Skip to content
2000
image of Binding Interaction and Stability Analysis of Quercetin and its Derivatives as Potential Inhibitors of Triple Negative Breast Cancer (TNBC) against PARP1 Protein: An in-silico Study

Abstract

Background

Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by

the absence of estrogen and progesterone receptors (ER, PR) and low or absent HER2 expression, limiting treatment options. Quercetin, a flavonoid with anti-cancer properties, has the potential to be a therapeutic

intervention.

Objectives

The study aimed to explore the potential of Quercetin derivatives as therapeutic agents for TNBC using several computational methods.

Methods

The study utilized PASS prediction, molecular docking, ADMET prediction, QSAR models, MD simulations, binding free energy, and DFT calculations to evaluate the efficacy of quercetin derivatives.

Results

ADMET analysis confirmed the solubility, non-carcinogenicity, and low toxicity of four quercetin derivatives: LM01, LM02, LM05, and LM10. These derivatives exhibited strong binding affinity against TNBC protein PPAR1, with binding energies of -10.6, -10.7, -11.4, and -10 kcal/mol, respectively. MD simulations confirmed their stability, with consistent RMSD values and favorable RMSF values. Post-simulation calculations and reduced HOMO-LUMO energy gaps further supported their potential as promising candidates.

Conclusion

Our computational findings suggest that quercetin derivatives, particularly LM01, LM02, and LM10, exhibit strong stability and binding affinity, positioning them as promising candidates for TNBC treatment. Further experimental validation is required to confirm their therapeutic potential.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128373506250414160220
2025-05-09
2025-09-10
Loading full text...

Full text loading...

