Skip to content
2000
image of Porphyrin-based MOFs for Gene Delivery in Cancer Therapy: Recent Advances and Progress

Abstract

Cancer is one of the leading causes of death worldwide, which involves the uncontrolled growth of body cells. Cytotoxic chemotherapy drugs, such as tamoxifen, doxorubicin, methotrexate, and cisplatin, have shortcomings that have deprived these treatments of the desired efficiency to destroy tumor cells. Poor pharmacokinetics, severe side effects, and low targeting properties are examples of these shortcomings. Meanwhile, in the last few years, the use of nanocarriers in drug delivery systems has grown significantly. Porphyrins, also called life pigments, are classified as organic complexes. Due to their unique electrochemical and photophysical properties, they have been used in various fields, such as photodynamic therapy, fluorescence, and photoacoustic imaging. However, due to the limitations of these compounds in aqueous environments, such as aggregation by surface molecules, weak absorption in the biological spectral window, self-quenching, and poor chemical and optical stability, there are gaps in the clinical applications of porphyrins. To overcome these challenges, researchers have developed porphyrin-based MOFs. Metal-organic frameworks (MOFs), made of metal ions and clusters coupled with organic linkers, such as porphyrins, through self-assembly, retain the properties of porphyrins while offering additional advantages. Several synthetic approaches and significant advances have been made in the development of porphyrin-based MOFs, including combination therapies, advanced drug delivery, cancer therapy, and photodynamic therapy. Porphyrin-based metal-organic frameworks represent a transformative approach in cancer treatment by integrating multiple therapeutic functions, improving targeting mechanisms, ensuring safety, increasing drug delivery efficiency, and overcoming tumor biological barriers, such as hypoxia, and their day-to-day development promises the formation of more personalized and effective strategies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128359818250407020852
2025-05-16
2025-10-28
Loading full text...

Full text loading...

References

  1. FangS. LiuK. HuangT. DuJ. ChenC. ZhengZ. Dysregulation of transfer RNA-derived small RNAs that regulate cell activity and its related signaling pathways in human cancers.Curr. Gene Ther.202323429130310.2174/1566523223666230601102506 37259935
    [Google Scholar]
  2. LiW. LiG. SunY. Prediction of SARS-CoV-2 infection phosphorylation sites and associations of these modifications with lung cancer development.Curr. Gene Ther.202424323924810.2174/0115665232268074231026111634 37957848
    [Google Scholar]
  3. RuizJ.C.M. Guerrero OrriachJ.L. PonferradaA.R. Romero MolinaS. JosefaG.M. Anesthesia and cancer: Something more than avoiding stress response.Curr. Gene Ther.20232342617510.2174/1566523223666230328165109 36994976
    [Google Scholar]
  4. ZanetteD.L. Nóbrega AokiM. PradoN.O. microRNA-based genetic therapy in leukemia: Properties, delivery, and experimental models.Curr. Gene Ther.202323424526010.2174/1566523223666230426153622 37170970
    [Google Scholar]
  5. HanY. LeiW. ZhangF. miRNA-1260b promotes breast cancer cell migration and invasion by downregulating CCDC134.Curr. Gene Ther.2023231607110.2174/1566523222666220901112314 36056852
    [Google Scholar]
  6. BailarJ.C.III GornikH.L. Cancer undefeated.N. Engl. J. Med.19973362215697410.1056/NEJM199705293362206 9164814
    [Google Scholar]
  7. KhanS.U. KhanM.U. KhanM.I. KalsoomF. ZahraA. Current landscape and emerging opportunities of gene therapy with non-viral episomal vectors.Curr. Gene Ther.20232321354710.2174/1566523222666221004100858 36200188
