Skip to content
2000
image of Polymeric Microneedles: Advancing Potential Through Innovative Manufacturing, Polymer Design, and Characterization Techniques

Abstract

Microneedles (MNs) represent a transformative technology in pharmaceutics, offering a minimally invasive method for drug delivery that enhances patient compliance and therapeutic efficacy. By enabling transdermal administration, MNs provide a promising option to conventional routes of drug delivery, such as injections and oral administration, which may cause discomfort and lead to poor adherence. This review provides a comprehensive analysis of polymeric MNs, with a particular focus on their fabrication techniques, polymer selection strategies, and pharmaceutical characterization methods. It critically examines the latest advancements in manufacturing approaches, emphasizing the role of biocompatible and biodegradable polymers in enhancing drug solubility, stability, and controlled release. This review provides insights into the current landscape of polymeric MN applications in drug delivery, highlighting their potential to revolutionize therapeutic interventions across diverse medical fields. Ongoing advancements in polymeric MN technology could lead to significant improvements in patient outcomes, positioning MNs as a cornerstone of the next generation of drug delivery systems.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128376011250706183030
2025-07-28
2025-09-08
Loading full text...

Full text loading...

References

  1. Tibbitt M.W. Dahlman J.E. Langer R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016 138 3 704 717 10.1021/jacs.5b09974 26741786
    [Google Scholar]
  2. Verma P. Thakur A.S. Deshmukh K. Jha A.K. Verma S. Routes of drug administration. International J Pharm Stud Res 2010 1 1 54 59
    [Google Scholar]
  3. Ruiz M.E. Scioli Montoto S. Routes of drug administration. In: ADME Processes in Pharmaceutical Sciences: Dosage. Springer 2018 97 133 10.1007/978‑3‑319‑99593‑9_6
    [Google Scholar]
  4. McCrudden M.T.C. McAlister E. Courtenay A.J. González-Vázquez P. Raj Singh T.R. Donnelly R.F. Microneedle applications in improving skin appearance. Exp. Dermatol. 2015 24 8 561 566 10.1111/exd.12723 25865925
    [Google Scholar]
  5. McGrath J.A. Eady R.A.J. Pope F.M. Anatomy and organization of human skin. In: Rook’s Textbook of Dermatology. WILEY 2004 10.1002/9780470750520.ch3
    [Google Scholar]
  6. Verbraecken J. Van de Heyning P. De Backer W. Van Gaal L. Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism 2006 55 4 515 524 10.1016/j.metabol.2005.11.004 16546483
    [Google Scholar]
  7. Dharadhar S. Majumdar A. Dhoble S. Patravale V. Microneedles for transdermal drug delivery: A systematic review. Drug Dev. Ind. Pharm. 2019 45 2 188 201 10.1080/03639045.2018.1539497 30348022
    [Google Scholar]
  8. Naik A. Pechtold L.A.R.M. Potts R.O. Guy R.H. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Control. Release 1995 37 3 299 306 10.1016/0168‑3659(95)00088‑7
    [Google Scholar]
  9. Bhandari K.H. Lee D.X. Newa M. Evaluation of skin permeation and accumulation profiles of a highly lipophilic fatty ester. Arch. Pharm. Res. 2008 31 2 242 249 10.1007/s12272‑001‑1148‑8 18365697
    [Google Scholar]
  10. Prausnitz M.R. Langer R. Transdermal drug delivery. Nat. Biotechnol. 2008 26 11 1261 1268 10.1038/nbt.1504 18997767
    [Google Scholar]
  11. Manca M.L. Zaru M. Manconi M. Glycerosomes: A new tool for effective dermal and transdermal drug delivery. Int. J. Pharm. 2013 455 1-2 66 74 10.1016/j.ijpharm.2013.07.060 23911913
    [Google Scholar]
  12. Rzhevskiy A.S. Singh T.R.R. Donnelly R.F. Anissimov Y.G. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J. Control. Release 2018 270 184 202 10.1016/j.jconrel.2017.11.048 29203415
    [Google Scholar]
  13. Gill H.S. Denson D.D. Burris B.A. Prausnitz M.R. Effect of microneedle design on pain in human volunteers. Clin. J. Pain 2008 24 7 585 594 10.1097/AJP.0b013e31816778f9 18716497
    [Google Scholar]
  14. Gupta J. Park S.S. Bondy B. Felner E.I. Prausnitz M.R. Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials 2011 32 28 6823 6831 10.1016/j.biomaterials.2011.05.061 21684001
    [Google Scholar]
  15. Escobar-Chávez J.J. Bonilla-Martínez D. Angélica M. Microneedles: A valuable physical enhancer to increase transdermal drug delivery. J. Clin. Pharmacol. 2011 51 7 964 977 10.1177/0091270010378859 21148047
    [Google Scholar]
  16. Ye Y. Yu J. Wen D. Kahkoska A.R. Gu Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev. 2018 127 106 118 10.1016/j.addr.2018.01.015 29408182
    [Google Scholar]
  17. Henry S. McAllister D.V. Allen M.G. Prausnitz M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 1998 87 8 922 925 10.1021/js980042+ 9687334
    [Google Scholar]
  18. Halder J. Gupta S. Kumari R. Gupta G.D. Rai V.K. Microneedle array: Applications, recent advances, and clinical pertinence in transdermal drug delivery. J. Pharm. Innov. 2021 16 3 558 565 10.1007/s12247‑020‑09460‑2 32837607
    [Google Scholar]
  19. Joshi N Machekposhti SA Narayan RJ Evolution of transdermal drug delivery devices and novel microneedle technologies: a historical perspective and review. JID Innov 2023 3 6 100225 10.1016/j.xjidi.2023.100225
    [Google Scholar]
  20. Microneedles drug delivery system markets 2025 Available from: https://www.thebusinessresearchcompany.com/report/microneedle-drug-delivery-systems-global-market-report
  21. Pradeep Narayanan S. Raghavan S. Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Technol. 2017 93 1-4 407 422 10.1007/s00170‑016‑9698‑6
    [Google Scholar]
  22. Amin F. Ahmed S. 2013 10.1088/1742‑6596/439/1/012049
  23. Pradeep Narayanan S. Raghavan S. Fabrication and characterization of gold-coated solid silicon microneedles with improved biocompatibility. Int. J. Adv. Manuf. Technol. 2019 104 9-12 3327 3333 10.1007/s00170‑018‑2596‑3
    [Google Scholar]
  24. Hu Z. Meduri C.S. Ingrole R.S.J. Gill H.S. Kumar G. Solid and hollow metallic glass microneedles for transdermal drug-delivery. Appl. Phys. Lett. 2020 116 20 203703 10.1063/5.0008983
    [Google Scholar]
  25. Martin C.J. Allender C.J. Brain K.R. Morrissey A. Birchall J.C. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release 2012 158 1 93 101 10.1016/j.jconrel.2011.10.024 22063007
    [Google Scholar]
  26. Xu B. Cao Q. Zhang Y. Microneedles integrated with ZnO quantum-dot-capped mesoporous bioactive glasses for glucose-mediated insulin delivery. ACS Biomater. Sci. Eng. 2018 4 7 2473 2483 10.1021/acsbiomaterials.8b00626 33435111
    [Google Scholar]
  27. Boks M.A. Unger W.W.J. Engels S. Ambrosini M. Kooyk Y. Luttge R. Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. Int. J. Pharm. 2015 491 1-2 375 383 10.1016/j.ijpharm.2015.06.025 26116016
    [Google Scholar]
  28. Olhero S.M. Lopes E. Ferreira J.M.F. Fabrication of ceramic microneedles - The role of specific interactions between processing additives and the surface of oxide particles in Epoxy Gel Casting. J. Eur. Ceram. Soc. 2016 36 16 4131 4140 10.1016/j.jeurceramsoc.2016.06.035
    [Google Scholar]
  29. Sargioti N. Levingstone T.J. O’Cearbhaill E.D. McCarthy H.O. Dunne N.J. Metallic microneedles for transdermal drug delivery: Applications, fabrication techniques and the effect of geometrical characteristics. Bioengineering 2022 10 1 24 10.3390/bioengineering10010024 36671595
    [Google Scholar]
  30. Omatsu T. Chujo K. Miyamoto K. Metal microneedle fabrication using twisted light with spin. Opt. Express 2010 18 17 17967 17973 10.1364/OE.18.017967 20721183
    [Google Scholar]
  31. Hong X. Wu Z. Chen L. Wu F. Wei L. Yuan W. Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett. 2014 6 3 191 199 10.1007/BF03353783
    [Google Scholar]
  32. Turner J.G. White L.R. Estrela P. Leese H.S. Hydrogel‐forming microneedles: Current advancements and future trends. Macromol. Biosci. 2021 21 2 2000307 10.1002/mabi.202000307 33241641
    [Google Scholar]
