108. Shin B.Y. Ameliorating effect of a herbal medicinal prescription, Kyung-Ok-Ko, on scopolamine-induced memory impairment in mice. J. Tradit. Med. 2009 138 3 723 730 10.11339/jtm.26.35
    [Google Scholar]
  109. Mendhi S.M. Ghoti M.S. Thool M.A. Tekade R.M. A review: In – silico approaches in predictive toxicology. Int. J. Pharm. Sci. Rev. Res. 2021 70 2 91 109 10.47583/ijpsrr.2021.v70i02.012
    [Google Scholar]
  110. Fatima U. Roy S. Ahmad S. Pharmacological attributes of Bacopa monnieri extract: Current updates and clinical manifestation. Front. Nutr. 2022 9 972379 10.3389/fnut.2022.972379 36061899
    [Google Scholar]
  111. Wang L. Han X. Zheng X. Ginsenoside 20(S)-Rg3 upregulates tumor suppressor VHL gene expression by suppressing DNMT3A-mediated promoter methylation in ovarian cancer cells. Nan Fang Yi Ke Da Xue Xue Bao 2021 41 1 100 106 10.12122/j.issn.1673‑4254.2021.01.14 33509760
    [Google Scholar]
  112. Oliveira D. Johansson B. Oliveira R. Ginkgo biloba, DNA damage and DNA repair: Overview. In:Handbook of Nutrition, Diet, and Epigenetics. Cham Springer 2019 1997 2015 10.1007/978‑3‑319‑55530‑0_11
    [Google Scholar]
  113. Fang M. Chen D. Yang C.S. Dietary polyphenols may affect DNA methylation. J. Nutr. 2007 137 1 223S 228S (Suppl.) 10.1093/jn/137.1.223S 17182830
    [Google Scholar]
  114. Ebisawa S. Andoh T. Shimada Y. Kuraishi Y. Yokukansan improves mechanical allodynia through the regulation of interleukin-6 expression in the spinal cord in mice with neuropathic pain. Evid. Based Complement. Alternat. Med. 2015 2015 1 8 10.1155/2015/870687 25866544
    [Google Scholar]
  115. Ritsner M.S. Miodownik C. Ratner Y. L-theanine relieves positive, activation, and anxiety symptoms in patients with schizophrenia and schizoaffective disorder: An 8-week, randomized, double-blind, placebo-controlled, 2-center study. J. Clin. Psychiatry 2011 72 1 34 42 10.4088/JCP.09m05324gre 21208586
    [Google Scholar]
  116. Masilamoni G J Uthayathas S Koenig G Leventhal L Papa S M Effects of a novel phosphodiesterase 10A inhibitor in non-human primates: A therapeutic approach for schizophrenia with improved side effect profile. Neuropharmacol 2016 110 (Pt A) 449 57 10.1016/j.neuropharm.2016.08.012
    [Google Scholar]
  117. Froestl W. Muhs A. Pfeifer A. Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors. J. Alzheimers Dis. 2012 32 4 793 887 10.3233/JAD‑2012‑121186 22886028
    [Google Scholar]
  118. Granger K. Concurrent symposia S141 32. addressing methodological challenges in cias to enhance clinical trial success 32. 2 two global phase iii trials of encenicline for cognitive impairment in chronic schizophrenia patients: Red flags and lessons learned a bri. Schizophr. Bull. 2019 45 S141 (Suppl. 2) 10.1093/schbul/sbz022.131
    [Google Scholar]
  119. Griebel G. Pichat P. Pruniaux M.P. SAR110894, a potent histamine H3-receptor antagonist, displays procognitive effects in rodents. Pharmacol. Biochem. Behav. 2012 102 2 203 214 10.1016/j.pbb.2012.04.004 22542742
    [Google Scholar]
  120. Danish M. Razia K. Krishna Kolappa P. Mohd A. Protective effects of histamine H3-receptor ligands in schizophrenic behaviors in experimental models. Pharmacol. Rep. 2012 64 1 191 204 10.1016/S1734‑1140(12)70746‑6 22580536
    [Google Scholar]
  121. Mahmood D. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: A current preclinical & clinical perspective. Int. J. Health Sci. 2016 10 4 543 554 10.12816/0048906 27833522
    [Google Scholar]
  122. Ochi S. Inoue S. Yoshino Y. Shimizu H. Iga J. Ueno S. Efficacy of asenapine in schizophrenia resistant to clozapine combined with electroconvulsive therapy: A case report. Clin. Psychopharmacol. Neurosci. 2019 17 4 559 563 10.9758/cpn.2019.17.4.559 31671497