    [Google Scholar]
  8. ThakurP. DahiyaH. KaushalA. GuptaV.K. SainiA.K. SainiR.V. Exosomal miRNAs as next-generation therapy vehicles in breast cancer.Curr. Gene Ther.202323533034210.2174/1566523223666230215103524 37728084
    [Google Scholar]
  9. LundstromK. Gene therapy cargoes based on viral vector delivery.Curr. Gene Ther.20232321113410.2174/1566523222666220921112753 36154608
    [Google Scholar]
  10. KesavanY. SrinivasanS.S. PathakS. RamalingamS. Role of dietary phytochemicals in targeting human mirnas for cancer prevention and treatment.Curr. Gene Ther.20232353435510.2174/1566523223666230519124519 37497747
    [Google Scholar]
  11. SahuR. JhaS. PattanayakS.P. Suppression of mTOR expression by siRNA leads to cell cycle arrest and apoptosis induction in MDA-MB-231 breast cancer cells.Curr. Gene Ther.202323322824210.2174/1566523223666230329085606 36999418
    [Google Scholar]
  12. YangJ. YangY.W. Metal–organic frameworks for biomedical applications.Small20201610190684610.1002/smll.201906846 32026590
    [Google Scholar]
  13. SelvarajJ. KunduS. SwaroopA.K. Metal-organic framework in pharmaceutical drug delivery.Curr. Top. Med. Chem.2023231311557010.2174/1568026623666230202122519 36733193
    [Google Scholar]
  14. KostovaI. Therapeutic and diagnostic agents based on bioactive endogenous and exogenous coordination compounds.Curr. Med. Chem.20243133588610.2174/0929867330666230321110018 36944628
    [Google Scholar]
  15. NikezićA.V. NovakovićJ.G. Nano/microcarriers in drug delivery: Moving the timeline to contemporary.Curr. Med. Chem.202330262996302310.2174/0929867329666220821193938 36017848
    [Google Scholar]
  16. WangZ. SunQ. LiuB. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy.Coord. Chem. Rev.202143921394510.1016/j.ccr.2021.213945
    [Google Scholar]
  17. SahuM. SharmaV. PatraG.K. Metal-organic frameworks: Emerging luminescent sensors.Curr. Anal. Chem.2024202738910.2174/0115734110280476240105074537
    [Google Scholar]
  18. LinW. ShiX-R. DuanZ. SunC. ZhangX. The application of metal-organic frameworks in the adsorptive removal of harmful species from aqueous solutions.Mini Rev. Org. Chem.202320322723910.2174/1570193X19666220404091505
    [Google Scholar]
  19. SamantarayR. SahuR. PandaJ. The journey from porous materials to metal-organic frameworks and their catalytic applications: A review.Curr. Org. Synth.202320222023710.2174/1570179419666220223093955 35209833
    [Google Scholar]
  20. DingM. CaiX. JiangH.L. Improving MOF stability: Approaches and applications.Chem. Sci. (Camb.)20191044102093010.1039/C9SC03916C 32206247
    [Google Scholar]
  21. TohidiS. Aghaie-KhafriM. Cyclophosphamide loading and controlled release in mil-100(fe) as an anti-breast cancer carrier: In vivo in vitro study.Curr. Drug Deliv.20242122839410.2174/1567201820666230410120437 37046195
    [Google Scholar]
  22. LiuJ.B. ArockiarajM. PaulD. ClementJ. ZhaoX. TiggaS. Degree descriptors and graph entropy quantities of zeolite ACO.Curr. Org. Synth.20242132637310.2174/1570179421666230825151331 37641991
    [Google Scholar]
  23. MaduraiveeranG. ArivazhaganM. KannanP. Nanostructured transition metal sulfide-based glucose and lactic acid electrochemical sensors for clinical applications.Curr. Top. Med. Chem.20232342849410.2174/1568026623666221205093154 36475346
    [Google Scholar]
  24. StockN. BiswasS. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites.Chem. Rev.2012112293396910.1021/cr200304e 22098087
    [Google Scholar]
  25. MahmoudiZ. KabirifardH. GhasemzadehM.A. MIL-101(Cr)-functionalized TEDA-BAIL: An efficient and recyclable catalyst for the synthesis of pyrimido[4,5-b]quinolinetrione derivatives.Curr. Organocatal.202310131810.2174/1389200223666220517124125