  33. Donnelly R.F. McCrudden M.T.C. Zaid Alkilani A. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One 2014 9 10 e111547 10.1371/journal.pone.0111547 25360806
    [Google Scholar]
  34. Zhao W. Yang A. Wang J. Potential application of natural bioactive compounds as skin‐whitening agents: A review. J. Cosmet. Dermatol. 2022 21 12 6669 6687 10.1111/jocd.15437 36204978
    [Google Scholar]
  35. Olatunji O. Denloye A. Production of hydrogel microneedles from fish scale biopolymer. J. Polym. Environ. 2019 27 6 1252 1258 10.1007/s10924‑019‑01426‑x
    [Google Scholar]
  36. Li J.Y. Feng Y.H. He Y.T. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery. Acta Biomater. 2022 153 308 319 10.1016/j.actbio.2022.08.061 36055607
    [Google Scholar]
  37. Nguyen H.X. Banga A.K. Fabrication, characterization and application of sugar microneedles for transdermal drug delivery. Ther. Deliv. 2017 8 5 249 264 10.4155/tde‑2016‑0096 28361607
    [Google Scholar]
  38. Lee K. Lee C.Y. Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 2011 32 11 3134 3140 10.1016/j.biomaterials.2011.01.014 21292317
    [Google Scholar]
  39. Li Y. Zhang H. Yang R. In-plane silicon microneedles with open capillary microfluidic networks by deep reactive ion etching and sacrificial layer based sharpening. Sens. Actuators A Phys. 2019 292 149 157 10.1016/j.sna.2019.04.008
    [Google Scholar]
  40. Ashraf M.W. Tayyaba S. Afzulpurkar N. Nisar A. Bohez E.L.J. Tuantranont A. Structural and microfluidic analysis of MEMS based out-of-plane hollow silicon microneedle array for drug delivery. EEE International Conference on Automation Science and Engineering Toronto, ON, Canada 2010 258 262 10.1109/COASE.2010.5584012
    [Google Scholar]
  41. Kim S.H. Kim J.H. Choi Y.M. Microneedles: A novel clinical technology for evaluating skin characteristics. Skin Res. Technol. 2024 30 3 e13647 10.1111/srt.13647 38465749
    [Google Scholar]
  42. Agarwal S. Curtin J. Duffy B. Jaiswal S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C 2016 68 948 963 10.1016/j.msec.2016.06.020 27524097
    [Google Scholar]
  43. Arif U. Haider S. Haider A. Biocompatible polymers and their potential biomedical applications: A review. Curr. Pharm. Des. 2019 25 34 3608 3619 10.2174/1381612825999191011105148 31604409
    [Google Scholar]
  44. Vora L.K. Courtenay A.J. Tekko I.A. Larrañeta E. Donnelly R.F. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int. J. Biol. Macromol. 2020 146 290 298 10.1016/j.ijbiomac.2019.12.184 31883883
    [Google Scholar]
  45. Bhatnagar S. Gadeela P.R. Thathireddy P. Venuganti V.V.K. Microneedle-based drug delivery: Materials of construction. J. Chem. Sci. 2019 131 1 28
    [Google Scholar]
  46. Park J-H. Allen M.G. Prausnitz M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. CA, USA, IEEE Engineering in Medicine and Biology Society 2004 2654 2657
    [Google Scholar]
  47. Braybrook J.H. Biocompatibility assessment of medical devices and materials. Wiley 1997
    [Google Scholar]
  48. Amourizi F.Z. Malek-Khatabi A.Z. Zare-Dorabei R. Polymeric and composite-based microneedles in drug delivery: regenerative medicine, microbial infection therapy, and cancer treatment. Materials Chemistry Horizons 2023 2 2 113 124
    [Google Scholar]
  49. Dalvi M. Kharat P. Thakor P. Bhavana V. Singh S.B. Mehra N.K. Panorama of dissolving microneedles for transdermal drug delivery. Life Sci. 2021 284 119877 10.1016/j.lfs.2021.119877 34384832
    [Google Scholar]
  50. Singh P. Carrier A. Chen Y. Polymeric microneedles for controlled transdermal drug delivery. J. Control. Release 2019 315 97 113 10.1016/j.jconrel.2019.10.022 31644938
    [Google Scholar]
  51. Alkilani A. McCrudden M.T. Donnelly R. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 2015 7 4 438 470 10.3390/pharmaceutics7040438 26506371
    [Google Scholar]
  52. Amarnani R. Shende P. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system. Biomed. Microdevices 2022 24 1 4 10.1007/s10544‑021‑00604‑w 34878589
    [Google Scholar]
  53. Liu T. Luo G. Xing M. Biomedical applications of polymeric microneedles for transdermal therapeutic delivery and diagnosis: Current status and future perspectives. Adv. Ther. (Weinh.) 2020 3 9 1900140 10.1002/adtp.201900140
    [Google Scholar]
  54. Azmana M. Mahmood S. Hilles A.R. Mandal U.K. Saeed Al-Japairai K.A. Raman S. Transdermal drug delivery system through polymeric microneedle: A recent update. J. Drug Deliv. Sci. Technol. 2020 60 101877 10.1016/j.jddst.2020.101877
    [Google Scholar]
  55. Babity S. Roohnikan M. Brambilla D. Advances in the design of transdermal microneedles for diagnostic and monitoring applications. Small 2018 14 49 1803186 10.1002/smll.201803186 30353663
    [Google Scholar]
  56. Liu Y. Mao R. Han S. Yu Z. Xu B. Xu T. Polymeric microneedle drug delivery systems: Mechanisms of treatment, material properties, and clinical applications: A comprehensive review. Polymers 2024 16 18 2568 10.3390/polym16182568 39339032
    [Google Scholar]
  57. Wang M. Hu L. Xu C. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 2017 17 8 1373 1387 10.1039/C7LC00016B 28352876
    [Google Scholar]
  58. Park J.H. Prausnitz M. Analysis of mechanical failure of polymer microneedles by axial force. J. Korean Phys. Soc. 2010 56 4 1223 1227 10.3938/jkps.56.1223 21218133
    [Google Scholar]
  59. Juster H. van der Aar B. de Brouwer H. A review on microfabrication of thermoplastic polymer‐based microneedle arrays. Polym. Eng. Sci. 2019 59 5 877 890
    [Google Scholar]
  60. Chen Y. Xian Y. Carrier A.J. A simple and cost-effective approach to fabricate tunable length polymeric microneedle patches for controllable transdermal drug delivery. RSC Advances 2020 10 26 15541 15546 35495428
    [Google Scholar]
  61. Mbituyimana B. Ma G. Shi Z. Yang G. Polymeric microneedles for enhanced drug delivery in cancer therapy. Biomaterials Advances 2022 142 213151 10.1016/j.bioadv.2022.213151 36244246
    [Google Scholar]
  62. Lee J.W. Park J.H. Prausnitz M.R. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008 29 13 2113 2124 10.1016/j.biomaterials.2007.12.048 18261792
    [Google Scholar]
  63. A Machekposhti S, Soltani M, Najafizadeh P, Ebrahimi SA, Chen P. Biocompatible polymer microneedle for topical/dermal delivery of tranexamic acid. J. Control. Release 2017 261 87 92 10.1016/j.jconrel.2017.06.016 28645793
    [Google Scholar]
  64. Li Q.Y. Zhang J.N. Chen B.Z. Wang Q.L. Guo X.D. A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Advances 2017 7 25 15408 15415 10.1039/C6RA26759A
    [Google Scholar]
  65. Ali A.A. McCrudden C.M. McCaffrey J. DNA vaccination for cervical cancer; a novel technology platform of RALA mediated gene delivery via polymeric microneedles. Nanomedicine (Lond.) 2017 13 3 921 932 10.1016/j.nano.2016.11.019 27979747
    [Google Scholar]
  66. Shah V. Choudhury B.K. Fabrication, physicochemical characterization, and performance evaluation of biodegradable polymeric microneedle patch system for enhanced transcutaneous flux of high molecular weight therapeutics. AAPS PharmSciTech 2017 18 8 2936 2948 10.1208/s12249‑017‑0774‑5 28432615
    [Google Scholar]
  67. Lee I.C. Lin W.M. Shu J.C. Tsai S.W. Chen C.H. Tsai M.T. Formulation of two‐layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J. Biomed. Mater. Res. A 2017 105 1 84 93 10.1002/jbm.a.35869 27539509
    [Google Scholar]
  68. Than A. Liang K. Xu S. Transdermal delivery of anti‐obesity compounds to subcutaneous adipose tissue with polymeric microneedle patches. Small Methods 2017 1 11 1700269 10.1002/smtd.201700269
    [Google Scholar]
  69. Coyne J. Davis B. Kauffman D. Zhao N. Wang Y. Polymer microneedle mediated local aptamer delivery for blocking the function of vascular endothelial growth factor. ACS Biomater. Sci. Eng. 2017 3 12 3395 3403 10.1021/acsbiomaterials.7b00718 29707631
    [Google Scholar]
  70. Cole G. McCaffrey J. Ali A.A. Dissolving microneedles for DNA vaccination: Improving functionality via polymer characterization and RALA complexation. Hum. Vaccin. Immunother. 2017 13 1 50 62 10.1080/21645515.2016.1248008 27846370
