Skip to content
2000
image of Mendelian Randomization Study on Serum Metabolites and Diabetic Nephropathy Risk: Identifying Potential Biomarkers for Early Intervention

Abstract

Objective

In this study, the causation between serum metabolites and the risk of Diabetic Nephropathy (DN) was investigated by means of a Mendelian Randomization (MR) analysis.

Methods

Our data on diabetic nephropathy were obtained from the IEU OpenGWAS Project database, while serum metabolite data originated came from the GWAS summary statistics by Chen . The Inverse Variance Weighted (IVW) method was the main analysis approach, with Weighted Median (WME) and MR-Egger regression serving as supplementary approaches to construing the causalities between serum metabolites and the DN risk. In addition to the MR-Egger regression intercept, Cochran's Q test was utilized for sensitivity analysis, with values used as the metric to assess the results.

Results

In total, 14 SNPs regarding serum metabolites were chosen as Instrumental Variables (IVs). The IVW results indicated that levels of Behenoylcarnitine (C22), Arachidoylcarnitine (C20), and the ratio of

5-methylthioadenosine (MTA) to phosphate exerted a positive causal effect on the DN risk. Conversely, levels of 5-hydroxylysine, Butyrylglycine, 1-stearoyl-glycerophosphocholine (18:0), Isobutyrylglycine, 1-stearoyl-2-oleoyl-GPE (18:0/18:1), N2,N5-diacetylornithine, 2-butenoylglycine, 3-hydroxybutyroylglycine, N-acetyl-isoputreanine, the ratio of Arginine to Ornithine, and the ratio of Aspartate to Mannose exerted a negative impact of causality on the DN risk. By identifying these serum metabolites, high-risk patients can be recognized in the early stages of diabetic nephropathy, enabling preventive measures or delaying its progression. These findings also provide a solid foundation for further research into the underlying etiology of diabetic nephropathy.

Conclusion

The translation of serum metabolites into clinical applications for DN aims to utilize changes in serum metabolites as biomarkers for early diagnosis, thereby monitoring the progression of DN and providing a foundation for personalized treatment. For instance, the development of serum metabolite diagnostic kits could be used for early detection and prevention of DN. Changes in metabolites can help identify different stages of DN.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128377862250429045226
2025-05-12
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128377862250429045226/BMS-CPD-2024-1343.html?itemId=/content/journals/cpd/10.2174/0113816128377862250429045226&mimeType=html&fmt=ahah