    [Google Scholar]
  26. LiW. FuR. LuoX. WangX. A banana-like Ni-MgO solid solution catalyst derived from bimetallic Ni-Mg@MOFs for hydrogenation of nitroarenes.Curr. Org. Chem.20232764657010.2174/1385272827666230608154543
    [Google Scholar]
  27. ChenJ. XuD. GuoS.S. Porous aromatic framework-based materials: Superior adsorbents for uranium extraction from aqueous solutions.Mini Rev. Org. Chem.20232066122110.2174/1570193X20666221216145900
    [Google Scholar]
  28. DhameliyaT.M. PatelR.J. AminR.H. SurejaD.K. BodiwalaK.B. Comprehensive review on metal nanoparticles catalyzed synthesis of aza- and oxa-heterocycles reported in 2021.Mini Rev. Org. Chem.20232088001710.2174/1570193X19666220823101118
    [Google Scholar]
  29. RabieeN. YarakiM.T. GarakaniS.M. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy.Biomaterials202023211970710.1016/j.biomaterials.2019.119707 31874428
    [Google Scholar]
  30. GharehdaghiZ. NaghibS.M. RahimiR. Highly improved pH-Responsive anticancer drug delivery and T2-Weighted MRI imaging by magnetic MOF CuBTC-based nano/microcomposite.Front. Mol. Biosci.202310107137610.3389/fmolb.2023.1071376 37091862
    [Google Scholar]
  31. GharehdaghiZ. RahimiR. NaghibS.M. Fabrication and application of copper metal–organic frameworks as nanocarriers for pH-responsive anticancer drug delivery.J. Indian Chem. Soc.202219727273710.1007/s13738‑021‑02490‑8
    [Google Scholar]
  32. KadishK SmithKM GuilardR The Porphyrin Handbook. London: Elsevier2000316
    [Google Scholar]
  33. Mehrzad SajjadinezhadS. BoivinL. BouarabK. HarveyP.D. Photophysical properties and photonic applications of porphyrin-based MOFs.Coord. Chem. Rev.202451021579410.1016/j.ccr.2024.215794
    [Google Scholar]
  34. HuangH. SongW. RieffelJ. LovellJ.F. Emerging applications of porphyrins in photomedicine.Front. Phys. (Lausanne)201532310.3389/fphy.2015.00023 28553633
    [Google Scholar]
  35. XuY. YangC. DengQ. Bi-Porphyrins MOF with confinement and ion-attracting effects in concert with RuO2-doped CNT as efficient electrocatalysts for HER in acidic and alkaline media.Appl. Surf. Sci.202361215587010.1016/j.apsusc.2022.155870
    [Google Scholar]
  36. GottfriedJ.M. Surface chemistry of porphyrins and phthalocyanines.Surf. Sci. Rep.201570325937910.1016/j.surfrep.2015.04.001
    [Google Scholar]
  37. DurotS. TaeschJ. HeitzV. Multiporphyrinic cages: Architectures and functions.Chem. Rev.20141141785427810.1021/cr400673y 25026396
    [Google Scholar]
  38. XuW.J. HuangB-X. LiG. Donor–acceptor mixed-naphthalene diimide-porphyrin MOF for boosting photocatalytic oxidative coupling of amines.ACS Catal.202313857233210.1021/acscatal.3c00284
    [Google Scholar]
  39. XuD. DuanQ. YuH. DongW. Photodynamic therapy based on porphyrin-based metal–organic frameworks.J. Mater. Chem. B Mater. Biol. Med.2023112659768910.1039/D2TB02789E 37310273
    [Google Scholar]
  40. DaiC. GanY. QinJ. An ultrasensitive solid-state ECL biosensor based on synergistic effect between Zn-NGQDs and porphyrin-based MOF as “on-off-on” platform.Colloids Surf. B Biointerfaces202322611332210.1016/j.colsurfb.2023.113322 37105065
    [Google Scholar]
  41. ChenJ. ZhuY. KaskelS. Porphyrin-based metal-organic frameworks for biomedical applications.Angew. Chem. Int. Ed.2021601050103510.1002/anie.201909880 31989749
    [Google Scholar]
  42. KoschnickC. TerbanM.W. CanossaS. EtterM. DinnebierR.E. LotschB.V. Influence of water content on speciation and phase formation in Zr-porphyrin-based MOFs.Adv. Mater.20243612221061310.1002/adma.202210613 36930851
    [Google Scholar]
  43. WangZ. HuangJ. WangW. Removal of norfloxacin from high salinity wastewater by Hf-porphyrin MOF with missing linker defects: Insights into anion trapping and photoinduced charge transfer effects.Chem. Eng. J.202346614319410.1016/j.cej.2023.143194