    [Google Scholar]
  71. Bhatnagar S. Saju A. Cheerla K.D. Gade S.K. Garg P. Venuganti V.V.K. Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles. Drug Deliv. Transl. Res. 2018 8 3 473 483 10.1007/s13346‑017‑0470‑8 29288357
    [Google Scholar]
  72. Andersen T.E. Andersen A.J. Petersen R.S. Nielsen L.H. Keller S.S. Drug loaded biodegradable polymer microneedles fabricated by hot embossing. Microelectron. Eng. 2018 195 57 61 10.1016/j.mee.2018.03.024
    [Google Scholar]
  73. Pamornpathomkul B. Ngawhirunpat T. Tekko I.A. Vora L. McCarthy H.O. Donnelly R.F. Dissolving polymeric microneedle arrays for enhanced site-specific acyclovir delivery. Eur. J. Pharm. Sci. 2018 121 200 209 10.1016/j.ejps.2018.05.009 29777854
    [Google Scholar]
  74. Gao Y. Hou M. Yang R. PEGDA/PVP microneedles with tailorable matrix constitutions for controllable transdermal drug delivery. Macromol. Mater. Eng. 2018 303 12 1800233 10.1002/mame.201800233
    [Google Scholar]
  75. Arshad M.S. Hassan S. Hussain A. Improved transdermal delivery of cetirizine hydrochloride using polymeric microneedles. Daru 2019 27 2 673 681 10.1007/s40199‑019‑00301‑3 31630328
    [Google Scholar]
  76. Sabri A.H. Cater Z. Gurnani P. Intradermal delivery of imiquimod using polymeric microneedles for basal cell carcinoma. Int. J. Pharm. 2020 589 119808 10.1016/j.ijpharm.2020.119808 32891716
    [Google Scholar]
  77. Pires L.R. Amado I.R. Gaspar J. Dissolving microneedles for the delivery of peptides - Towards tolerance-inducing vaccines. Int. J. Pharm. 2020 586 119590 10.1016/j.ijpharm.2020.119590 32621946
    [Google Scholar]
  78. Du G. Zhang Z. He P. Zhang Z. Sun X. Determination of the mechanical properties of polymeric microneedles by micromanipulation. J. Mech. Behav. Biomed. Mater. 2021 117 104384 10.1016/j.jmbbm.2021.104384 33592344
    [Google Scholar]
  79. Du G. He P. Zhao J. Polymeric microneedle-mediated transdermal delivery of melittin for rheumatoid arthritis treatment. J. Control. Release 2021 336 537 548 10.1016/j.jconrel.2021.07.005 34237400
    [Google Scholar]
  80. Liu R.X. He Y.T. Liang L. Mechanical evaluation of polymer microneedles for transdermal drug delivery: In vitro and in vivo. J. Ind. Eng. Chem. 2022 114 181 189 10.1016/j.jiec.2022.07.008
    [Google Scholar]
  81. Guimarães T.M.T. Moniz T. Nunes C. Polymeric microneedles for transdermal delivery of rivastigmine: Design and application in skin mimetic model. Pharmaceutics 2022 14 4 752 10.3390/pharmaceutics14040752 35456586
    [Google Scholar]
  82. Anjani Q.K. Pandya A.K. Demartis S. Liposome-loaded polymeric microneedles for enhanced skin deposition of rifampicin. Int. J. Pharm. 2023 646 123446 10.1016/j.ijpharm.2023.123446 37751787
    [Google Scholar]
  83. Zaid Alkilani A. Abo-Zour H. Basheer H.A. Abu-Zour H. Donnelly R.F. Development and evaluation of an innovative approach using niosomes based polymeric microneedles to deliver dual antioxidant drugs. Polymers 2023 15 8 1962 10.3390/polym15081962 37112106
    [Google Scholar]
  84. Wang B. Liu H. Zhang S. Aspirin microcrystals deposited on high-density microneedle tips for the preparation of soluble polymer microneedles. Drug Deliv. Transl. Res. 2023 13 10 2639 2652 10.1007/s13346‑023‑01343‑6 37040032
    [Google Scholar]
  85. Wang B. Zhang S. Cheng A. Yan J. Gao Y. Soluble polymer microneedles loaded with interferon Alpha 1b for treatment of hyperplastic scar. Polymers 2023 15 12 2621 10.3390/polym15122621 37376266
    [Google Scholar]
  86. Aldawood F.K. Parupelli S.K. Andar A. Desai S. 3D printing of biodegradable polymeric microneedles for transdermal drug delivery applications. Pharmaceutics 2024 16 2 237 10.3390/pharmaceutics16020237 38399291
    [Google Scholar]
  87. Liu T. Sun Y. Zhang W. Hollow-adjustable polymer microneedles for prolonged hypoglycemic effect on diabetic rats. Chem. Eng. J. 2024 481 148670 10.1016/j.cej.2024.148670
    [Google Scholar]
  88. Wang Z. Li B. Nie C. Photothermal conjugated polymer microneedle with biofilm elimination and angiogenesis for diabetic wound healing. Nano Lett. 2025 25 7 2911 2921 10.1021/acs.nanolett.4c06284 39913171
    [Google Scholar]
  89. Zeng Y. Wu L. Jiang X. Self-assembled hyaluronic acid nanoparticles delivered by polymeric microneedles for targeted and long-acting therapy of psoriasis. Int. J. Pharm. 2025 669 125073 10.1016/j.ijpharm.2024.125073 39672311
    [Google Scholar]
  90. Lin Y. Wu J. Zhuang Z. A pH-responsive microneedle patch for the transdermal delivery of biomineralized insulin nanoparticles to diabetes treatment. Int. J. Biol. Macromol. 2025 284 Pt 1 137955 10.1016/j.ijbiomac.2024.137955 39592049
    [Google Scholar]
  91. Elhabal S.F. El-Nabarawi M. Elrefai M.F.M. Nano-spanlastics-loaded dissolving microneedle patches for ketotifen fumarate: Advanced strategies for allergic conjunctivitis treatment and molecular insights. Drug Deliv. Transl. Res. 2025 10.1007/s13346‑025‑01796‑x 39934562
    [Google Scholar]
  92. Sabbagh F. Kim B.S. Ex vivo transdermal delivery of nicotinamide mononucleotide using polyvinyl alcohol microneedles. Polymers 2023 15 9 2031 10.3390/polym15092031 37177177
    [Google Scholar]
  93. Chi Y. Huang Y. Kang Y. The effects of molecular weight of hyaluronic acid on transdermal delivery efficiencies of dissolving microneedles. Eur. J. Pharm. Sci. 2022 168 106075 10.1016/j.ejps.2021.106075 34813921
    [Google Scholar]
  94. Miura S. Yamagishi R. Ando M. Fabrication and evaluation of dissolving hyaluronic acid microneedle patches for minimally invasive transdermal drug delivery by nanoimprinting. Gels 2025 11 2 89 10.3390/gels11020089 39996632
    [Google Scholar]
  95. Breda M. Barattè S. A review of analytical methods for the determination of 5-fluorouracil in biological matrices. Anal. Bioanal. Chem. 2010 397 3 1191 1201 10.1007/s00216‑010‑3633‑8 20383700
    [Google Scholar]
  96. Matadh A.V. Jakka D. Pragathi S.G. Polymer-coated polymeric (PCP) microneedles for controlled dermal delivery of 5-fluorouracil. AAPS PharmSciTech 2022 24 1 9 10.1208/s12249‑022‑02471‑x 36450897
    [Google Scholar]
  97. Das S.S. Bharadwaj P. Bilal M. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 2020 12 6 1397 10.3390/polym12061397 32580366
    [Google Scholar]
  98. El Sayed M.M. Production of polymer hydrogel composites and their applications. J. Polym. Environ. 2023 31 7 2855 2879 10.1007/s10924‑023‑02796‑z
    [Google Scholar]
  99. Sabbagh F. Deshmukh A.R. Choi Y. Kim B.S. Effect of microsphere concentration on catechin release from microneedle arrays. ACS Appl. Mater. Interfaces 2024 16 22 28276 28289 10.1021/acsami.4c06064 38788676
    [Google Scholar]
  100. Saraswathy K. Agarwal G. Srivastava A. Hyaluronic acid microneedles‐laden collagen cryogel plugs for ocular drug delivery. J. Appl. Polym. Sci. 2020 137 42 49285 10.1002/app.49285
    [Google Scholar]
  101. Xu W. Lin Z. Cortez-Jugo C. Qiao G.G. Caruso F. Antimicrobial phenolic materials: From assembly to function. Angew. Chem. Int. Ed. 2025 64 13 e202423654 10.1002/anie.202423654 39905990
    [Google Scholar]
  102. Pal S Rakshit T Saha S Jinagal D Glucose-responsive materials for smart insulin delivery: From protein-based to protein-free design. ACS Materials Au 2025 5 2 239 10.1021/acsmaterialsau.4c00138
    [Google Scholar]
  103. Tangdilintin F Achmad AA Development of transdermal formulation integrating polymer-based solid microneedles and thermoresponsive gel fucoidan for antiaging: Proof of concept study. Langmuir 2024 40 35 18451 18465 10.1021/acs.langmuir.4c01205 39169662
    [Google Scholar]
  104. Swain S. Pratap Singh A. Yadav R.K. A review on polymer hydrogel and polymer microneedle based transdermal drug delivery system. Mater. Today Proc. 2022 61 1061 1066 10.1016/j.matpr.2021.10.320
    [Google Scholar]
  105. Fu X. Zhang T. Xia C. Spiderweb‐shaped iron‐coordinated polymeric network as the novel coating on microneedles for transdermal drug delivery against infectious wounds. Adv. Healthc. Mater. 2024 13 29 2401788 10.1002/adhm.202401788 38864814
    [Google Scholar]