References

  1. Unger-Saldaña K. Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J. Clin. Oncol. 2014 5 3 465 477 10.5306/wjco.v5.i3.465 25114860
    [Google Scholar]
  2. Tao Z. Shi A. Lu C. Song T. Zhang Z. Zhao J. Breast cancer: Epidemiology and etiology. Cell Biochem. Biophys. 2015 72 2 333 338 10.1007/s12013‑014‑0459‑6 25543329
    [Google Scholar]
  3. Podo F. Buydens L.M. Degani H. Triple-negative breast cancer: Present challenges and new perspectives. Mol. Oncol. 2010 4 3 209 229 10.1016/j.molonc.2010.04.006 20537966
    [Google Scholar]
  4. Lane D.A. Aguinaga L. Blomström-Lundqvist C. Cardiac tachyarrhythmias and patient values and preferences for their management: The European Heart Rhythm Association (EHRA) consensus document endorsed by the heart rhythm society (HRS), asia pacific heart rhythm society (APHRS), and sociedad latinoamericana de estimulación cardíaca y electrofisiología (SOLEACE). Europace 2015 17 12 1747 1769 10.1093/europace/euv233 26108807
    [Google Scholar]
  5. Almansour N.M. Triple-negative breast cancer: A brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front. Mol. Biosci. 2022 9 836417 10.3389/fmolb.2022.836417 35145999
    [Google Scholar]
  6. Howard F.M. Olopade O.I. Epidemiology of triple-negative breast cancer: A review. Cancer J. 2021 27 1 8 16 10.1097/PPO.0000000000000500 33475288
    [Google Scholar]
  7. Akbarzadeh M. Vahedian V. Abudulmohesen H.Z. The evaluation of melatonin and EGF interaction on breast cancer metastasis. Horm. Mol. Biol. Clin. Investig. 2024 45 3 119 130 10.1515/hmbci‑2023‑0082 39042852
    [Google Scholar]
  8. Li X. Yang J. Peng L. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res. Treat. 2017 161 2 279 287 10.1007/s10549‑016‑4059‑6 27888421
    [Google Scholar]
  9. Medina M.A. Oza G. Sharma A. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies. Int. J. Environ. Res. Public Health 2020 17 6 2078 10.3390/ijerph17062078 32245065
    [Google Scholar]
  10. Khalafi A. Moradian F. Rafiei A. Anticancer effect of bovine lactoferrin on breast cancer cell line MCF7 and the evaluation of bax and bak genes expression involved in apoptosis. Res Mol Med 2020 8 3 107 116 10.32598/rmm.8.3.726.3
    [Google Scholar]
  11. Tang J. Tang Y. Yang J. Huang S. Chemoradiation and adjuvant chemotherapy in advanced cervical adenocarcinoma. Gynecol. Oncol. 2012 125 2 297 302 10.1016/j.ygyno.2012.01.033 22307061
    [Google Scholar]
  12. Bilici A. Arslan C. Altundag K. Promising therapeutic options in triple-negative breast cancer. J. BUON 2012 17 2 209 222 22740196
    [Google Scholar]
  13. Sharma P. Biology and management of patients with triple-negative breast cancer. Oncologist 2016 21 9 1050 1062 10.1634/theoncologist.2016‑0067 27401886
    [Google Scholar]
  14. Reyes H.D. Thiel K.W. Carlson M.J. Comprehensive profiling of EGFR/HER receptors for personalized treatment of gynecologic cancers. Mol. Diagn. Ther. 2014 18 2 137 151 10.1007/s40291‑013‑0070‑3 24403167
    [Google Scholar]
  15. Colombo M. Corsi F. Foschi D. HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacol. Res. 2010 62 2 150 165 10.1016/j.phrs.2010.01.013 20117211
    [Google Scholar]
  16. Chaleshtori M.M. Hojati Z. Jazaeri A. HER2 testing in invasive breast cancer: A comparison between immunohistochemistry and fluorescence in situ hybridization assays. Res Mol Med 2020 8 3 139 146
    [Google Scholar]
  17. Gupta G.K. Collier A.L. Lee D. Perspectives on triple-negative breast cancer: Current treatment strategies, unmet needs, and potential targets for future therapies. Cancers (Basel) 2020 12 9 2392 10.3390/cancers12092392 32846967
    [Google Scholar]
  18. Dias M.C. Pinto D.C.G.A. Silva A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021 26 17 5377 10.3390/molecules26175377 34500810
    [Google Scholar]
  19. Yeung C.S. Dong V.M. Catalytic dehydrogenative cross-coupling: Forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev. 2011 111 3 1215 1292 10.1021/cr100280d 21391561
    [Google Scholar]
  20. Mlcek J. Jurikova T. Skrovankova S. Sochor J. Quercetin and its anti-allergic immune response. Molecules 2016 21 5 623 10.3390/molecules21050623 27187333
    [Google Scholar]
