Skip to content
2000
image of Exploring the Multifaceted Potential of Natural Flavonoid Diosmetin in Human Diseases

Abstract

Flavonoids are secondary metabolites that are closely related to polyphenols and have a diverse structure. These are present in the form of aglycones or glycosides in many fruits and vegetables. Diosmetin (DIO) is a bioactive flavonoid primarily found in the olive tree ( L) and has been recognised for its diverse therapeutic potential in the management of many illnesses. In recent years, multiple pharmacological properties of DIO have been shown, including anti-inflammatory, antioxidant, antimicrobial, cardio-protective, hepatoprotective, renal protective, lung protective, retinal protective, neuroprotective and anticancer activity. Therefore, considering the pharmacological potential of DIO, the present work was designed to further explore its pharmacological actions in the treatment of various diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128375348250709222244
2025-08-01
2025-09-10
Loading full text...

Full text loading...

References

  1. Kwon Y.S. Kim S.S. Sohn S.J. Modulation of suppressive activity of lipopolysaccharide-induced nitric oxide production by glycosidation of flavonoids. Arch. Pharm. Res. 2004 27 7 751 756 10.1007/BF02980144 15357003
    [Google Scholar]
  2. Kim J.M. Yun-Choi H.S. Anti-platelet effects of flavonoids and flavonoid-glycosides from Sophora japonica. Arch. Pharm. Res. 2008 31 7 886 890 10.1007/s12272‑001‑1242‑1 18704331
    [Google Scholar]
  3. Calderón-Montaño J.M. Burgos-Morón E. Pérez-Guerrero C. López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011 11 4 298 344 10.2174/138955711795305335 21428901
    [Google Scholar]
  4. Jäger A.K. Saaby L. Flavonoids and the CNS. Molecules 2011 16 2 1471 1485 10.3390/molecules16021471 21311414
    [Google Scholar]
  5. Jeong H.J. Ryu Y.B. Park S.J. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg. Med. Chem. 2009 17 19 6816 6823 10.1016/j.bmc.2009.08.036 19729316
    [Google Scholar]
  6. Bai N. He K. Roller M. Flavonoid glycosides from Microtea debilis and their cytotoxic and anti-inflammatory effects. Fitoterapia 2011 82 2 168 172 10.1016/j.fitote.2010.08.014 20804824
    [Google Scholar]
  7. Pick A. Müller H. Mayer R. Structure–activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorg. Med. Chem. 2011 19 6 2090 2102 10.1016/j.bmc.2010.12.043 21354800
    [Google Scholar]
  8. Woo K.W. Moon E. Park S.Y. Kim S.Y. Lee K.R. Flavonoid glycosides from the leaves of Allium victorialis var. platyphyllum and their anti-neuroinflammatory effects. Bioorg. Med. Chem. Lett. 2012 22 24 7465 7470 10.1016/j.bmcl.2012.10.043 23149227
    [Google Scholar]
  9. Tronina T. Bartmańska A. Milczarek M. Antioxidant and antiproliferative activity of glycosides obtained by biotransformation of xanthohumol. Bioorg. Med. Chem. Lett. 2013 23 7 1957 1960 10.1016/j.bmcl.2013.02.031 23466227
    [Google Scholar]
  10. Lee I.S. Kim I.S. Lee Y.M. Lee Y. Kim J.H. Kim J.S. 2″,4″-O-diacetylquercitrin, a novel advanced glycation end-product formation and aldose reductase inhibitor from Melastoma sanguineum. Chem. Pharm. Bull. (Tokyo) 2013 61 6 662 665 10.1248/cpb.c12‑00877 23727780
    [Google Scholar]
  11. Wang S.Q. Zhu X.F. Wang X.N. Shen T. Xiang F. Lou H.X. Flavonoids from Malus hupehensis and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells. Phytochemistry 2013 87 119 125 10.1016/j.phytochem.2012.11.020 23276676
    [Google Scholar]
  12. Choi J.S. Islam M.N. Ali M.Y. The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities. Arch. Pharm. Res. 2014 37 10 1354 1363 10.1007/s12272‑014‑0351‑3 24988985
    [Google Scholar]
  13. Kim H.J. Lee B.H. Choi S.H. Differential effects of quercetin glycosides on GABAC receptor channel activity. Arch. Pharm. Res. 2015 38 1 108 114 10.1007/s12272‑014‑0409‑2 24895146
    [Google Scholar]
  14. Park S.H. Kim H.J. Yim S.H. Delineation of the role of glycosylation in the cytotoxic properties of quercetin using novel assays in living vertebrates. J. Nat. Prod. 2014 77 11 2389 2396 10.1021/np500231g 25397870
    [Google Scholar]
  15. dos Santos A.E. Kuster R.M. Yamamoto K.A. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity. Parasit. Vectors 2014 7 1 130 10.1186/1756‑3305‑7‑130 24678592