  106. Xue W. Na J. Zhang L. Zu Y. Lin F. Developing porous microneedles patch for the detection of wound infections. Adv. Mater. Technol. 2024 9 4 2301572 10.1002/admt.202301572
    [Google Scholar]
  107. Cheng Z. Lin H. Wang Z. Preparation and characterization of dissolving hyaluronic acid composite microneedles loaded micelles for delivery of curcumin. Drug Deliv. Transl. Res. 2020 10 5 1520 1530 10.1007/s13346‑020‑00735‑2 32100266
    [Google Scholar]
  108. Migdadi E.M. Courtenay A.J. Tekko I.A. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release 2018 285 142 151 10.1016/j.jconrel.2018.07.009 29990526
    [Google Scholar]
  109. Wang Z. Liu L. Liu E. Chen R. Huang Y. Li Q. Carrier polymer-free dissolvable microneedles enable superhigh drug payload for percutaneous protein delivery. ACS Materials Letters 2024 6 11 4980 4987 10.1021/acsmaterialslett.4c01164
    [Google Scholar]
  110. Tran K.T.M. Gavitt T.D. Farrell N.J. Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nat. Biomed. Eng. 2020 5 9 998 1007 10.1038/s41551‑020‑00650‑4 33230304
    [Google Scholar]
  111. Li W. Chen J.Y. Terry R.N. Core-shell microneedle patch for six-month controlled-release contraceptive delivery. J. Control. Release 2022 347 489 499 10.1016/j.jconrel.2022.04.051 35550913
    [Google Scholar]
  112. Ben Osman Y. Liavitskaya T. Vyazovkin S. Polyvinylpyrrolidone affects thermal stability of drugs in solid dispersions. Int. J. Pharm. 2018 551 1-2 111 120 10.1016/j.ijpharm.2018.09.020 30217768
    [Google Scholar]
  113. Fernández-García E. Skin protection against UV light by dietary antioxidants. Food Funct. 2014 5 9 1994 2003 10.1039/C4FO00280F 24964816
    [Google Scholar]
  114. Rishishwar S Asokan N Innovations in drug delivery systems for biologics: Enhancing stability and targeted delivery for nextgeneration therapeutics. ChinJf Appl Physiol 2025 41 e20250001 10.62958/j.cjap.2025.001
    [Google Scholar]
  115. Faizi H.S. Vora L.K. Nasiri M.I. Deferasirox nanosuspension loaded dissolving microneedles for intradermal delivery. Pharmaceutics 2022 14 12 2817 10.3390/pharmaceutics14122817 36559310
    [Google Scholar]
  116. Starciuc T. Malfait B. Danede F. Trehalose or sucrose: Which of the two should be used for stabilizing proteins in the solid state? A dilemma investigated by in situ micro-raman and dielectric relaxation spectroscopies during and after freeze-drying. J. Pharm. Sci. 2020 109 1 496 504 10.1016/j.xphs.2019.10.055 31678247
    [Google Scholar]
  117. Yerneni S.S. Yalcintas E.P. Smith J.D. Averick S. Campbell P.G. Ozdoganlar O.B. Skin-targeted delivery of extracellular vesicle-encapsulated curcumin using dissolvable microneedle arrays. Acta Biomater. 2022 149 198 212 10.1016/j.actbio.2022.06.046 35809788
    [Google Scholar]
  118. Vora L.K. Donnelly R.F. Larrañeta E. González-Vázquez P. Thakur R.R.S. Vavia P.R. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: Proof of concept. J. Control. Release 2017 265 93 101 10.1016/j.jconrel.2017.10.005 29037785
    [Google Scholar]
  119. Khan S. Minhas M.U. Tekko I.A. Donnelly R.F. Thakur R.R.S. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery. Drug Deliv. Transl. Res. 2019 9 4 764 782 10.1007/s13346‑019‑00617‑2 30675693
    [Google Scholar]
  120. Leelawattanachai J. Panyasu K. Prasertsom K. Highly stable and fast‐dissolving ascorbic acid‐loaded microneedles. Int. J. Cosmet. Sci. 2023 45 5 612 626 10.1111/ics.12865 37133325
    [Google Scholar]
  121. Bhatnagar S. Kulkarni R.B. Manimaran R. Venuganti V.V.K. Protein-Based Microneedles for Drug and Vaccine Delivery. In: Engineered Biomaterials: Progress and Prospects. World Scientific 2024 261 312
    [Google Scholar]
  122. Ilić T. Savić S. Batinić B. Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: In vitro and in vivo studies. Eur. J. Pharm. Sci. 2018 125 110 119 10.1016/j.ejps.2018.09.023 30287408
    [Google Scholar]
  123. Lee H.J. McAuley A. Schilke K.F. McGuire J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv. Drug Deliv. Rev. 2011 63 13 1160 1171 10.1016/j.addr.2011.06.015 21763375
    [Google Scholar]
  124. Sharifuzzaman M. Shin Y.D. Yoo J. Reza M.S. kim YR, Park JY. An oxygen-insensitive and minimally invasive polymeric microneedle sensor for continuous and wide-range transdermal glucose monitoring. Talanta 2023 263 124747 10.1016/j.talanta.2023.124747 37267884
    [Google Scholar]
  125. Ye Z. Xiang Y. Monroe T. Polymeric microneedle arrays with glucose-sensing dynamic-covalent bonding for insulin delivery. Biomacromolecules 2022 23 10 4401 4411 10.1021/acs.biomac.2c00878 36173091
    [Google Scholar]
  126. Piao H. Choi Y.H. Kim J. Impedance-based polymer microneedle patch sensor for continuous interstitial fluid glucose monitoring. Biosens. Bioelectron. 2024 247 115932 10.1016/j.bios.2023.115932 38113695
    [Google Scholar]
  127. Dervisevic M. Esser L. Chen Y. Alba M. Prieto-Simon B. Voelcker N.H. High-density microneedle array-based wearable electrochemical biosensor for detection of insulin in interstitial fluid. Biosens. Bioelectron. 2025 271 116995 10.1016/j.bios.2024.116995 39616898
    [Google Scholar]
  128. Ullah A. Jang M. Khan H. Microneedle array with a pH-responsive polymer coating and its application in smart drug delivery for wound healing. Sens. Actuators B Chem. 2021 345 130441 10.1016/j.snb.2021.130441
    [Google Scholar]
  129. Lee W. Jeong S. Lim Y.W. Conformable microneedle pH sensors via the integration of two different siloxane polymers for mapping peripheral artery disease. Sci. Adv. 2021 7 48 eabi6290 10.1126/sciadv.abi6290 34826244
    [Google Scholar]
  130. Dosta P. Puigmal N. Cryer A.M. Rodríguez A.L. Scott E. Weissleder R. Polymeric microneedle-based platform enables simultaneous delivery of cancer immunomodulatory drugs and detection of biomarkers in the skin. Reearch Square 2022 10.21203/rs.3.rs‑1643439/v1
    [Google Scholar]
  131. Kim Y. Lewis M.B. Hwang J. Microneedle patch-based enzyme-linked immunosorbent assay to quantify protein biomarkers of tuberculosis. Biomed. Microdevices 2024 26 1 15 10.1007/s10544‑024‑00694‑2 38289481
    [Google Scholar]
  132. Lee K.H. Kim J.D. Jeong D.H. Kim S.M. Park C.O. Lee K.H. Development of a novel microneedle platform for biomarker assessment of atopic dermatitis patients. Skin Res. Technol. 2023 29 7 e13413 10.1111/srt.13413 37522507
    [Google Scholar]
  133. Zheng L. Zhu D. Xiao Y. Zheng X. Chen P. Microneedle coupled epidermal sensor for multiplexed electrochemical detection of kidney disease biomarkers. Biosens. Bioelectron. 2023 237 115506 10.1016/j.bios.2023.115506 37473548
    [Google Scholar]
  134. He X. Zhao W. Xu H. Smart core-shell microneedles for psoriasis therapy: In situ self-assembly of calcium ion-coordinated dexamethasone hydrogel. J. Control. Release 2025 379 786 796 10.1016/j.jconrel.2025.01.037 39828209
    [Google Scholar]
  135. Schmidt J. Pilbauerova N. Soukup T. Suchankova-Kleplova T. Suchanek J. Low molecular weight hyaluronic acid effect on dental pulp stem cells In vitro. Biomolecules 2020 11 1 22 10.3390/biom11010022 33379324
    [Google Scholar]
  136. Baeva L.F. Lyle D.B. Rios M. Langone J.J. Lightfoote M.M. Different molecular weight hyaluronic acid effects on human macrophage interleukin 1β production. J. Biomed. Mater. Res. A 2014 102 2 305 314 10.1002/jbm.a.34704 23533059
    [Google Scholar]
  137. Chudzińska J. Wawrzyńczak A. Feliczak-Guzik A. Microneedles based on a biodegradable polymer—hyaluronic acid. Polymers 2024 16 10 1396 10.3390/polym16101396 38794589
    [Google Scholar]
  138. Cheng Y. Bo H. Qin R. Hyaluronic acid-coated Bi:Cu2O: An H2S-responsive agent for colon cancer with targeted delivery and enhanced photothermal performance. J. Nanobiotechnology 2022 20 1 346 10.1186/s12951‑022‑01555‑x 35883134
    [Google Scholar]
  139. Wang Y. Tang Z. Guo X. Hyaluronic acid-cyclodextrin encapsulating paeonol for treatment of atopic dermatitis. Int. J. Pharm. 2022 623 121916 10.1016/j.ijpharm.2022.121916 35714817
    [Google Scholar]