  21. Bulbiankova D. Díaz-Puertas R. Álvarez-Martínez F.J. Herranz-López M. Barrajón-Catalán E. Micol V. Hallmarks and biomarkers of skin senescence: An updated review of skin senotherapeutics. Antioxidants 2023 12 2 444 10.3390/antiox12020444 36830002
    [Google Scholar]
  22. Akbari B. Baghaei-Yazdi N. Bahmaie M. Abhari M.F. The role of plant‐derived natural antioxidants in reduction of oxidative stress. Biofactors 2022 48 3 611 633 10.1002/biof.1831 35229925
    [Google Scholar]
  23. Shorobi F.M. Nisa F.Y. Saha S. Quercetin: A functional food-flavonoid incredibly attenuates emerging and re-emerging viral infections through immunomodulatory actions. Molecules 2023 28 3 938 10.3390/molecules28030938 36770606
    [Google Scholar]
  24. Cheng S-C. Huang W.C. Pang S.J.H. Wu Y.H. Cheng C.Y. Quercetin inhibits the production of IL-1β-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. Int. J. Mol. Sci. 2019 20 12 2957 10.3390/ijms20122957 31212975
    [Google Scholar]
  25. Safi A. Heidarian E. Ahmadi R. Quercetin synergistically enhances the anticancer efficacy of docetaxel through induction of apoptosis and modulation of PI3K/AKT, MAPK/ERK, and JAK/] STAT3 signaling pathways in MDA-MB-231 breast cancer cell line. Int. J. Mol. Cell. Med. 2021 10 1 11 22 34268250
    [Google Scholar]
  26. Wu F. Zhou Y. Li L. Computational approaches in preclinical studies on drug discovery and development. Front Chem. 2020 8 726 10.3389/fchem.2020.00726 33062633
    [Google Scholar]
  27. Almatroodi S.A. Alsahli M.A. Almatroudi A. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules 2021 26 5 1315 10.3390/molecules26051315 33804548
    [Google Scholar]
  28. Chimento A. Luca D.A. D’Amico M. Amicis D.F. Pezzi V. The involvement of natural polyphenols in molecular mechanisms inducing apoptosis in tumor cells: A promising adjuvant in cancer therapy. Int. J. Mol. Sci. 2023 24 2 1680 10.3390/ijms24021680 36675194
    [Google Scholar]
  29. Ghafouri-Fard S. Shabestari F.A. Vaezi S. Emerging impact of quercetin in the treatment of prostate cancer. Biomed. Pharmacother. 2021 138 111548 10.1016/j.biopha.2021.111548 34311541
    [Google Scholar]
  30. Brockmueller A. Samuel S.M. Mazurakova A. Büsselberg D. Kubatka P. Shakibaei M. Curcumin, calebin A and chemosensitization: How are they linked to colorectal cancer? Life Sci. 2023 318 121504 10.1016/j.lfs.2023.121504 36813082
    [Google Scholar]
  31. Tian J. Liu R. Qu Q. Role of endoplasmic reticulum stress on cisplatin resistance in ovarian carcinoma. Oncol. Lett. 2017 13 3 1437 1443 10.3892/ol.2017.5580 28454274
    [Google Scholar]
  32. Li Z. Wan H. Shi Y. Ouyang P. Personal experience with four kinds of chemical structure drawing software: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. J. Chem. Inf. Comput. Sci. 2004 44 5 1886 1890 10.1021/ci049794h 15446849
    [Google Scholar]
  33. Mohammed H.A. Almahmoud S.A. El-Ghaly E.S.M. Comparative anticancer potentials of taxifolin and quercetin methylated derivatives against HCT-116 cell lines: Effects of O-methylation on taxifolin and quercetin as preliminary natural leads. ACS Omega 2022 7 50 46629 46639 10.1021/acsomega.2c05565 36570308
    [Google Scholar]
  34. Lagunin A. Stepanchikova A. Filimonov D. Poroikov V. PASS: Prediction of activity spectra for biologically active substances. Bioinformatics 2000 16 8 747 748 10.1093/bioinformatics/16.8.747 11099264
    [Google Scholar]
  35. Kawsar S.M.A. Kumer A. Munia N.S. Hosen M.A. Chakma U. Akash S. Chemical descriptors, PASS, molecular docking, molecular dynamics and ADMET predictions of glucopyranoside derivatives as inhibitors to bacteria and fungi growth. Organic Communications 2022 15 2 184 203 10.25135/acg.oc.122.2203.2397
    [Google Scholar]
  36. Avram S. Mernea M. Limban C. Borcan F. Chifiriuc C. Potential therapeutic approaches to Alzheimer’s disease by bioinformatics, cheminformatics and predicted Adme-Tox tools. Curr. Neuropharmacol. 2020 18 8 696 719 10.2174/1570159X18666191230120053 31885353
    [Google Scholar]
  37. Sun D. Gao W. Hu H. Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022 12 7 3049 3062 10.1016/j.apsb.2022.02.002 35865092
    [Google Scholar]
  38. Azzam KA SwissADME and pkCSM webservers predictors: An integrated online platform for accurate and comprehensive predictions for in silico ADME/T properties of artemisinin and its derivatives. Kompleksnoe ispolʹzovanie mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik shikisattardy Keshendi Paidalanu 2023 325 2 14 21 10.31643/2023/6445.13