References

  1. Chen J. Li W. Cao J. Lu Y. Wang C. Lu J. Risk factors for carotid plaque formation in type 2 diabetes mellitus. J. Transl. Med. 2024 22 1 18 10.1186/s12967‑023‑04836‑7 38178198
    [Google Scholar]
  2. Hussain M.S. Srivastava N. Singh G. Kumar R. Long-term use of metformin and vitamin B12 deficiency in diabetes. Curr. Drug Saf. 2024 20 3 258 270 10.2174/0115748863308106240816044733 39206482
    [Google Scholar]
  3. Abdollahi S. Yazdi M.H.H. Mowlavi A.A. Erratum to: Surface guided 3DCRT in deep-inspiration breath hold for left sided breast cancer radiotherapy: Implementation and first clinical experience in Iran. Rep. Pract. Oncol. Radiother. 2023 28 3 435 436 10.5603/RPOR.a2023.0047 37795401
    [Google Scholar]
  4. Angariaa N. Saini S. Hussain M.S. Natural polymer-based hydrogels: Versatile biomaterials for biomedical applications. Int. J. Polym. Mater. 2023 73 117 1550 1568 10.1080/00914037.2023.2301645
    [Google Scholar]
  5. Bahl M.S.H.G. Dinesh K. Chronic calcific pancreatitis and its association with secondary diabetes mellitus. J. Endocrinol. Metab. 2023 13 3 89 95 10.14740/jem884
    [Google Scholar]
  6. Bahl G. Upadhyay D.K. Varma M. Singh R. Das S. Hussain S. Persistent chronic calcific pancreatitis with intraductal calculi associated with secondary diabetes mellitus type 3 and diabetic ketoacidosis – A case report. Endocr. Regul. 2024 58 1 101 104 10.2478/enr‑2024‑0011 38656253
    [Google Scholar]
  7. Lu H. Guo T. Zhang Y. Endoplasmic reticulum stress-induced NLRP3 inflammasome activation as a novel mechanism of polystyrene microplastics (PS-MPs)-induced pulmonary inflammation in chickens. J. Zhejiang Univ. Sci. B 2024 25 3 233 243 10.1631/jzus.B2300409 38453637
    [Google Scholar]
  8. Lu H. Zhang Y. Zhang X. New insights into zinc alleviating renal toxicity of arsenic-exposed carp (Cyprinus carpio) through YAP-TFR/ROS signaling pathway. Pestic. Biochem. Physiol. 2024 205 106153 10.1016/j.pestbp.2024.106153 39477605
    [Google Scholar]
  9. Zhang S. Cai Y. Meng C. The role of the microbiome in diabetes mellitus. Diabetes Res. Clin. Pract. 2021 172 108645 10.1016/j.diabres.2020.108645 33359751
    [Google Scholar]
  10. Batchu P. Naldurtiker A. Kouakou B. Terrill T.H. McCommon G.W. Kannan G. Metabolomic exploration of the effects of habituation to livestock trailer and extended transportation in goats. Front. Mol. Biosci. 2022 9 1027069 10.3389/fmolb.2022.1027069 36465562
    [Google Scholar]
  11. Wei T. Zhao L. Jia J. Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice. Sci. Rep. 2015 5 1 11998 10.1038/srep11998 26149603
    [Google Scholar]
  12. Zhao T. Zhang H. Zhao T. Intrarenal metabolomics reveals the association of local organic toxins with the progression of diabetic kidney disease. J. Pharm. Biomed. Anal. 2012 60 32 43 10.1016/j.jpba.2011.11.010 22153801
    [Google Scholar]
  13. Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int. 2000 58 S3 S12 10.1046/j.1523‑1755.2000.07702.x 10997684
    [Google Scholar]
  14. Wang L. Zhang L. Yu Y. Wang Y. Niu N. The protective effects of taurine against early renal injury in STZ-induced diabetic rats, correlated with inhibition of renal LOX-1-mediated ICAM-1 expression. Ren. Fail. 2008 30 8 763 771 10.1080/08860220802272563 18791949
    [Google Scholar]
  15. Hirayama A. Nakashima E. Sugimoto M. Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal. Bioanal. Chem. 2012 404 10 3101 3109 10.1007/s00216‑012‑6412‑x 23052862
    [Google Scholar]
  16. Lawlor D.A. Harbord R.M. Sterne J.A.C. Timpson N. Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008 27 8 1133 1163 10.1002/sim.3034 17886233
    [Google Scholar]
  17. Song S. Ni J. Sun Y. Association of inflammatory cytokines with type 2 diabetes mellitus and diabetic nephropathy: A bidirectional Mendelian randomization study. Front. Med. (Lausanne) 2024 11 1459752 10.3389/fmed.2024.1459752 39574905
    [Google Scholar]
  18. Chang L. Zhou G. Xia J. mGWAS-explorer 2.0: Causal analysis and interpretation of metabolite–phenotype associations. Metabolites 2023 13 7 826 10.3390/metabo13070826 37512533
    [Google Scholar]
  19. Yang L.Z. Yang Y. Hong C. Systematic mendelian randomization exploring druggable genes for hemorrhagic strokes. Mol. Neurobiol. 2025 62 2 1359 1372 10.1007/s12035‑024‑04336‑9 38977622
    [Google Scholar]
  20. Fan Z. A two sample Mendelian randomization study of lipidome and lung cancer. J. Pharm. Biomed. Anal. 2025 252 116514 10.1016/j.jpba.2024.116514 39405787
    [Google Scholar]
  21. Wu J. Li J. Yan R. Guo J. Vitamin C and suicidal ideation: A cross-sectional and Mendelian randomization study. J. Affect. Disord. 2025 368 528 536 10.1016/j.jad.2024.09.062 39271073