  140. Liu Y. Liang Y. Yuhong J. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des. Devel. Ther. 2024 18 1469 1495 10.2147/DDDT.S447496 38707615
    [Google Scholar]
  141. Rani M. Parekh K. Mehta T. Omri A. Formulation development and characterization of luliconazole loaded−mesoporous silica nanoparticles (MCM−48) as topical hydrogel for the treatment of cutaneous candidiasis. J. Drug Deliv. Sci. Technol. 2024 91 105250 10.1016/j.jddst.2023.105250
    [Google Scholar]
  142. Jang H. Kim N. Jin S.G. Development of a carvedilol-loaded solid self-nanoemulsifying system with increased solubility and bioavailability using mesoporous silica nanoparticles. Int. J. Mol. Sci. 2025 26 4 1592 10.3390/ijms26041592 40004060
    [Google Scholar]
  143. Hao J. Experimental and theoretical study of delivering metformin anti‐lung cancer drug with aluminum nitride nanoparticles. Appl. Organomet. Chem. 2025 39 2 e8003 10.1002/aoc.8003
    [Google Scholar]
  144. Begi A.N. Hussain S. Amu-Darko J.N.O. Zn-doped Co3O4 nanoparticles: Promising room temperature sensor materials for efficient triethylamine (TEA) detection. Mater. Res. Bull. 2025 183 113201 10.1016/j.materresbull.2024.113201
    [Google Scholar]
  145. He G. He M. Wang R. A near‐infrared light‐activated photocage based on a ruthenium complex for cancer phototherapy. Angew. Chem. Int. Ed. 2023 62 24 e202218768 10.1002/anie.202218768 36890113
    [Google Scholar]
  146. Xu C. Huang J. Jiang Y. He S. Zhang C. Pu K. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat. Biomed. Eng. 2022 7 3 298 312 10.1038/s41551‑022‑00978‑z 36550302
    [Google Scholar]
  147. Ganguly S. Das P. Srinivasan S. Rajabzadeh A.R. Tang X.S. Margel S. Superparamagnetic amine-functionalized maghemite nanoparticles as a thixotropy promoter for hydrogels and magnetic field-driven diffusion-controlled drug release. ACS Appl. Nano Mater. 2024 7 5 5272 5286 10.1021/acsanm.3c05543
    [Google Scholar]
  148. Roberts M.S. Mohammed Y. Pastore M.N. Topical and cutaneous delivery using nanosystems. J. Control. Release 2017 247 86 105 10.1016/j.jconrel.2016.12.022 28024914
    [Google Scholar]
  149. Feng M. Jiang G. Sun Y. Integration of metformin-loaded mesoporous bioactive glass nanoparticles and free metformin into polymer microneedles for transdermal delivery on diabetic rats. Inorg. Chem. Commun. 2022 144 109896 10.1016/j.inoche.2022.109896
    [Google Scholar]
  150. Abbasi M. Boka D.A. DeLoit H. Nanomaterial-enhanced microneedles: Emerging therapies for diabetes and obesity. Pharmaceutics 2024 16 10 1344 10.3390/pharmaceutics16101344 39458672
    [Google Scholar]
  151. Dawud H. Abu Ammar A.A. Rapidly dissolving microneedles for the delivery of steroid-loaded nanoparticles intended for the treatment of inflammatory skin diseases. Pharmaceutics 2023 15 2 526 10.3390/pharmaceutics15020526 36839849
    [Google Scholar]
  152. Abdelghany S. Alshaer W. Al Thaher Y. Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections. Beilstein J. Nanotechnol. 2022 13 1 517 527 10.3762/bjnano.13.43 35812251
    [Google Scholar]
  153. Kordyl O. Styrna Z. Wojtyłko M. Michniak-Kohn B. Osmałek T. Microneedle-based arrays - Breakthrough strategy for the treatment of bacterial and fungal skin infections. Microbes Infect. 2025 27 2 105426 10.1016/j.micinf.2024.105426 39326631
    [Google Scholar]
  154. Wang B. Zhao D. Li Y. Antimicrobial peptide nanoparticle-based microneedle patches for the treatment of bacteria-infected wounds. ACS Appl. Nano Mater. 2023 6 8 6891 6900 10.1021/acsanm.2c05467
    [Google Scholar]
  155. Dosta P. Puigmal N. Cryer A.M. Polymeric microneedles enable simultaneous delivery of cancer immunomodulatory drugs and detection of skin biomarkers. Theranostics 2023 13 1 1 15 10.7150/thno.73966 36593949
    [Google Scholar]
  156. Peng T. Huang Y. Feng X. TPGS/hyaluronic acid dual-functionalized PLGA nanoparticles delivered through dissolving microneedles for markedly improved chemo-photothermal combined therapy of superficial tumor. Acta Pharm. Sin. B 2021 11 10 3297 3309 10.1016/j.apsb.2020.11.013 34729317
    [Google Scholar]
  157. Altameemi K.K. Abd-Alhammid S.N. Anastrozole nanoparticles for transdermal delivery through microneedles: Preparation and evaluation. J. Pharm. Negat. Results 2022 13 3
    [Google Scholar]
  158. Li B. Lu G. Liu W. Liao L. Ban J. Lu Z. Formulation and evaluation of PLGA nanoparticulate-based microneedle system for potential treatment of neurological diseases. Int. J. Nanomedicine 2023 18 3745 3760 10.2147/IJN.S415728 37457799
    [Google Scholar]
  159. Park W. Seong K.Y. Han H.H. Yang S.Y. Hahn S.K. Dissolving microneedles delivering cancer cell membrane coated nanoparticles for cancer immunotherapy. RSC Advances 2021 11 17 10393 10399 10.1039/D1RA00747E 35423503
    [Google Scholar]
  160. Wang Y. Cheng S. Hu W. Polymer-grafted hollow mesoporous silica nanoparticles integrated with microneedle patches for glucose-responsive drug delivery. Front. Mater. Sci. 2021 15 1 98 112 10.1007/s11706‑021‑0532‑1
    [Google Scholar]
  161. Hu H. Ruan H. Ruan S. Acid-responsive PEGylated branching PLGA nanoparticles integrated into dissolving microneedles enhance local treatment of arthritis. Chem. Eng. J. 2022 431 134196 10.1016/j.cej.2021.134196
    [Google Scholar]
  162. Patil A. Prabhakar B. Shende P. Potential of transpapillary route for artesunate-loaded microneedles against breast cancer cell line. Colloids Surf. A Physicochem. Eng. Asp. 2022 640 128431 10.1016/j.colsurfa.2022.128431
    [Google Scholar]
  163. Muresan P. McCrorie P. Smith F. Development of nanoparticle loaded microneedles for drug delivery to a brain tumour resection site. Eur. J. Pharm. Biopharm. 2023 182 53 61 10.1016/j.ejpb.2022.11.016 36435313
    [Google Scholar]
  164. Batool I. Zafar N. Ahmad Z. Nanoparticle-loaded microneedle patch for transdermal delivery of letrozole. Bionanoscience 2024 14 3 2131 2144 10.1007/s12668‑024‑01512‑y
    [Google Scholar]
  165. Zarei Chamgordani N. Asiaei S. Ghorbani-Bidkorpeh F. Babaee Foroutan M. Mahboubi A. Moghimi H.R. Fabrication of controlled-release silver nanoparticle polylactic acid microneedles with long-lasting antibacterial activity using a micro-molding solvent-casting technique. Drug Deliv. Transl. Res. 2024 14 2 386 399 10.1007/s13346‑023‑01406‑8 37578649
    [Google Scholar]
  166. Kuang Y. Xue F. Dai Z. Zhu Y. Liu Q. Chen H. Anti-inflammatory PEGylated bilirubin microneedle patch for diabetes treatment. Appl. Mater. Today 2024 39 102295 10.1016/j.apmt.2024.102295
    [Google Scholar]
  167. Li L. Qin W. Ye T. Bioactive Zn-V-Si-Ca Glass Nanoparticle Hydrogel Microneedles with Antimicrobial and Antioxidant Properties for Bone Regeneration in Diabetic Periodontitis. ACS Nano 2025 19 8 7981 7995 10.1021/acsnano.4c15227 39960072
    [Google Scholar]
  168. Wang Y Fu S Zeng Y Jiao S Chai G Xu Y Tea polyphenols nanoparticles integrated with microneedles multifunctionally boost 5-aminolevulinic acid photodynamic therapy for skin cancer. J Colloid Interface Sci 2025 677 Pt A 446 58 10.1016/j.jcis.2024.07.228 39098278
    [Google Scholar]
  169. Tony A. Badea I. Yang C. The additive manufacturing approach to polydimethylsiloxane (PDMS) microfluidic devices: Review and future directions. Polymers 2023 15 8 1926 10.3390/polym15081926 37112073
    [Google Scholar]
  170. Krieger K.J. Bertollo N. Dangol M. Sheridan J.T. Lowery M.M. O’Cearbhaill E.D. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst. Nanoeng. 2019 5 1 42 10.1038/s41378‑019‑0088‑8 31645996
    [Google Scholar]
  171. Kathuria H. Kang K. Cai J. Kang L. Rapid microneedle fabrication by heating and photolithography. Int. J. Pharm. 2020 575 118992 10.1016/j.ijpharm.2019.118992 31884060
    [Google Scholar]
  172. Ariati R. Sales F. Souza A. Lima R.A. Ribeiro J. Polydimethylsiloxane composites characterization and its applications: A review. Polymers 2021 13 23 4258 10.3390/polym13234258 34883762
    [Google Scholar]
  173. Lyu S. Dong Z. Xu X. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact. Mater. 2023 27 303 326 10.1016/j.bioactmat.2023.04.003 37122902