    [Google Scholar]
  16. Materska M. Konopacka M. Rogoliński J. Ślosarek K. Antioxidant activity and protective effects against oxidative damage of human cells induced by X-radiation of phenolic glycosides isolated from pepper fruits Capsicum annuum L. Food Chem. 2015 168 546 553 10.1016/j.foodchem.2014.07.023 25172746
    [Google Scholar]
  17. Yoon J.H. Baek S.J. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med. J. 2005 46 5 585 596 10.3349/ymj.2005.46.5.585 16259055
    [Google Scholar]
  18. Yao L.H. Jiang Y.M. Shi J. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004 59 3 113 122 10.1007/s11130‑004‑0049‑7 15678717
    [Google Scholar]
  19. Rathee P. Chaudhary H. Rathee S. Rathee D. Kumar V. Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflamm. Allergy Drug Targets 2009 8 3 229 235 10.2174/187152809788681029 19601883
    [Google Scholar]
  20. Birt D.F. Hendrich S. Wang W. Dietary agents in cancer prevention: Flavonoids and isoflavonoids. Pharmacol. Ther. 2001 90 2-3 157 177 10.1016/S0163‑7258(01)00137‑1 11578656
    [Google Scholar]
  21. Nielsen I.L.F. Chee W.S.S. Poulsen L. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: A randomized, double-blind, crossover trial. J. Nutr. 2006 136 2 404 408 10.1093/jn/136.2.404 16424119
    [Google Scholar]
  22. Spanakis M. Kasmas S. Niopas I. Simultaneous determination of the flavonoid aglycones diosmetin and hesperetin in human plasma and urine by a validated GC/MS method: in vivo metabolic reduction of diosmetin to hesperetin. Biomed. Chromatogr. 2009 23 2 124 131 10.1002/bmc.1092 18850579
    [Google Scholar]
  23. Androutsopoulos V. Wilsher N. Arroo R.R.J. Potter G.A. Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450. Cancer Lett. 2009 274 1 54 60 10.1016/j.canlet.2008.08.032 18976853
    [Google Scholar]
  24. Kanaze F.I. Bounartzi M.I. Niopas I. A validated HPLC determination of the flavone aglycone diosmetin in human plasma. Biomed. Chromatogr. 2004 18 10 800 804 10.1002/bmc.391 15386576
    [Google Scholar]
  25. Nagai H. Kim Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis. 2017 9 3 448 451 10.21037/jtd.2017.02.75 28449441
    [Google Scholar]
  26. Torre L.A. Siegel R.L. Ward E.M. Jemal A. Global cancer incidence and mortality rates and trends: An Update. Cancer Epidemiol. Biomarkers Prev. 2016 25 1 16 27 10.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  27. Sung H. Ferlay J. Siegel R.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  28. Sil S. Gayen S. Seal I. Das A. Roy S. Exploring the chemotherapeutic potential of diosmetin ruthenium-p-cymene complex in bladder cancer treatment through the regulation of the PI3K/β-catenin/TJP1/AR signaling pathway. J. Trace Elem. Med. Biol. 2025 90 127680 10.1016/j.jtemb.2025.127680 40516199
    [Google Scholar]
  29. Xu Z. Yan Y. Xiao L. Radiosensitizing effect of diosmetin on radioresistant lung cancer cells via Akt signaling pathway. PLoS One 2017 12 4 e0175977 10.1371/journal.pone.0175977 28414793
    [Google Scholar]
  30. Arroo M.S. Arroo R.R. Potter G. Anticancer effects of the flavonoid diosmetin on cell cycle progression and proliferation of MDA-MB 468 breast cancer cells due to CYP1 activation. Oncol. Rep. 2009 21 6 1525 1528 10.3892/or_00000384 19424633
    [Google Scholar]
  31. Wang C. Li S. Ren H. Anti-proliferation and pro-apoptotic effects of diosmetin via modulating cell cycle arrest and mitochondria-mediated intrinsic apoptotic pathway in MDA-MB-231 cells. Med. Sci. Monit. 2019 25 4639 4647 10.12659/MSM.914058 31228347
    [Google Scholar]
  32. Liu J. Wen X. Liu B. Diosmetin inhibits the metastasis of hepatocellular carcinoma cells by downregulating the expression levels of MMP-2 and MMP-9. Mol. Med. Rep. 2016 13 3 2401 2408 10.3892/mmr.2016.4872 26847170
    [Google Scholar]
  33. Ma A. Zhang R. Diosmetin inhibits cell proliferation, induces cell apoptosis and cell cycle arrest in liver cancer. Cancer Manag. Res. 2020 12 3537 3546 10.2147/CMAR.S240064 32547191
    [Google Scholar]
  34. Liu J. Ren H. Liu B. Zhang Q. Li M. Zhu R. Diosmetin inhibits cell proliferation and induces apoptosis by regulating autophagy via the mammalian target of rapamycin pathway in hepatocellular carcinoma HepG2 cells. Oncol. Lett. 2016 12 6 4385 4392 10.3892/ol.2016.5301 28101201