    [Google Scholar]
  22. Harris L. McDonagh E.M. Zhang X. Genome-wide association testing beyond SNPs. Nat. Rev. Genet. 2025 26 3 156 170 10.1038/s41576‑024‑00778‑y 39375560
    [Google Scholar]
  23. Song Q. Hu T. Liang B. cascAGS: Comparative analysis of SNP calling methods for human genome data in the absence of gold standard. Interdiscip. Sci. 2025 17 1 1 11 10.1007/s12539‑024‑00653‑8 39443427
    [Google Scholar]
  24. Chen Y. Lu T. Pettersson-Kymmer U. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 2023 55 1 44 53 10.1038/s41588‑022‑01270‑1 36635386
    [Google Scholar]
  25. Sakaue S. Kanai M. Tanigawa Y. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021 53 10 1415 1424 10.1038/s41588‑021‑00931‑x 34594039
    [Google Scholar]
  26. Li Z. Chen Y. Ke H. Investigating the causal relationship between gut microbiota and crohn’s disease: A Mendelian randomization study. Gastroenterology 2024 166 2 354 355 10.1053/j.gastro.2023.08.047 37678500
    [Google Scholar]
  27. de Leeuw C. Savage J. Bucur I.G. Heskes T. Posthuma D. Understanding the assumptions underlying Mendelian randomization. Eur. J. Hum. Genet. 2022 30 6 653 660 10.1038/s41431‑022‑01038‑5 35082398
    [Google Scholar]
  28. Xiang M. Wang Y. Gao Z. Exploring causal correlations between inflammatory cytokines and systemic lupus erythematosus: A Mendelian randomization. Front. Immunol. 2023 13 985729 10.3389/fimmu.2022.985729 36741410
    [Google Scholar]
  29. Papadimitriou N. Dimou N. Tsilidis K.K. Physical activity and risks of breast and colorectal cancer: A Mendelian randomisation analysis. Nat. Commun. 2020 11 1 597 10.1038/s41467‑020‑14389‑8 32001714
    [Google Scholar]
  30. Liu B. Lyu L. Zhou W. Associations of the circulating levels of cytokines with risk of amyotrophic lateral sclerosis: A Mendelian randomization study. BMC Med. 2023 21 1 39 10.1186/s12916‑023‑02736‑7 36737740
    [Google Scholar]
  31. Zou M. Zhang W. Shen L. Xu Y. Zhu Y. Causal association between inflammatory bowel disease and herpes virus infections: A two-sample bidirectional Mendelian randomization study. Front. Immunol. 2023 14 1203707 10.3389/fimmu.2023.1203707 37465669
    [Google Scholar]
  32. Burgess S. Thompson S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017 32 5 377 389 10.1007/s10654‑017‑0255‑x 28527048
    [Google Scholar]
  33. Li K. Liu P. Zeng Y. Liu M. Ye J. Zhu L. Exploring the bidirectional causal association between Sleep Apnea Syndrome and Depression: A Mendelian randomization study involving gut microbiota, serum metabolites, and inflammatory factors. J. Affect. Disord. 2024 366 308 316 10.1016/j.jad.2024.08.153 39216644
    [Google Scholar]
  34. Bottigliengo D. Foco L. Seibler P. Klein C. König I.R. Del Greco M.F. A Mendelian randomization study investigating the causal role of inflammation on Parkinson’s disease. Brain 2022 145 10 3444 3453 10.1093/brain/awac193 35656776
    [Google Scholar]
  35. Bowden J. Smith G.D. Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015 44 2 512 525 10.1093/ije/dyv080 26050253
    [Google Scholar]
  36. Su D. Ai Y. Zhu G. Yang Y. Ma P. Genetically predicted circulating levels of cytokines and the risk of osteoarthritis: A mendelian randomization study. Front. Genet. 2023 14 1131198 10.3389/fgene.2023.1131198 36999058
    [Google Scholar]
  37. Sun D. Ma R. Wang J. Wang Y. Ye Q. The causal relationship between sarcoidosis and autoimmune diseases: A bidirectional Mendelian randomization study in FinnGen. Front. Immunol. 2024 15 1325127 10.3389/fimmu.2024.1325127 38711527
    [Google Scholar]
  38. Jiang H. Hu D. Wang J. Zhang B. He C. Ning J. Adiponectin and the risk of gastrointestinal cancers in East Asians: Mendelian randomization analysis. Cancer Med. 2022 11 12 2397 2404 10.1002/cam4.4735 35384390
    [Google Scholar]
  39. Bowden J. Smith G.D. Haycock P.C. Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016 40 4 304 314 10.1002/gepi.21965 27061298
    [Google Scholar]
  40. Bowden J. Del Greco M.F. Minelli C. Smith G.D. Sheehan N.A. Thompson J.R. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: The role of the I2 statistic. Int. J. Epidemiol. 2016 45 6 dyw220 10.1093/ije/dyw220 27616674
    [Google Scholar]
  41. Hayreh S.S. Ocular vascular occlusive disorders: Natural history of visual outcome. Prog. Retin. Eye Res. 2014 41 1 25 10.1016/j.preteyeres.2014.04.001 24769221
    [Google Scholar]
  42. Pierce B.L. Burgess S. Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol. 2013 178 7 1177 1184 10.1093/aje/kwt084 23863760
    [Google Scholar]
  43. Li L. Ren Q. Zheng Q. Causal associations between gastroesophageal reflux disease and lung cancer risk: A Mendelian randomization study. Cancer Med. 2023 12 6 7552 7559 10.1002/cam4.5498 36479899