    [Google Scholar]
  174. Badnikar K. Jayadevi S.N. Pahal S. Generic molding platform for simple, low‐cost fabrication of polymeric microneedles. Macromol. Mater. Eng. 2020 305 5 2000072 10.1002/mame.202000072
    [Google Scholar]
  175. Fonseca D.F.S. Vilela C. Silvestre A.J.D. Freire C.S.R. A compendium of current developments on polysaccharide and protein-based microneedles. Int. J. Biol. Macromol. 2019 136 704 728 10.1016/j.ijbiomac.2019.04.163 31028807
    [Google Scholar]
  176. Zhou Q. Li H. Liao Z. Gao B. He B. Bridging the gap between invasive and noninvasive medical care: emerging microneedle approaches. Anal. Chem. 2023 95 1 515 534 10.1021/acs.analchem.2c01895 36625106
    [Google Scholar]
  177. Donnelly R.F. Majithiya R. Singh T.R.R. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res. 2011 28 1 41 57 10.1007/s11095‑010‑0169‑8 20490627
    [Google Scholar]
  178. McCrudden M.T.C. Alkilani A.Z. McCrudden C.M. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J. Control. Release 2014 180 100 71 80 10.1016/j.jconrel.2014.02.007 24556420
    [Google Scholar]
  179. Gittard S.D. Ovsianikov A. Monteiro-Riviere N.A. Fabrication of polymer microneedles using a two-photon polymerization and micromolding process. J. Diabetes Sci. Technol. 2009 3 2 304 311 10.1177/193229680900300211 20144361
    [Google Scholar]
  180. Tarbox T.N. Watts A.B. Cui Z. Williams R.O. An update on coating/manufacturing techniques of microneedles. Drug Deliv. Transl. Res. 2018 8 6 1828 1843 10.1007/s13346‑017‑0466‑4 29288358
    [Google Scholar]
  181. Zhang X. Zhang W. Wu W. Chen J. Recent advances in the preparation of microneedle patches for interstitial fluid extraction and analysis. Microchem. J. 2023 195 109477 10.1016/j.microc.2023.109477
    [Google Scholar]
  182. McGrath M.G. Vucen S. Vrdoljak A. Production of dissolvable microneedles using an atomised spray process: Effect of microneedle composition on skin penetration. Eur. J. Pharm. Biopharm. 2014 86 2 200 211 10.1016/j.ejpb.2013.04.023 23727511
    [Google Scholar]
  183. Park S.C. Kim M.J. Baek S.K. Park J.H. Choi S.O. Spray-formed layered polymer microneedles for controlled biphasic drug delivery. Polymers 2019 11 2 369 10.3390/polym11020369 30960353
    [Google Scholar]
  184. Allen E.A. O’Mahony C. Cronin M. O’Mahony T. Moore A.C. Crean A.M. Dissolvable microneedle fabrication using piezoelectric dispensing technology. Int. J. Pharm. 2016 500 1-2 1 10 10.1016/j.ijpharm.2015.12.052 26721722
    [Google Scholar]
  185. Faraji Rad Z. Microneedle technologies for food and crop health: recent advances and future perspectives. Adv. Eng. Mater. 2023 25 4 2201194 10.1002/adem.202201194
    [Google Scholar]
  186. Nagarkar R. Singh M. Nguyen H.X. Jonnalagadda S. A review of recent advances in microneedle technology for transdermal drug delivery. J. Drug Deliv. Sci. Technol. 2020 59 101923 10.1016/j.jddst.2020.101923
    [Google Scholar]
  187. Lefebvre A.H. McDonell V.G. Atomization and sprays. CRC press 2017 10.1201/9781315120911
    [Google Scholar]
  188. Dafsari R.A. Lee H.J. Han J. Park D.C. Lee J. Viscosity effect on the pressure swirl atomization of an alternative aviation fuel. Fuel 2019 240 179 191 10.1016/j.fuel.2018.11.132
    [Google Scholar]
  189. Lee J. van der Maaden K. Gooris G. O’Mahony C. Jiskoot W. Bouwstra J. Engineering of an automated nano-droplet dispensing system for fabrication of antigen-loaded dissolving microneedle arrays. Int. J. Pharm. 2021 600 120473 10.1016/j.ijpharm.2021.120473 33737094
    [Google Scholar]
  190. Park J.H. Allen M.G. Prausnitz M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 2005 104 1 51 66 10.1016/j.jconrel.2005.02.002 15866334
    [Google Scholar]
  191. Dillon C. Hughes H. O’Reilly N.J. McLoughlin P. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. Int. J. Pharm. 2017 526 1-2 125 136 10.1016/j.ijpharm.2017.04.066 28461268
    [Google Scholar]
  192. Yang S. Feng Y. Zhang L. Chen N. Yuan W. Jin T. A scalable fabrication process of polymer microneedles. Int. J. Nanomedicine 2012 7 1415 1422 22457598
    [Google Scholar]
  193. Andranilla R.K. Anjani Q.K. Hartrianti P. Donnelly R.F. Ramadon D. Fabrication of dissolving microneedles for transdermal delivery of protein and peptide drugs: polymer materials and solvent casting micromoulding method. Pharm. Dev. Technol. 2023 28 10 1016 1031 10.1080/10837450.2023.2285498 37987717
    [Google Scholar]
  194. Tollemeto M. Production and ex vivo characterization of melting lipid needle patches applied for transdermal delivery of lipophilic drugs. ACS Materials Letters 2024 6 11 5199 10.1021/acsmaterialslett.4c01686
    [Google Scholar]
  195. Lobita M.C. El-Sayed N. Pinto J.F. Santos H.A. Development of fast dissolving polymer-based microneedles for delivery of an antigenic melanoma cell membrane. Int. J. Pharm. 2023 642 123143 10.1016/j.ijpharm.2023.123143 37330154
    [Google Scholar]
  196. Rodgers A.M. McCrudden M.T.C. Vincente-Perez E.M. Design and characterisation of a dissolving microneedle patch for intradermal vaccination with heat-inactivated bacteria: A proof of concept study. Int. J. Pharm. 2018 549 1-2 87 95 10.1016/j.ijpharm.2018.07.049 30048778
    [Google Scholar]
  197. Smith E. Lau W.M. Abdelghany T.M. Vukajlovic D. Novakovic K. Ng K.W. Vac-and-fill: A micromoulding technique for fabricating microneedle arrays with vacuum-activated, hands-free mould-filling. Int. J. Pharm. 2024 650 123706 10.1016/j.ijpharm.2023.123706 38103704
    [Google Scholar]
  198. Wang Q. Yao G. Dong P. Investigation on fabrication process of dissolving microneedle arrays to improve effective needle drug distribution. Eur. J. Pharm. Sci. 2015 66 148 156 10.1016/j.ejps.2014.09.011 25446513
    [Google Scholar]
  199. Park J.H. Allen M.G. Prausnitz M.R. Polymer microneedles for controlled-release drug delivery. Pharm. Res. 2006 23 5 1008 1019 10.1007/s11095‑006‑0028‑9 16715391
    [Google Scholar]
  200. Chen H. Wu B. Zhang M. A novel scalable fabrication process for the production of dissolving microneedle arrays. Drug Deliv. Transl. Res. 2019 9 1 240 248 10.1007/s13346‑018‑00593‑z 30341765
    [Google Scholar]
  201. Lee M.T. Lee I.C. Tsai S.W. Chen C.H. Wu M.H. Juang Y.J. Spin coating of polymer solution on polydimethylsiloxane mold for fabrication of microneedle patch. J. Taiwan Inst. Chem. Eng. 2017 70 42 48 10.1016/j.jtice.2016.10.032
    [Google Scholar]
  202. Kshirsagar S.M. Kipping T. Banga A.K. Fabrication of polymeric microneedles using novel vacuum compression molding technique for transdermal drug delivery. Pharm. Res. 2022 39 12 3301 3315 10.1007/s11095‑022‑03406‑8 36195823
    [Google Scholar]
  203. Zhang N. Zhou X. Liu L. Zhao L. Xie H. Yang Z. Dissolving polymer microneedles for transdermal delivery of insulin. Front. Pharmacol. 2021 12 719905 10.3389/fphar.2021.719905 34630098
    [Google Scholar]
  204. Jakka D. Matadh A.V. Shankar V.K. Shivakumar H.N. Narasimha Murthy S. Polymer coated polymeric (PCP) microneedles for controlled delivery of drugs (dermal and intravitreal). J. Pharm. Sci. 2022 111 10 2867 2878 10.1016/j.xphs.2022.05.023 35662543
    [Google Scholar]
  205. Matadh A.V. Jakka D. Pragathi S.G. Polymer coated polymeric microneedles for intravitreal delivery of dexamethasone. Exp. Eye Res. 2023 231 109467 10.1016/j.exer.2023.109467 37031874
    [Google Scholar]
  206. Aisyah A.N. Permana A.D. Wahyudin E. Formulation and evaluation of dissolving microneedle for transdermal delivery of piperine: The effect of polymers concentration. J. Biomater. Sci. Polym. Ed. 2024 35 8 1177 1196 10.1080/09205063.2024.2320948 38436277
    [Google Scholar]
  207. Altaf Z. Ahmad Z. Mahmood A. Shchinar S. Latif R. Dissolving microneedle patch for transdermal delivery of perindopril erbumine. Inflammopharmacology 2025 33 3 1381 1391 10.1007/s10787‑025‑01696‑z 40009346
    [Google Scholar]
  208. Kim J.S. Choi J. Kim J.C. Microneedles with dual release pattern for improved immunological efficacy of Hepatitis B vaccine. Int. J. Pharm. 2020 591 119928 10.1016/j.ijpharm.2020.119928 33069897