    [Google Scholar]
  44. WuD. ZhouH. LaiX. Eu-based porphyrin MOF enables high-performance carbon-based perovskite solar cells.Small20232021e230878310.1002/smll.202308783 38105423
    [Google Scholar]
  45. ZhangX. WassonM.C. ShayanM. A historical perspective on porphyrin-based metal–organic frameworks and their applications.Coord. Chem. Rev.202142921361510.1016/j.ccr.2020.213615 33678810
    [Google Scholar]
  46. Tehrani NejadS. RahimiR. NajafiM. RostamniaS. Sustainable gold nanoparticle (Au-NP) growth within interspaces of porphyrinic zirconium-based metal–organic frameworks: Green synthesis of PCN-224/Au-NPs and its anticancer effect on colorectal cancer cells assay.ACS Appl. Mater. Interfaces20241633162317010.1021/acsami.3c15398 38194287
    [Google Scholar]
  47. WeiY.J. LiJ. HuZ.E. A porphyrin-MOF-based integrated nanozyme system for catalytic cascades and light-enhanced synergistic amplification of cellular oxidative stress.J. Mater. Chem. B Mater. Biol. Med.202311286581659410.1039/D3TB00681F 37358033
    [Google Scholar]
  48. RazaF. ZafarH. JiangL. Chapter 13 - Metal-Organic Frameworks in Gene DeliveryLogic for Metal−Organic Framework Selection: MOFs for Biomedical Applications.Washington, D.C.ACS Publication20243153810.1021/bk‑2024‑1463.ch013
    [Google Scholar]
  49. WangC. PanC. YongH. Emerging non-viral vectors for gene delivery.J. Nanobiotechnology202321127210.1186/s12951‑023‑02044‑5 37592351
    [Google Scholar]
  50. AshrafizadehM. ZarrabiA. BighamA. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy.Med. Res. Rev.202343621157610.1002/med.21971 37165896
    [Google Scholar]
  51. PfeiferA. VermaI.M. Gene therapy: Promises and problems.Annu. Rev. Genomics Hum. Genet.20012117721110.1146/annurev.genom.2.1.177 11701648
    [Google Scholar]
  52. CotrimA.P. BaumB.J. Gene therapy: Some history, applications, problems, and prospects.Toxicol. Pathol.20083619710310.1177/0192623307309925 18337227
    [Google Scholar]
  53. KaufmannK.B. BüningH. GalyA. SchambachA. GrezM. Gene therapy on the move.EMBO Mol. Med.20135111642166110.1002/emmm.201202287 24106209
    [Google Scholar]
  54. ChiraS. JacksonC.S. OpreaI. Progresses towards safe and efficient gene therapy vectors.Oncotarget20156313067570310.18632/oncotarget.5169 26362400
    [Google Scholar]
  55. YahyaE.B. AlqadhiA.M. Recent trends in cancer therapy: A review on the current state of gene delivery.Life Sci.202126911908710.1016/j.lfs.2021.119087 33476633
    [Google Scholar]
  56. KootstraN.A. VermaI.M. Gene therapy with viral vectors.Annu. Rev. Pharmacol. Toxicol.20034314133910.1146/annurev.pharmtox.43.100901.140257 12359866
    [Google Scholar]
  57. NiidomeT. HuangL. Gene therapy progress and prospects: Nonviral vectors.Gene Ther.200292416475210.1038/sj.gt.3301923 12457277
    [Google Scholar]
  58. JinY. YuW. ZhangW. A novel fluorinated polyethyleneimine with microRNA-942-5p-sponges polyplex gene delivery system for non-small-cell lung cancer therapy.J. Colloid Interface Sci.20236482879810.1016/j.jcis.2023.05.153 37301153
    [Google Scholar]
  59. HabibizadehM. LotfollahzadehS. MahdaviP. MohammadiS. TavallaeiO. Nanoparticle-mediated gene delivery of TRAIL to resistant cancer cells: A review.Heliyon20241016e3605710.1016/j.heliyon.2024.e36057 39247341
    [Google Scholar]
  60. RodunerE. Size matters: Why nanomaterials are different.Chem. Soc. Rev.20063575839210.1039/b502142c 16791330
    [Google Scholar]
  61. PugazhendhiA. EdisonT.N.J.I. KaruppusamyI. KathirvelB. Inorganic nanoparticles: A potential cancer therapy for human welfare.Int. J. Pharm.20185391-210411110.1016/j.ijpharm.2018.01.034 29366941