    [Google Scholar]
  123. Rehan S.T. Siddiqui A.H. Khan Z. Samidorphan/olanzapine combination therapy for schizophrenia: Efficacy, tolerance and adverse outcomes of regimen, evidence-based review of clinical trials. Ann. Med. Surg. 2022 79 104115 10.1016/j.amsu.2022.104115 35860157
    [Google Scholar]
  124. Citrome L. Durgam S. Edwards J.B. Lumateperone for the treatment of Schizophrenia. J. Clin. Psychiatry 2023 84 2 32 59 10.4088/JCP.22r14631 33012872
    [Google Scholar]
  125. Wang L. Zhang Y. Wang C. A natural product with high affinity to sigma and 5-HT7 receptors as novel therapeutic drug for negative and cognitive symptoms of schizophrenia. Neurochem. Res. 2019 44 11 2536 2545 10.1007/s11064‑019‑02873‑7 31529334
    [Google Scholar]
  126. Cardoso C. Afonso C. Bandarra N.M. Dietary DHA and health: Cognitive function ageing. Nutr. Res. Rev. 2016 29 2 281 294 10.1017/S0954422416000184 27866493
    [Google Scholar]
  127. Bitter I. Lieberman J.A. Gaudoux F. Randomized, double-blind, placebo-controlled study of F17464, a preferential D3 antagonist, in the treatment of acute exacerbation of schizophrenia. Neuropsychopharmacology 2019 44 11 1917 1924 10.1038/s41386‑019‑0355‑2 30822774
    [Google Scholar]
  128. Fourrier C. Singhal G. Baune B.T. Neuroinflammation and cognition across psychiatric conditions. CNS Spectr. 2019 24 1 4 15 10.1017/S1092852918001499 30714555
    [Google Scholar]
  129. Thorn D.A. Zhang C. Zhang Y. Li J.X. The trace amine associated receptor 1 agonist RO5263397 attenuates the induction of cocaine behavioral sensitization in rats. Neurosci. Lett. 2014 566 67 71 10.1016/j.neulet.2014.02.024 24561093
    [Google Scholar]
  130. Meltzer H.Y. Elkis H. Vanover K. Pimavanserin, a selective serotonin (5-HT)2A-inverse agonist, enhances the efficacy and safety of risperidone, 2mg/day, but does not enhance efficacy of haloperidol, 2mg/day: Comparison with reference dose risperidone, 6mg/day. Schizophr. Res. 2012 141 2-3 144 152 10.1016/j.schres.2012.07.029 22954754
    [Google Scholar]
  131. Keefe R S E Cognitive effects of MIN-101 in patients with schizophrenia and negative symptoms: Results from a randomized controlled trial. J Clin Psychiatry 2018 79 3 17m11753 10.4088/JCP.17m11753
    [Google Scholar]
  132. Citrome L. A review of the pharmacology, efficacy and tolerability of recently approved and upcoming oral antipsychotics: An evidence-based medicine approach. CNS Drugs 2013 27 11 879 911 10.1007/s40263‑013‑0105‑7 24062193
    [Google Scholar]
  133. Kane J.M. Kinon B.J. Forray C. Efficacy and safety of Lu AF35700 in treatment-resistant schizophrenia: A randomized, active-controlled trial with open-label extension. Schizophr. Res. 2022 248 271 278 10.1016/j.schres.2022.09.012 36115192
    [Google Scholar]
  134. Citrome L. Cariprazine: Chemistry, pharmacodynamics, pharmacokinetics, and metabolism, clinical efficacy, safety, and tolerability. Expert Opin. Drug Metab. Toxicol. 2013 9 2 193 206 10.1517/17425255.2013.759211 23320989
    [Google Scholar]
  135. Gomes F.V. Grace A.A. Beyond dopamine receptor antagonism: New targets for schizophrenia treatment and prevention. Int. J. Mol. Sci. 2021 22 9 4467 10.3390/ijms22094467 33922888
    [Google Scholar]
  136. Martínez A.L. Brea J. Rico S. de los Frailes M.T. Loza M.I. Cognitive deficit in schizophrenia: From etiology to novel treatments. Int. J. Mol. Sci. 2021 22 18 9905 10.3390/ijms22189905 34576069
    [Google Scholar]