    [Google Scholar]
  209. Kang S. Song J.E. Jun S.H. Park S.G. Kang N.G. Sugar-triggered burst drug releasing poly-lactic acid (PLA) microneedles and its fabrication based on solvent-casting approach. Pharmaceutics 2022 14 9 1758 10.3390/pharmaceutics14091758 36145506
    [Google Scholar]
  210. Chen Y. Chen B.Z. Wang Q.L. Jin X. Guo X.D. Fabrication of coated polymer microneedles for transdermal drug delivery. J. Control. Release 2017 265 14 21 10.1016/j.jconrel.2017.03.383 28344014
    [Google Scholar]
  211. Liang L. Chen Y. Ren G.Y. Li J.Y. Guo X.D. A few attempts to increase the amount of a drug coated onto the microneedles. Research Square 2021 10.21203/rs.3.rs‑245374/v1
    [Google Scholar]
  212. Liang L. Chen Y. Zhang B.L. Optimization of dip-coating methods for the fabrication of coated microneedles for drug delivery. J. Drug Deliv. Sci. Technol. 2020 55 101464 10.1016/j.jddst.2019.101464
    [Google Scholar]
  213. Chen B.Z. He M.C. Zhang X.P. Fei W.M. Cui Y. Guo X.D. A novel method for fabrication of coated microneedles with homogeneous and controllable drug dosage for transdermal drug delivery. Drug Deliv. Transl. Res. 2022 12 11 2730 2739 10.1007/s13346‑022‑01123‑8 35128623
    [Google Scholar]
  214. Zhang L. Chen Y. Tan J. Feng S. Xie Y. Li L. Performance enhancement of PLA-based blend microneedle arrays through shish-kebab structuring strategy in microinjection molding. Polymers 2023 15 10 2234 10.3390/polym15102234 37242809
    [Google Scholar]
  215. Oliveira C. Teixeira J.A. Oliveira N. Ferreira S. Botelho C.M. Microneedles’ Device: Design, fabrication, and applications. Macromol 2024 4 2 320 355 10.3390/macromol4020019
    [Google Scholar]
  216. Shahriari M.H. Salmani H. Akrami M. Salehi Z. Development of a facile, versatile and scalable fabrication approach of solid, coated, and dissolving microneedle devices for transdermal drug delivery applications. Giant 2024 18 100284 10.1016/j.giant.2024.100284
    [Google Scholar]
  217. Fukushima K. Ise A. Morita H. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm. Res. 2011 28 1 7 21 10.1007/s11095‑010‑0097‑7 20300802
    [Google Scholar]
  218. Chu L.Y. Choi S.O. Prausnitz M.R. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. J. Pharm. Sci. 2010 99 10 4228 4238 10.1002/jps.22140 20737630
    [Google Scholar]
  219. Ogunjimi A.T. Fiegel J. Brogden N.K. Design and characterization of spray-dried chitosan-naltrexone microspheres for microneedle-assisted transdermal delivery. Pharmaceutics 2020 12 6 496 10.3390/pharmaceutics12060496 32485999
    [Google Scholar]
  220. Nagra U. Barkat K. Ashraf M.U. Shabbir M. Feasibility of enhancing skin permeability of acyclovir through sterile topical lyophilized wafer on self-dissolving microneedle-treated skin. Dose Response 2022 20 2 15593258221097594 10.1177/15593258221097594 35602585
    [Google Scholar]
  221. Qiu Y. Qin G. Zhang S. Wu Y. Xu B. Gao Y. Novel lyophilized hydrogel patches for convenient and effective administration of microneedle-mediated insulin delivery. Int. J. Pharm. 2012 437 1-2 51 56 10.1016/j.ijpharm.2012.07.035 22842625
    [Google Scholar]
  222. Yin M. Zeng Y. Liu H.Q. Dissolving microneedle patch integrated with microspheres for long-acting hair regrowth therapy. ACS Appl. Mater. Interfaces 2023 15 14 17532 17542 10.1021/acsami.2c22814 36975753
    [Google Scholar]
  223. Jakka D. Matadh A.V. Shivakumar H.N. Maibach H. Murthy S.N. Polymer Coated Polymeric (PCP) microneedles for sampling of drugs and biomarkers from tissues. Eur. J. Pharm. Sci. 2022 175 106203 10.1016/j.ejps.2022.106203 35550170
    [Google Scholar]
  224. Haj-Ahmad R. Khan H. Arshad M. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics 2015 7 4 486 502 10.3390/pharmaceutics7040486 26556364
    [Google Scholar]
  225. Ahmed Saeed AL-Japairai K, Mahmood S, Hamed Almurisi S, etal. Current trends in polymer microneedle for transdermal drug delivery. Int. J. Pharm. 2020 587 119673 10.1016/j.ijpharm.2020.119673 32739388
    [Google Scholar]
  226. Avcil M. Çelik A. Microneedles in drug delivery: Progress and challenges. Micromachines 2021 12 11 1321 10.3390/mi12111321 34832733
    [Google Scholar]
  227. Ma Y. Gill H.S. Coating solid dispersions on microneedles via a molten dip-coating method: Development and In vitro evaluation for transdermal delivery of a water-insoluble drug. J. Pharm. Sci. 2014 103 11 3621 3630 10.1002/jps.24159 25213295
    [Google Scholar]
  228. Wu L. Shrestha P. Iapichino M. Cai Y. Kim B. Stoeber B. Characterization method for calculating diffusion coefficient of drug from polylactic acid (PLA) microneedles into the skin. J. Drug Deliv. Sci. Technol. 2021 61 102192 10.1016/j.jddst.2020.102192
    [Google Scholar]
  229. Choi J.E. Cha H.R. Kim S. Preparation of particle-attached microneedles using a dry coating process. J. Control. Release 2022 351 1003 1016 10.1016/j.jconrel.2022.10.003 36216176
    [Google Scholar]
  230. Jeong H.R. Park S. Park J.H. Preparation of H1N1 microneedles by a low-temperature process without a stabilizer. Eur. J. Pharm. Biopharm. 2019 143 1 7 10.1016/j.ejpb.2019.08.005 31398438
    [Google Scholar]
  231. Cahill E.M. Keaveney S. Stuettgen V. Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery. Acta Biomater. 2018 80 401 411 10.1016/j.actbio.2018.09.007 30201432
    [Google Scholar]
  232. Wang Q.L. Ren J.W. Chen B.Z. Jin X. Zhang C.Y. Guo X.D. Effect of humidity on mechanical properties of dissolving microneedles for transdermal drug delivery. J. Ind. Eng. Chem. 2018 59 251 258 10.1016/j.jiec.2017.10.030
    [Google Scholar]
  233. Crichton M.L. Archer-Jones C. Meliga S. Characterising the material properties at the interface between skin and a skin vaccination microprojection device. Acta Biomater. 2016 36 186 194 10.1016/j.actbio.2016.02.039 26956913
    [Google Scholar]
  234. Mamun A.A. Sueoka B. Allison N. Huang Y. Zhao F. Design and evaluation of in-plane silicon microneedles fabricated with post-CMOS compatible processes. Sens. Actuators A Phys. 2022 336 113407 10.1016/j.sna.2022.113407 35573145
    [Google Scholar]
  235. Ryan E. Garland M.J. Singh T.R.R. Microneedle-mediated transdermal bacteriophage delivery. Eur. J. Pharm. Sci. 2012 47 2 297 304 10.1016/j.ejps.2012.06.012 22750416
    [Google Scholar]
  236. Hou A. Quan G. Yang B. Rational design of rapidly separating dissolving microneedles for precise drug delivery by balancing the mechanical performance and disintegration rate. Adv. Healthc. Mater. 2019 8 21 1900898 10.1002/adhm.201900898 31583838
    [Google Scholar]
  237. Demir Y.K. Akan Z. Kerimoglu O. Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS One 2013 8 10 e77289 10.1371/journal.pone.0077289 24194879
    [Google Scholar]
  238. Mahvash M. Dupont P.E. Mechanics of dynamic needle insertion into a biological material. IEEE Trans. Biomed. Eng. 2010 57 4 934 943 10.1109/TBME.2009.2036856 19932986
    [Google Scholar]
  239. Zhu D.D. Chen B.Z. He M.C. Guo X.D. Structural optimization of rapidly separating microneedles for efficient drug delivery. J. Ind. Eng. Chem. 2017 51 178 184 10.1016/j.jiec.2017.02.030
    [Google Scholar]
  240. Ando D. Miyatsuji M. Sakoda H. Mechanical characterization of dissolving microneedles: Factors affecting physical strength of needles. Pharmaceutics 2024 16 2 200 10.3390/pharmaceutics16020200 38399254
    [Google Scholar]
  241. Xenikakis I. Tzimtzimis M. Tsongas K. Fabrication and finite nlm analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur. J. Pharm. Sci. 2019 137 104976 10.1016/j.ejps.2019.104976 31254642
    [Google Scholar]
  242. Ebrahiminejad V. Malek-khatabi A. Faraji Rad Z. Influence of low‐frequency vibration and skin strain on insertion mechanics and drug diffusion of PVA/PVP dissolving microneedles. Adv. Mater. Technol. 2024 9 4 2301272 10.1002/admt.202301272
    [Google Scholar]
  243. Ranamukhaarachchi S.A. Stoeber B. Determining the factors affecting dynamic insertion of microneedles into skin. Biomed. Microdevices 2019 21 4 100 10.1007/s10544‑019‑0449‑y 31745652