    [Google Scholar]
  62. LacoutureM. SibaudV. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails.Am. J. Clin. Dermatol.201819S1Suppl. 1313910.1007/s40257‑018‑0384‑3 30374901
    [Google Scholar]
  63. BriggerI. DubernetC. CouvreurP. Nanoparticles in cancer therapy and diagnosis.Adv. Drug Deliv. Rev.201264243610.1016/j.addr.2012.09.006 12204596
    [Google Scholar]
  64. MazidiZ. JavanmardiS. NaghibS.M. MohammadpourZ. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials.Chem. Eng. J.202243313456910.1016/j.cej.2022.134569
    [Google Scholar]
  65. YaghoubiF. MotlaghN.S.H. NaghibS.M. HaghiralsadatF. JalianiH.Z. MoradiA. A functionalized graphene oxide with improved cytocompatibility for stimuli-responsive co-delivery of curcumin and doxorubicin in cancer treatment.Sci. Rep.2022121195910.1038/s41598‑022‑05793‑9 35121783
    [Google Scholar]
  66. YaghoubiF. NaghibS.M. MotlaghN.S.H. Multiresponsive carboxylated graphene oxide-grafted aptamer as a multifunctional nanocarrier for targeted delivery of chemotherapeutics and bioactive compounds in cancer therapy.Nanotechnol. Rev.20211011838185210.1515/ntrev‑2021‑0110
    [Google Scholar]
  67. SartipzadehO. NaghibS.M. HaghiralsadatF. ShokatiF. RahmanianM. Microfluidic-assisted synthesis and modeling of stimuli-responsive monodispersed chitosan microgels for drug delivery applications.Sci. Rep.2022121838210.1038/s41598‑022‑12031‑9 35589742
    [Google Scholar]
  68. SartipzadehO. NaghibS.M. SeyfooriA. RahmanianM. FateminiaF.S. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size.Mater. Sci. Eng. C202010911060610.1016/j.msec.2019.110606 32228988
    [Google Scholar]
  69. SartipzadehO. Seyed MortezaN. FarhadS. Microfluidic-assisted synthesis and modelling of monodispersed magnetic nanocomposites for biomedical applications.Nanotechnol. Rev.2020911397140710.1515/ntrev‑2020‑0097
    [Google Scholar]
  70. YaoJ. YangM. DuanY. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy.Chem. Rev.20141141261307810.1021/cr200359p 24779710
    [Google Scholar]
  71. Gooneh-FarahaniS. NaghibS.M. Naimi-JamalM.R. A novel and inexpensive method based on modified ionic gelation for ph-responsive controlled drug release of homogeneously distributed chitosan nanoparticles with a high encapsulation efficiency.Fibers Polym.20202191917192610.1007/s12221‑020‑1095‑y
    [Google Scholar]
  72. Gooneh-FarahaniS. NaghibS.M. Naimi-JamalM.R. SeyfooriA. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents.Sci. Rep.20211111740410.1038/s41598‑021‑97081‑1 34465842
    [Google Scholar]
  73. Gooneh-FarahaniS. Naimi-JamalM.R. NaghibS.M. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: A review.Expert Opin. Drug Deliv.2019161799910.1080/17425247.2019.1556257 30514124
    [Google Scholar]
  74. KhalidK. TanX. Mohd ZaidH.F. Advanced in developmental organic and inorganic nanomaterial: A review.Bioengineered202011132835510.1080/21655979.2020.1736240 32138595
    [Google Scholar]
  75. MatiniA. NaghibS.M. MozafariM.R. Quantum dots in cancer theranostics: A thorough review of recent advancements in bioimaging, tracking, and therapy across various cancer types.Curr. Pharm. Biotechnol.2024251610.2174/0113892010294163240407153842 38644717
    [Google Scholar]
  76. LiuZ. LiH. TianZ. Porphyrin-based nanoparticles: A promising phototherapy platform.ChemPlusChem2022878e20220015610.1002/cplu.202200156 35997087
    [Google Scholar]
  77. MundekkadD. ChoW.C. Nanoparticles in clinical translation for cancer therapy.Int. J. Mol. Sci.2022233168510.3390/ijms23031685 35163607
    [Google Scholar]
  78. HaghshenasM. Golini-moghaddamT. RafieiA. EmadeianO. ShykhpourA. AshrafiG.H. Prevalence and type distribution of high-risk human papillomavirus in patients with cervical cancer: A population-based study.Infect. Agent. Cancer2013812010.1186/1750‑9378‑8‑20 23738651