  39. Muslikh F.A. ADMET prediction of the dominant compound from mangosteen (Garcinia mangostana L.) using pkCSM: A computational approach. Inter J Contemp Sci 2023 1 1 33 38
    [Google Scholar]
  40. Walters W.P. Going further than Lipinski’s rule in drug design. Expert Opin. Drug Discov. 2012 7 2 99 107 10.1517/17460441.2012.648612 22468912
    [Google Scholar]
  41. Ji D. Xu M. Udenigwe C.C. Agyei D. Physicochemical characterisation, molecular docking, and drug-likeness evaluation of hypotensive peptides encrypted in flaxseed proteome. Curr Res Food Sci 2020 3 41 50 10.1016/j.crfs.2020.03.001 32914119
    [Google Scholar]
  42. Patel H.M. Noolvi M.N. Sharma P. Quantitative structure-activity relationship (QSAR) studies as strategic approach in drug discovery. Med. Chem. Res. 2014 23 12 4991 5007 10.1007/s00044‑014‑1072‑3
    [Google Scholar]
  43. Kumer A. Chakma U. Chandro A. Modified D-glucofuranose computationally screening for inhibitor of breast cancer and triple breast cancer: Chemical descriptor, molecular docking, molecular dynamics and QSAR. J. Chil. Chem. Soc. 2022 67 3 5623 5635 10.4067/S0717‑97072022000305623
    [Google Scholar]
  44. Oliveira D.D.B. Gaudio A.C. BuildQSAR: A new computer program for QSAR analysis. Quantitative Structure‐Activity Relationships. An Inter J Dev Fund Pract Asp Electroanal 2000 19 6 599 601
    [Google Scholar]
  45. Akash S. Aovi F.I. Azad M.A.K. A drug design strategy based on molecular docking and molecular dynamics simulations applied to development of inhibitor against triple-negative breast cancer by Scutellarein derivatives. PLoS One 2023 18 10 e0283271 10.1371/journal.pone.0283271 37824496
    [Google Scholar]
  46. Li W.H. Wang F. Song G.Y. Yu Q.H. Du R.P. Xu P. PARP-1: A critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Front. Pharmacol. 2023 14 1198948 10.3389/fphar.2023.1198948 37351512
    [Google Scholar]
  47. Weil M.K. Chen A.P. PARP inhibitor treatment in ovarian and breast cancer. Curr. Probl. Cancer 2011 35 1 7 50 10.1016/j.currproblcancer.2010.12.002 21300207
    [Google Scholar]
  48. Akash S. Computational investigation of Scutellarein derivatives as an inhibitor against triple-negative breast cancer by Quantum calculation, and drug-designed approaches. bioRxiv 2023 2023.03
    [Google Scholar]
  49. Chatterjee A. Roy U.K. Haldar D. Case study and performance analysis of autodock vs autodock vina for stable drug design. J Enviro Sci Comp Sci Eng Tech 2018 7 2 1 9 10.24214/jecet.B.7.2.15779
    [Google Scholar]
  50. Kaplan W. Littlejohn T.G. Swiss-PDB viewer (deep view). Brief. Bioinform. 2001 2 2 195 197 10.1093/bib/2.2.195 11465736
    [Google Scholar]
  51. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015 1263 243 250 10.1007/978‑1‑4939‑2269‑7_19
    [Google Scholar]
  52. Ferreira L. Santos D.R. Oliva G. Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules 2015 20 7 13384 13421 10.3390/molecules200713384 26205061
    [Google Scholar]
  53. Hildebrand P.W. Rose A.S. Tiemann J.K.S. Bringing molecular dynamics simulation data into view. Trends Biochem. Sci. 2019 44 11 902 913 10.1016/j.tibs.2019.06.004 31301982
    [Google Scholar]
  54. Rasheed M.A. Iqbal M.N. Saddick S. Identification of lead compounds against Scm (fms10) in Enterococcus faecium using computer aided drug designing. Life (Basel) 2021 11 2 77 10.3390/life11020077 33494233
    [Google Scholar]
  55. Shivakumar D. Williams J. Wu Y. Damm W. Shelley J. Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 2010 6 5 1509 1519 10.1021/ct900587b 26615687
    [Google Scholar]
  56. Khoury E.L. Santos-Martins D. Sasmal S. Comparison of affinity ranking using AutoDock-GPU and MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4. J. Comput. Aided Mol. Des. 2019 33 12 1011 1020 10.1007/s10822‑019‑00240‑w 31691919
    [Google Scholar]
  57. McGann M.R. Almond H.R. Nicholls A. Grant J.A. Brown F.K. Gaussian docking functions. Biopolymers 2003 68 1 76 90 10.1002/bip.10207 12579581
    [Google Scholar]
  58. Gadre S.R. Suresh C.H. Mohan N. Electrostatic potential topology for probing molecular structure, bonding and reactivity. Molecules 2021 26 11 3289 10.3390/molecules26113289 34072507