    [Google Scholar]
  244. Larrañeta E. Moore J. Vicente-Pérez E.M. A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 2014 472 1-2 65 73 10.1016/j.ijpharm.2014.05.042 24877757
    [Google Scholar]
  245. Tas C. Joyce J.C. Nguyen H.X. Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy. J. Control. Release 2017 268 159 165 10.1016/j.jconrel.2017.10.021 29051065
    [Google Scholar]
  246. Larrañeta E. Lutton R.E.M. Woolfson A.D. Donnelly R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. Rep. 2016 104 1 32 10.1016/j.mser.2016.03.001
    [Google Scholar]
  247. Loizidou E.Z. Inoue N.T. Ashton-Barnett J. Barrow D.A. Allender C.J. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite nlm analysis. Eur. J. Pharm. Biopharm. 2016 107 1 6 10.1016/j.ejpb.2016.06.023 27373753
    [Google Scholar]
  248. Liu P. Du H. Wu Z. Hydrophilic and anti-adhesive modification of porous polymer microneedles for rapid dermal interstitial fluid extraction. J. Mater. Chem. B Mater. Biol. Med. 2021 9 27 5476 5483 10.1039/D1TB00873K 34156055
    [Google Scholar]
  249. Jang D. Tang J. Schwendeman S.P. Prausnitz M.R. Effect of surface interactions on microsphere loading in dissolving microneedle patches. ACS Appl. Mater. Interfaces 2022 14 26 29577 29587 10.1021/acsami.2c05795 35732055
    [Google Scholar]
  250. Anjani Q.K. Permana A.D. Cárcamo-Martínez Á. Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. Eur. J. Pharm. Biopharm. 2021 158 294 312 10.1016/j.ejpb.2020.12.003 33309844
    [Google Scholar]
  251. Lopez-Ramirez M.A. Soto F. Wang C. Built‐in active microneedle patch with enhanced autonomous drug delivery. Adv. Mater. 2020 32 1 1905740 10.1002/adma.201905740 31682039
    [Google Scholar]
  252. Wong R. Ashton M. Dodou K. Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics 2015 7 3 305 319 10.3390/pharmaceutics7030305 26371031
    [Google Scholar]
  253. Nguyen H.X. Bozorg B.D. Kim Y. Poly (vinyl alcohol) microneedles: Fabrication, characterization, and application for transdermal drug delivery of doxorubicin. Eur. J. Pharm. Biopharm. 2018 129 88 103 10.1016/j.ejpb.2018.05.017 29800617
    [Google Scholar]
  254. Pattarabhiran S.P. Saju A. Sonawane K.R. Dissolvable microneedle-mediated transcutaneous delivery of tetanus toxoid elicits effective immune response. AAPS PharmSciTech 2019 20 7 257 10.1208/s12249‑019‑1471‑3 31332640
    [Google Scholar]
  255. Kolli C.S. Banga A.K. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm. Res. 2008 25 1 104 113 10.1007/s11095‑007‑9350‑0 17597381
    [Google Scholar]
  256. Yuan W. Chen D. Sarabia-Estrada R. Theranostic OCT microneedle for fast ultrahigh-resolution deep-brain imaging and efficient laser ablation in vivo. Sci. Adv. 2020 6 15 eaaz9664 10.1126/sciadv.aaz9664 32300661
    [Google Scholar]
  257. Izutsu K. Yoshida H. Abe Y. Yamamoto E. Sato Y. Ando D. Application of the thermal analysis of frozen aqueous solutions to assess the miscibility of hyaluronic acid and polymers used for dissolving microneedles. Pharmaceutics 2024 16 10 1280 10.3390/pharmaceutics16101280 39458610
    [Google Scholar]
  258. Aykaç K. Başaran E. Tiagabine incorporated polymeric microneedles: Formulation and characterization studies. Curr. Appl. Polym. Sci. 2023 6 1 48 60 10.2174/2452271606666230427091330
    [Google Scholar]
  259. Azizi Machekposhti S. Nguyen A.K. Vanderwal L. Stafslien S. Narayan R.J. Micromolding of amphotericin-B-loaded methoxyethylene-maleic anhydride copolymer microneedles. Pharmaceutics 2022 14 8 1551 10.3390/pharmaceutics14081551 35893806
    [Google Scholar]
  260. Zafar S. Hassan S. Mudassir J. Microneedle based transcutaneous delivery of low molecular weight heparin. Pak. J. Pharm. Sci. 2021 34 3 1165 1170 34602447
    [Google Scholar]
  261. Qiang N. Liu Z. Lu M. Preparation and properties of polyvinylpyrrolidone/sodium carboxymethyl cellulose soluble microneedles. Materials 2023 16 9 3417 10.3390/ma16093417 37176298
    [Google Scholar]
  262. Hamed R. AbuKwiak A.D. Aburayya R. Alkilani A.Z. Hamadneh L. Naser M. Microneedles mediated-dermal delivery of Vitamin C: Formulation, characterization, cytotoxicity, and enhancement of stability. Heliyon 2024 10 17 10.1016/j.heliyon.2024.e37381
    [Google Scholar]
  263. Zaid Alkilani A. Abu-Zour H. Alshishani A. Abu-Huwaij R. Basheer H.A. Abo-Zour H. Formulation and evaluation of niosomal alendronate sodium encapsulated in polymeric microneedles: In vitro studies, stability study and cytotoxicity study. Nanomaterials 2022 12 20 3570 10.3390/nano12203570 36296760
    [Google Scholar]
  264. Pitakjakpipop H. Rajan R. Tantisantisom K. Facile photolithographic fabrication of zwitterionic polymer microneedles with protein aggregation inhibition for transdermal drug delivery. Biomacromolecules 2022 23 1 365 376 10.1021/acs.biomac.1c01325 34914881
    [Google Scholar]
  265. Chen M.C. Ling M.H. Kusuma S.J. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta Biomater. 2015 24 106 116 10.1016/j.actbio.2015.06.021 26102333
    [Google Scholar]
  266. Karim Z. Karwa P. Hiremath S.R.R. Polymeric microneedles for transdermal drug delivery- a review of recent studies. J. Drug Deliv. Sci. Technol. 2022 77 103760 10.1016/j.jddst.2022.103760
    [Google Scholar]
  267. Jin M. Jeon W-J. Lee H. Jung M. Kim H-E. Yoo H. Preparation and evaluation of rapid disintegrating formulation from coated microneedle. Drug Deliv. Transl. Res. 2021 1 11 34494223
    [Google Scholar]
  268. Yin S. Yu Z. Song N. A long lifetime and highly sensitive wearable microneedle sensor for the continuous real-time monitoring of glucose in interstitial fluid. Biosens. Bioelectron. 2024 244 115822 10.1016/j.bios.2023.115822 37956637
    [Google Scholar]
  269. Anbazhagan G. Suseela S.B. Sankararajan R. Design, analysis and fabrication of solid polymer microneedle patch using CO2 laser and polymer molding. Drug Deliv. Transl. Res. 2023 13 6 1813 1827 10.1007/s13346‑023‑01296‑w 36807879
    [Google Scholar]
  270. Putri H.E. Utami R.N. Dissolving microneedle formulation of ceftriaxone: Effect of polymer concentrations on characterisation and ex vivo permeation study. J. Pharm. Innov. 2021 1 13
    [Google Scholar]
  271. Koenitz L Crean A Vucen S Stress factors affecting protein stability during the fabrication and storage of dissolvable microneedles. RPS Pharm Pharmacol Report 2024 3 3 rqae018 10.1093/rpsppr/rqae018
    [Google Scholar]
  272. Liu H. Wang B. Xing M. Thermal stability of exenatide encapsulated in stratified dissolving microneedles during storage. Int. J. Pharm. 2023 636 122863 10.1016/j.ijpharm.2023.122863 36934885
    [Google Scholar]
  273. Aykaç K. Başaran E. Formulation and characterization of lacosamide-loaded polymeric microneedles. J Exploratr Res Pharmacol 2022 7 2 61 75 10.14218/JERP.2021.00051
    [Google Scholar]
  274. Sun B. Zhang T. Chen H. Microneedle delivery system with rapid dissolution and sustained release of bleomycin for the treatment of hemangiomas. J. Nanobiotechnology 2024 22 1 372 10.1186/s12951‑024‑02557‑7 38918811
    [Google Scholar]
  275. Sedky M. Ali A. Abdel-Mottaleb M. Serry M. A new rapid-release SMA-activated micropump with incorporated microneedle arrays and polymeric nanoparticles for optimized transdermal drug delivery. Sens. Actuators B Chem. 2024 408 135549 10.1016/j.snb.2024.135549
    [Google Scholar]
  276. Ebrahiminejad V. Faraji Rad Z. Design, development, and testing of polymeric microblades: A novel design of microneedles for biomedical applications. Adv. Mater. Interfaces 2022 9 29 2201115 10.1002/admi.202201115
    [Google Scholar]
  277. Elkhashab M. Sartawi Z. Faisal W. Crean A. Glassy Drug microneedle array design: drug glass-forming ability and stability. Mol. Pharm. 2025 22 3 1373 1383 10.1021/acs.molpharmaceut.4c01067 39957277
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128376011250706183030
Loading
/content/journals/cpd/10.2174/0113816128376011250706183030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test