    [Google Scholar]
  79. YazdanM. NaghibS.M. MozafariM. Liposomal nano-based drug delivery systems for breast cancer therapy: Recent advances and progresses.Anticancer. Agents Med. Chem.2024241289691510.2174/0118715206293653240322041047 38529608
    [Google Scholar]
  80. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  81. ChanH.K. KwokP.C.L. Production methods for nanodrug particles using the bottom-up approach.Adv. Drug Deliv. Rev.201163640641610.1016/j.addr.2011.03.011 21457742
    [Google Scholar]
  82. MohanrajV. ChenY. Nanoparticles-a review.Trop. J. Pharm. Res.20065156173
    [Google Scholar]
  83. KhanY. SadiaH. Ali ShahS.Z. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review.Catalysts20221211138610.3390/catal12111386
    [Google Scholar]
  84. XuK. ZhangS. ZhuangX. ZhangG. TangY. PangH. Recent progress of MOF-functionalized nanocomposites: From structure to properties.Adv. Colloid Interface Sci.202432310305010.1016/j.cis.2023.103050 38086152
    [Google Scholar]
  85. SunL. CampbellM.G. DincăM. Electrically conductive porous metal–organic frameworks.Angew. Chem. Int. Ed.2016551135667910.1002/anie.201506219 26749063
    [Google Scholar]
  86. ZhangZ. SangW. XieL. DaiY. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy.Coord. Chem. Rev.201939921302210.1016/j.ccr.2019.213022
    [Google Scholar]
  87. MunawarJ. KhanM.S. Zehra SyedaS.E. Metal-organic framework-based smart nanoplatforms for biosensing, drug delivery, and cancer theranostics.Inorg. Chem. Commun.202314711014510.1016/j.inoche.2022.110145
    [Google Scholar]
  88. Nirosha YalamandalaB. ShenW-T. MinS-H. ChiangW-H. ChangS-J. HuS-H. Advances in functional metal-organic frameworks based on-demand drug delivery systems for tumor therapeutics.Adv. NanoBiomed Res.202118210001410.1002/anbr.202100014
    [Google Scholar]
  89. DeyC. KunduT. BiswalB.P. MallickA. BanerjeeR. Crystalline metal-organic frameworks (MOFs): Synthesis, structure and function.Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater.201470131010.1107/S2052520613029557 24441122
    [Google Scholar]
  90. BurtchN.C. JasujaH. WaltonK.S. Water stability and adsorption in metal-organic frameworks.Chem. Rev.2014114201057561210.1021/cr5002589 25264821
    [Google Scholar]
  91. DavisM.E. ChenZ. ShinD.M. Nanoparticle therapeutics: An emerging treatment modality for cancer.Nat. Rev. Drug Discov.2008797718210.1038/nrd2614 18758474
    [Google Scholar]
  92. BattersbyA.R. Tetrapyrroles: The pigments of life.Nat. Prod. Rep.200017650752610.1039/b002635m 11152419
    [Google Scholar]
  93. MontaseriH. KrugerC.A. AbrahamseH. Recent advances in porphyrin-based inorganic nanoparticles for cancer treatment.Int. J. Mol. Sci.2020219335810.3390/ijms21093358 32397477
    [Google Scholar]
  94. XieM. LiuJ. DaiL. PengH. XieY. Advances and prospects of porphyrin derivatives in the energy field.RSC Advances202313352469973010.1039/D3RA04345B 37601600
    [Google Scholar]
  95. WangY. MaS. ZouH. WuZ. LuoZ. LiG. Protoporphyrin IX based all-solid-state ion-selective electrodes for choline determination in vitro.Appl. Sci. (Basel)20211112554910.3390/app11125549
    [Google Scholar]
  96. KingsburyC.J. SengeM.O. The shape of porphyrins.Coord. Chem. Rev.202143121376010.1016/j.ccr.2020.213760
    [Google Scholar]
  97. LiuX. ZhanW. GaoG. Apoptosis-amplified assembly of porphyrin nanofiber enhances photodynamic therapy of oral tumor.J. Am. Chem. Soc.20231451479183010.1021/jacs.2c13189 36987560
    [Google Scholar]