    [Google Scholar]
  44. Zhang H. Ma X. Liu W. Causal relationship between serum metabolites and juvenile idiopathic arthritis: A Mendelian randomization study. Pediatr. Rheumatol. Online J. 2024 22 1 51 10.1186/s12969‑024‑00986‑0 38724970
    [Google Scholar]
  45. Qi W. Keenan H.A. Li Q. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat. Med. 2017 23 6 753 762 10.1038/nm.4328 28436957
    [Google Scholar]
  46. Zhang P.N. Zhou M.Q. Guo J. Mitochondrial dysfunction and diabetic nephropathy: Nontraditional therapeutic opportunities. J. Diabetes Res. 2021 2021 1 14 10.1155/2021/1010268 34926696
    [Google Scholar]
  47. Kordalewska M. Macioszek S. Wawrzyniak R. Multiplatform metabolomics provides insight into the molecular basis of chronic kidney disease. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019 1117 49 57 10.1016/j.jchromb.2019.04.003 30999273
    [Google Scholar]
  48. Pena M.J. Heerspink H.J.L. Hellemons M.E. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with type 2 diabetes mellitus. Diabet. Med. 2014 31 9 1138 1147 10.1111/dme.12447 24661264
    [Google Scholar]
  49. Kelley D.E. He J. Menshikova E.V. Ritov V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002 51 10 2944 2950 10.2337/diabetes.51.10.2944 12351431
    [Google Scholar]
  50. Kerner J. Minkler P.E. Lesnefsky E.J. Hoppel C.L. Fatty acid chain elongation in palmitate-perfused working rat heart: mitochondrial acetyl-CoA is the source of two-carbon units for chain elongation. J. Biol. Chem. 2014 289 14 10223 10234 10.1074/jbc.M113.524314 24558043
    [Google Scholar]
  51. Avila M.A. García-Trevijano E.R. Lu S.C. Corrales F.J. Mato J.M. Methylthioadenosine. Int. J. Biochem. Cell Biol. 2004 36 11 2125 2130 10.1016/j.biocel.2003.11.016 15313459
    [Google Scholar]
  52. Tan Y. Liu X. Yang Y. Metabolomics analysis reveals serum biomarkers in patients with diabetic sarcopenia. Front. Endocrinol. (Lausanne) 2023 14 1119782 10.3389/fendo.2023.1119782 37033246
    [Google Scholar]
  53. Herbert K.R. Williams G.M. Cooper G.J.S. Brimble M.A. Synthesis of glycosylated 5-hydroxylysine, an important amino acid present in collagen-like proteins such as adiponectin. Org. Biomol. Chem. 2012 10 6 1137 1144 10.1039/c1ob06394d 22218394
    [Google Scholar]
  54. Stanislaus A. Guo K. Li L. Development of an isotope labeling ultra-high performance liquid chromatography mass spectrometric method for quantification of acylglycines in human urine. Anal. Chim. Acta 2012 750 161 172 10.1016/j.aca.2012.05.006 23062437
    [Google Scholar]
  55. Salek R.M. Maguire M.L. Bentley E. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genomics 2007 29 2 99 108 10.1152/physiolgenomics.00194.2006 17190852
    [Google Scholar]
  56. Luo S. Surapaneni A. Zheng Z. NAT8 variants, N-acetylated amino acids, and progression of CKD. Clin. J. Am. Soc. Nephrol. 2021 16 1 37 47 10.2215/CJN.08600520 33380473
    [Google Scholar]
  57. Shi M. Bazzano L.A. He J. Novel serum metabolites associate with cognition phenotypes among Bogalusa Heart Study participants. Aging (Albany NY) 2019 11 14 5124 5139 10.18632/aging.102107 31327759
    [Google Scholar]
  58. Huang Y. Sharma R. Feigenbaum A. Arginine to ornithine ratio as a diagnostic marker in patients with positive newborn screening for hyperargininemia. Mol. Genet. Metab. Rep. 2021 27 100735 10.1016/j.ymgmr.2021.100735 33732618
    [Google Scholar]
  59. Li L. Chen X. Zhang H. Wang M. Lu W. MRC2 promotes proliferation and inhibits apoptosis of diabetic nephropathy. Anal. Cell. Pathol. (Amst.) 2021 2021 1 10 10.1155/2021/6619870 34012764
    [Google Scholar]
  60. Hayden M.R. The mighty mitochondria are unifying organelles and metabolic hubs in multiple organs of obesity, insulin resistance, metabolic syndrome, and type 2 diabetes: An observational ultrastructure study. Int. J. Mol. Sci. 2022 23 9 4820 10.3390/ijms23094820 35563211
    [Google Scholar]
  61. An H.J. Kim J.Y. Kim W.H. Han S.M. Park K.K. The protective effect of melittin on renal fibrosis in an animal model of unilateral ureteral obstruction. Molecules 2016 21 9 1137 10.3390/molecules21091137 27618890
    [Google Scholar]
  62. Yin Y. Shan C. Han Q. Causal effects of human serum metabolites on occurrence and progress indicators of chronic kidney disease: A two-sample Mendelian randomization study. Front. Nutr. 2024 10 1274078 10.3389/fnut.2023.1274078 38260086
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128377862250429045226
Loading
/content/journals/cpd/10.2174/0113816128377862250429045226
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test