    [Google Scholar]
  59. Caricato M. Scalmani G. Trucks G.W. Frisch M.J. Coupled cluster calculations in solution with the polarizable continuum model of solvation. J. Phys. Chem. Lett. 2010 1 15 2369 2373 10.1021/jz1007593
    [Google Scholar]
  60. Reyes-Farias M. Carrasco-Pozo C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci. 2019 20 13 3177 10.3390/ijms20133177 31261749
    [Google Scholar]
  61. Shabir I. Pandey K.V. Shams R. Promising bioactive properties of quercetin for potential food applications and health benefits: A review. Front. Nutr. 2022 9 999752 10.3389/fnut.2022.999752 36532555
    [Google Scholar]
  62. Vázquez J. López M. Gibert E. Herrero E. Luque F.J. Merging ligand-based and structure-based methods in drug discovery: An overview of combined virtual screening approaches. Molecules 2020 25 20 4723 10.3390/molecules25204723 33076254
    [Google Scholar]
  63. Greer J. Erickson J.W. Baldwin J.J. Varney M.D. Application of the three-dimensional structures of protein target molecules in structure-based drug design. J. Med. Chem. 1994 37 8 1035 1054 10.1021/jm00034a001 8164249
    [Google Scholar]
  64. Filimonov D.A. Lagunin A.A. Gloriozova T.A. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Compd. 2014 50 3 444 457 10.1007/s10593‑014‑1496‑1
    [Google Scholar]
  65. Schneider P. Walters W.P. Plowright A.T. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 2020 19 5 353 364 10.1038/s41573‑019‑0050‑3 31801986
    [Google Scholar]
  66. Khan T. Lawrence A.J. Azad I. Raza S. Joshi S. Khan A.R. Computational drug designing and prediction of important parameters using in silico methods-A review. Curr. Computeraided Drug Des. 2019 15 5 384 397 10.2174/1573399815666190326120006 30914032
    [Google Scholar]
  67. Hoogevest V.P. Liu X. Fahr A. Drug delivery strategies for poorly water-soluble drugs: The industrial perspective. Expert Opin. Drug Deliv. 2011 8 11 1481 1500 10.1517/17425247.2011.614228 21895540
    [Google Scholar]
  68. Singh A. Worku Z.A. Mooter D.V.G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin. Drug Deliv. 2011 8 10 1361 1378 10.1517/17425247.2011.606808 21810062
    [Google Scholar]
  69. Chang P. Improving transformer-based molecular optimization using reinforcement learning. Available from 2021 www.uu.diva-portal.org/smash/get/diva2:1601671/FULLTEXT01.pdf
    [Google Scholar]
  70. Graefe E.U. Wittig J. Mueller S. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 2001 41 5 492 499 10.1177/00912700122010366 11361045
    [Google Scholar]
  71. Björkman S. Prediction of the volume of distribution of a drug: Which tissue-plasma partition coefficients are needed? J. Pharm. Pharmacol. 2002 54 9 1237 1245 10.1211/002235702320402080 12356278
    [Google Scholar]
  72. Upadhyay R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int. 2014 2014 869269 10.1155/2014/869269
    [Google Scholar]
  73. Egert S. Wolffram S. Bosy-Westphal A. Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J. Nutr. 2008 138 9 1615 1621 10.1093/jn/138.9.1615 18716159
    [Google Scholar]
  74. Persaud D. Jaagumagi R. Hayton A. Guidelines for the protection and management of aquatic sediment quality in Ontario. Available from 1993 https://atrium.lib.uoguelph.ca/items/5b774d1b-ff75-4310-8346-b9c8bf360366
    [Google Scholar]
  75. Harwood M. Danielewska-Nikiel B. Borzelleca J.F. Flamm G.W. Williams G.M. Lines T.C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol. 2007 45 11 2179 2205 10.1016/j.fct.2007.05.015 17698276
    [Google Scholar]
  76. Yang G.F. Huang X. Development of quantitative structure-activity relationships and its application in rational drug design. Curr. Pharm. Des. 2006 12 35 4601 4611 10.2174/138161206779010431 17168765
    [Google Scholar]
  77. Geraets L. Moonen H.J.J. Brauers K. Wouters E.F.M. Bast A. Hageman G.J. Dietary flavones and flavonoles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells. J. Nutr. 2007 137 10 2190 2195 10.1093/jn/137.10.2190 17884996
    [Google Scholar]
  78. Chien S.Y. Wu Y.C. Chung J.G. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum. Exp. Toxicol. 2009 28 8 493 503 10.1177/0960327109107002 19755441
    [Google Scholar]
  79. Gohlke H. Klebe G. Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem. Int. Ed. 2002 41 15 2644 2676 10.1002/1521‑3773(20020802)41:15<2644:AID‑ANIE2644>3.0.CO;2‑O 12203463