  98. JiangX. ZhaoY. SunS. Research development of porphyrin-based metal–organic frameworks: Targeting modalities and cancer therapeutic applications.J. Mater. Chem. B Mater. Biol. Med.20231127617220010.1039/D3TB00632H 37305964
    [Google Scholar]
  99. HeY. LiD. WuL. Metal‐organic frameworks for gene therapy and detection.Adv. Funct. Mater.20233312221227710.1002/adfm.202212277
    [Google Scholar]
  100. DoughertyT.J. GomerC.J. HendersonB.W. Photodynamic therapy.J. Natl. Cancer Inst.1998901288990510.1093/jnci/90.12.889 9637138
    [Google Scholar]
  101. DebeleT. PengS. TsaiH.C. Drug carrier for photodynamic cancer therapy.Int. J. Mol. Sci.2015169220942213610.3390/ijms160922094 26389879
    [Google Scholar]
  102. IbraheemD. ElaissariA. FessiH. Gene therapy and DNA delivery systems.Int. J. Pharm.20144591-2708310.1016/j.ijpharm.2013.11.041 24286924
    [Google Scholar]
  103. PatilS. GaoY.G. LinX. The development of functional non-viral vectors for gene delivery.Int. J. Mol. Sci.20192021549110.3390/ijms20215491 31690044
    [Google Scholar]
  104. NayerossadatN. MaedehT. AliP. Viral and nonviral delivery systems for gene delivery.Adv. Biomed. Res.2012112710.4103/2277‑9175.98152 23210086
    [Google Scholar]
  105. LvH. ZhangS. WangB. CuiS. YanJ. Toxicity of cationic lipids and cationic polymers in gene delivery.J. Control. Release20061141100910.1016/j.jconrel.2006.04.014 16831482
    [Google Scholar]
  106. DavisM.E. Non-viral gene delivery systems.Curr. Opin. Biotechnol.200213212813110.1016/S0958‑1669(02)00294‑X 11950563
    [Google Scholar]
  107. SunX. ZhangN. Cationic polymer optimization for efficient gene delivery.Mini Rev. Med. Chem.201010210812510.2174/138955710791185109 20408796
    [Google Scholar]
  108. WangW. LiW. MaN. SteinhoffG. Non-viral gene delivery methods.Curr. Pharm. Biotechnol.20131414660 23437936
    [Google Scholar]
  109. AvanA. MehrabadiS. VelayatiM. Growth-hormone-releasing hormone as a prognostic biomarker and therapeutic target in gastrointestinal cancer.Curr. Cancer Drug Targets202323534635310.2174/1568009623666221228094557 36582060
    [Google Scholar]
  110. MoazamiyanfarR. RezaeiS. Ali AshrafzadehH. Nobiletin in cancer therapy; mechanisms and therapy perspectives.Curr. Pharm. Des.202329221713172810.2174/1381612829666230426115424 37185325
    [Google Scholar]
  111. AliD.S. OthmanH.O. AnwerE.T. The advances in chitosan-based drug delivery systems for colorectal cancer: A narrative review.Curr. Pharm. Biotechnol.202324121554155910.2174/1389201024666230202160504 36733239
    [Google Scholar]
  112. RafieiA. HosseiniV. JanbabaiG. Polymorphism in the interleukin-17A promoter contributes to gastric cancer.World J. Gastroenterol.201319345693569910.3748/wjg.v19.i34.5693 24039363
    [Google Scholar]
  113. SherrC.J. Principles of tumor suppression.Cell2004116223524610.1016/S0092‑8674(03)01075‑4 14744434
    [Google Scholar]
  114. YounisN.K. YassineH.M. EidA.H. Nanomedicine for cancer.Curr. Med. Chem.202330232592259410.2174/0929867330666221228121947 36579388
    [Google Scholar]
  115. DeS.K. Futibatinib: A potent and irreversible inhibitor of fibroblast growth factor receptors for treatment of the bile duct cancer.Curr. Med. Chem.202431666667010.2174/0929867330666230416152913 37062061
    [Google Scholar]
  116. SadrS. BorjiH. Echinococcus granulosus as a promising therapeutic agent against triplenegative breast cancer.Curr. Cancer Ther. Rev.2023194292710.2174/1573394719666230427094247
    [Google Scholar]
  117. PadmaV.V. An overview of targeted cancer therapy.Biomedicine (Taipei)2015541910.7603/s40681‑015‑0019‑4 26613930
    [Google Scholar]
  118. LiuJ. LiS. WangJ. LiN. ZhouJ. ChenH. Application of nano drug delivery system (NDDS) in cancer therapy: A perspective.Rec Paten Antican Drug Discov202318212513210.2174/1574892817666220713150521 35838209