  137. Wang Q. Dong X. Wang Y. Li X. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: A meta-analysis of randomized controlled trials. Arch. Women Ment. Health 2018 21 1 31 41 10.1007/s00737‑017‑0773‑2 28849318
    [Google Scholar]
  138. Tsegay E.W. Demise D.G. Hailu N.A. Gufue Z.H. Serotonin type 6 and 7 receptors as a novel therapeutic target for the treatment of Schizophrenia. Neuropsychiatr. Dis. Treat. 2020 16 2499 2509 10.2147/NDT.S263424 33149591
    [Google Scholar]
  139. Girgis R.R. Zoghbi A.W. Javitt D.C. Lieberman J.A. The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: A critical and comprehensive review. J. Psychiatr. Res. 2019 108 57 83 10.1016/j.jpsychires.2018.07.006 30055853
    [Google Scholar]
  140. Deiana S. Hauber W. Munster A. Pro-cognitive effects of the GlyT1 inhibitor Bitopertin in rodents. Eur. J. Pharmacol. 2022 935 175306 10.1016/j.ejphar.2022.175306 36183855
    [Google Scholar]
  141. Pei J.C. Luo D.Z. Gau S.S. Chang C.Y. Lai W.S. Directly and indirectly targeting the glycine modulatory site to modulate NMDA receptor function to address unmet medical needs of patients with schizophrenia. Front. Psychiatry 2021 12 742058 10.3389/fpsyt.2021.742058 34658976
    [Google Scholar]
  142. Pillinger T. Rogdaki M. McCutcheon R.A. Hathway P. Egerton A. Howes O.D. Altered glutamatergic response and functional connectivity in treatment resistant schizophrenia: the effect of riluzole and therapeutic implications. Psychopharmacology 2019 236 7 1985 1997 10.1007/s00213‑019‑5188‑5 30820633
    [Google Scholar]
  143. Watanabe Y. Yamada S. Otsubo T. Kikuchi T. Brexpiprazole for the treatment of schizophrenia in adults: An overview of its clinical efficacy and safety and a psychiatrist’s perspective. Drug Des. Devel. Ther. 2020 14 5559 5574 10.2147/DDDT.S240859 33376301
    [Google Scholar]
  144. Wang Y. He Y. Yang F. TPN672: A novel serotonin-dopamine receptor modulator for the treatment of schizophrenia. J. Pharmacol. Exp. Ther. 2021 378 1 20 30 10.1124/jpet.120.000414 33975897
    [Google Scholar]
  145. Ohnishi T. Balan S. Toyoshima M. Investigation of betaine as a novel psychotherapeutic for schizophrenia. EBioMedicine 2019 45 432 446 10.1016/j.ebiom.2019.05.062 31255657
    [Google Scholar]
  146. Nair P.C. Miners J.O. McKinnon R.A. Binding of SEP-363856 within TAAR1 and the 5HT1A receptor: Implications for the design of novel antipsychotic drugs. Mol. Psychiatry 2022 27 1 88 94 10.1038/s41380‑021‑01250‑7 34376825
    [Google Scholar]
  147. Smith S.M. Uslaner J.M. Hutson P.H. The therapeutic potential of D-amino acid oxidase (DAAO) inhibitors. Open Med. Chem. J. 2010 4 3 9 10.2174/1874104501004020003 20648222
    [Google Scholar]
  148. Singh A. Xanomeline and trospium: A potential fixed drug combination (FDC) for schizophrenia-a brief review of current data. Innov. Clin. Neurosci. 2022 19 10-12 43 47 [PMID: 36591549
    [Google Scholar]
  149. Yang A. Tsai S.J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int. J. Mol. Sci. 2017 18 8 1689 10.3390/ijms18081689 28771182
    [Google Scholar]
  150. Choy K.H.C. Shackleford D.M. Malone D.T. Positive allosteric modulation of the muscarinic M1 receptor improves efficacy of antipsychotics in mouse glutamatergic deficit models of behavior. J. Pharmacol. Exp. Ther. 2016 359 2 354 365 10.1124/jpet.116.235788 27630144
    [Google Scholar]
  151. Foster D.J. Bryant Z.K. Conn P.J. Targeting muscarinic receptors to treat schizophrenia. Behav. Brain Res. 2021 405 113201 10.1016/j.bbr.2021.113201 33647377
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128362637250621113743
Loading
/content/journals/cpd/10.2174/0113816128362637250621113743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test