    [Google Scholar]
  80. Naqvi A.A.T. Mohammad T. Hasan G.M. Hassan M.I. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem. 2018 18 20 1755 1768 10.2174/1568026618666181025114157 30360721
    [Google Scholar]
  81. Saikia S. Bordoloi M. Molecular docking: Challenges, advances and its use in drug discovery perspective. Curr. Drug Targets 2019 20 5 501 521 10.2174/1389450119666181022153016 30360733
    [Google Scholar]
  82. Kalimuthu A.K. Panneerselvam T. Pavadai P. Pharmacoinformatics-based investigation of bioactive compounds of Rasam (South Indian recipe) against human cancer. Sci. Rep. 2021 11 1 21488 10.1038/s41598‑021‑01008‑9 34728718
    [Google Scholar]
  83. Sarfraz M. Bakht M.A. Alshammari M.S. Beyond traditional medications: Exploring novel and potential inhibitors of trypanothione reductase (LmTr) of Leishmania parasites. J. Biomol. Struct. Dyn. 2024 ••• 1 14 10.1080/07391102.2023.2300062 38213287
    [Google Scholar]
  84. Thorsell A.G. Ekblad T. Karlberg T. Structural basis for potency and promiscuity in poly (ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J. Med. Chem. 2017 60 4 1262 1271 10.1021/acs.jmedchem.6b00990 28001384
    [Google Scholar]
  85. Song M. Li J.L. Li X.P. Kan S.F. Targeting human Poly(ADP‐Ribose) polymerase-1 with natural medicines and its potential applications in ovarian cancer therapeutics. Arch Pharm 2015 348 11 817 823 10.1002/ardp.201500183 26344206
    [Google Scholar]
  86. Li J. Zhou N. Cai P. Bao J. In silico screening identifies a novel potential PARP1 inhibitor targeting synthetic lethality in cancer treatment. Int. J. Mol. Sci. 2016 17 2 258 10.3390/ijms17020258 26907257
    [Google Scholar]
  87. Layman R.M. Arun B. PARP inhibitors in triple-negative breast cancer including those with BRCA mutations. Cancer J. 2021 27 1 67 75 10.1097/PPO.0000000000000499 33475295
    [Google Scholar]
  88. Karplus M. McCammon J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 2002 9 9 646 652 10.1038/nsb0902‑646 12198485
    [Google Scholar]
  89. Bignon E. Dršata T. Morell C. Lankaš F. Dumont E. Interstrand cross-linking implies contrasting structural consequences for DNA: Insights from molecular dynamics. Nucleic Acids Res. 2017 45 4 2188 2195 27986856
    [Google Scholar]
  90. Behera S.K. Mahapatra N. Tripathy C.S. Pati S. Drug repurposing for identification of potential inhibitors against SARS-CoV-2 spike receptor-binding domain. Indian J. Med. Res. 2021 153 1-2 132 143 10.4103/ijmr.IJMR_1132_20 33818470
    [Google Scholar]
  91. Torres M.P.H. Limaverde Soares Costa Sousa G. Pascutti P.G. Structural analysis of the N-terminal fragment of the antiangiogenic protein endostatin: A molecular dynamics study. Proteins 2011 79 9 2684 2692 10.1002/prot.23096 21769939
    [Google Scholar]
  92. Elebeedy D. Elkhatib W.F. Kandeil A. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Advances 2021 11 47 29267 29286 10.1039/D1RA05268C 35492070
    [Google Scholar]
  93. Mahmud S. Uddin M.A.R. Paul G.K. Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2. Brief. Bioinform. 2021 22 2 1402 1414 10.1093/bib/bbaa428 33517367
    [Google Scholar]
  94. McGibbon R.T. Beauchamp K.A. Harrigan M.P. MDTraj: A modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 2015 109 8 1528 1532 10.1016/j.bpj.2015.08.015 26488642
    [Google Scholar]
  95. Hou T. Wang J. Li Y. Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2011 51 1 69 82 10.1021/ci100275a 21117705
    [Google Scholar]
  96. Kumer A. Sarker M.N. Paul S. The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming. Inter J Chem Tech 2019 3 1 26 37 10.32571/ijct.478179
    [Google Scholar]
  97. Chattaraj P.K. Maiti B. Sarkar U. Philicity: A unified treatment of chemical reactivity and selectivity. J. Phys. Chem. A 2003 107 25 4973 4975 10.1021/jp034707u
    [Google Scholar]
  98. Noreen S. Sumrra S.H. Aminothiazole-linked metal chelates: Synthesis, density functional theory, and antimicrobial studies with antioxidant correlations. ACS Omega 2021 6 48 33085 33099 10.1021/acsomega.1c05290 34901660
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128373506250414160220
Loading
/content/journals/cpd/10.2174/0113816128373506250414160220
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test