    [Google Scholar]
  119. AtabatiM. SaberR. MalakutiP. Association of a genetic variant in chromosome 9p21 with increased risk of developing cervical cancer.Curr. Cancer Ther. Rev.202319435836210.2174/1573394719666230321153528
    [Google Scholar]
  120. WeinbergR.A. WeinbergR.A. The biology of cancer.New YorkWW Norton & Company20061610.1201/9780203852569
    [Google Scholar]
  121. ShamaeizadehA. BeigiA. NaghibS.M. TajabadiM. RahmanianM. MozafariM.R. Smart nanobiomaterials for gene delivery in localized cancer therapy: An overview from emerging materials and devices to clinical applications.Curr. Cancer Drug Targets20242410.2174/0115680096288917240404060506 38644713
    [Google Scholar]
  122. YazdanM. NaghibS.M. MoepubiM.R. Liposomal nano-based drug delivery systems for breast cancer therapy: Recent advances and progresses.Anticancer. Agents Med. Chem.2024241289691510.2174/0118715206293653240322041047 38529608
    [Google Scholar]
  123. KangarshahiM.B. NaghibS.M. RabieeN. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers.Crit. Rev. Clin. Lab. Sci.202461647349510.1080/10408363.2024.2321202 38450458
    [Google Scholar]
  124. CohenG.M. Caspases: The executioners of apoptosis.Biochem. J.1997326111610.1042/bj3260001 9337844
    [Google Scholar]
  125. NaghibS.M. Mohammad-JafariK. Microfluidics-mediated liposomal nanoparticles for cancer therapy: Recent developments on advanced devices and technologies.Curr. Top. Med. Chem.202424141185121110.2174/0115680266286460240220073334 38424436
    [Google Scholar]
  126. AlimohammadiM. GolpourM. SohbatzadehF. Cold atmospheric plasma is a potent tool to improve chemotherapy in melanoma in vitro and in vivo.Biomolecules2020107101110.3390/biom10071011 32650505
    [Google Scholar]
  127. ReedJ.C. Mechanisms of apoptosis.Am. J. Pathol.200015751415143010.1016/S0002‑9440(10)64779‑7 11073801
    [Google Scholar]
  128. BoatrightK.M. RenatusM. ScottF.L. A unified model for apical caspase activation.Mol. Cell200311252954110.1016/S1097‑2765(03)00051‑0 12620239
    [Google Scholar]
  129. BhadraK. A mini review on molecules inducing caspase-independent cell death: A new route to cancer therapy.Molecules20222719640110.3390/molecules27196401 36234938
    [Google Scholar]
  130. FigueiraF. ToméJ.P.C. PazF.A.A. Porphyrin nanometal-organic frameworks as cancer theranostic agents.Molecules20222710311110.3390/molecules27103111 35630585
    [Google Scholar]
  131. Akbari OryaniM. TarinM. Rahnama AraghiL. Synergistic cancer treatment using porphyrin-based metal-organic frameworks for photodynamic and photothermal therapy.J. Drug Target.20242211910.1080/1061186X.2024.2433551 39618308
    [Google Scholar]
  132. Aghajani-HashjinM. NaghibS.M. Nanoscale MOF-based composites for cancer treatment.Multidiscip Canc Investig202374253910.61186/mci.7.4.25
    [Google Scholar]
  133. SaebM.R. RabieeN. MozafariM. VerpoortF. VoskressenskyL.G. LuqueR. Metal–organic frameworks (MOFs) for cancer therapy.Materials (Basel)20211423727710.3390/ma14237277 34885431
    [Google Scholar]
  134. LohX.J. LeeT.C. DouQ. DeenG.R. Utilising inorganic nanocarriers for gene delivery.Biomater. Sci.201641708610.1039/C5BM00277J 26484365
    [Google Scholar]
  135. YuW. ZhenW. ZhangQ. Porphyrin-based metal-organic framework compounds as promising nanomedicines in photodynamic therapy.ChemMedChem202015191766177510.1002/cmdc.202000353 32715651
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128359818250407020852
Loading
/content/journals/cpd/10.2174/0113816128359818250407020852
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gene therapy ; Porphyrin ; gene delivery ; cancer therapy ; MOF ; tamoxifen
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test