    [Google Scholar]
  35. Liu B. Shi Y. Peng W. Diosmetin induces apoptosis by upregulating p53 via the TGF-β signal pathway in HepG2 hepatoma cells. Mol. Med. Rep. 2016 14 1 159 164 10.3892/mmr.2016.5258 27176768
    [Google Scholar]
  36. Liu B. Zhang M. Liu S. Diosmetin, a Potential p53 activator, performs anticancer effect by regulating cell cycling and cell proliferation in HepG2 cells. Protein Pept. Lett. 2017 24 5 413 418 10.2174/0929866524666170223094634 28240165
    [Google Scholar]
  37. Qiao J. Liu J. Jia K. Diosmetin triggers cell apoptosis by activation of the p53/Bcl-2 pathway and inactivation of the Notch3/NF-κB pathway in HepG2 cells. Oncol. Lett. 2016 12 6 5122 5128 10.3892/ol.2016.5347 28101238
    [Google Scholar]
  38. Oak C. Khalifa A. Isali I. Bhaskaran N. Walker E. Shukla S. Diosmetin suppresses human prostate cancer cell proliferation through the induction of apoptosis and cell cycle arrest. Int. J. Oncol. 2018 53 2 835 843 10.3892/ijo.2018.4407 29767250
    [Google Scholar]
  39. Pakradooni R. Khalifa A. Isali I. Shukla S. Abstract 252: Prostate carcinogenesis inhibition through AKT-PKCα signaling pathway by diosmetin. Cancer Res. 2018 78 13_Supplement 252-2 10.1158/1538‑7445.AM2018‑252
    [Google Scholar]
  40. Koosha S. Mohamed Z. Sinniah A. Alshawsh M.A. Investigation into the molecular mechanisms underlying the anti-proliferative and anti-tumorigenesis activities of diosmetin against HCT-116 human colorectal cancer. Sci. Rep. 2019 9 1 5148 10.1038/s41598‑019‑41685‑1 30914796
    [Google Scholar]
  41. Koosha S. Mohamed Z. Sinniah A. Alshawsh M.A. Evaluation of anti-tumorigenic effects of diosmetin against human colon cancer xenografts in athymic nude mice. Molecules 2019 24 14 2522 10.3390/molecules24142522 31295840
    [Google Scholar]
  42. Roma A. Rota S.G. Spagnuolo P.A. Diosmetin induces apoptosis of acute myeloid leukemia cells. Mol. Pharm. 2018 15 3 1353 1360 10.1021/acs.molpharmaceut.7b01151 29412683
    [Google Scholar]
  43. Liu Y. Shao Z. Liao Y. Targeting SKP2/Bcr-Abl pathway with Diosmetin suppresses chronic myeloid leukemia proliferation. Eur. J. Pharmacol. 2020 883 173366 10.1016/j.ejphar.2020.173366 32679184
    [Google Scholar]
  44. Zhao F. Hong X. Li D. Wei Z. Ci X. Zhang S. Diosmetin induces apoptosis in ovarian cancer cells by activating reactive oxygen species and inhibiting the Nrf2 pathway. Med. Oncol. 2021 38 5 54 10.1007/s12032‑021‑01501‑1 33811596
    [Google Scholar]
  45. Qiu M. Liu J. Su Y. Guo R. Zhao B. Liu J. Diosmetin induces apoptosis by downregulating AKT phosphorylation via P53 activation in human renal carcinoma ACHN cells. Protein Pept. Lett. 2020 27 10 1022 1028 10.2174/0929866527666200330172646 32223728
    [Google Scholar]
  46. Soares J.M. Faria B.M.D. Ascari L.M. Diosmin induces caspase-dependent apoptosis in human glioblastoma cells. An. Acad. Bras. Cienc. 2019 91 4 e20191031 10.1590/0001‑3765201920191031 31800712
    [Google Scholar]
  47. Yan Y. Liu X. Gao J. Wu Y. Li Y. Inhibition of TGF-β signaling in gliomas by the flavonoid diosmetin isolated from Dracocephalum peregrinum L. Molecules 2020 25 1 192 10.3390/molecules25010192 31906574
    [Google Scholar]
  48. Choi J. Lee D.H. Park S.Y. Seol J.W. Diosmetin inhibits tumor development and block tumor angiogenesis in skin cancer. Biomed. Pharmacother. 2019 117 109091 10.1016/j.biopha.2019.109091 31228803
    [Google Scholar]
  49. Zhao R. Chen Z. Jia G. Li J. Cai Y. Shao X. Protective effects of diosmetin extracted from Galium verum L. on the thymus of U14-bearing mice. Can. J. Physiol. Pharmacol. 2011 89 9 665 673 10.1139/y11‑058 21851214
    [Google Scholar]
  50. Amini M. Zayeri F. Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health 2021 21 1 401 10.1186/s12889‑021‑10429‑0 33632204
    [Google Scholar]
  51. Roth G.A. Mensah G.A. Johnson C.O. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol. 2020 76 25 2982 3021 10.1016/j.jacc.2020.11.010 33309175
    [Google Scholar]
  52. Si Q. Shi Y. Huang D. Zhang N. Diosmetin alleviates hypoxia induced myocardial apoptosis by inducing autophagy through AMPK activation. Mol. Med. Rep. 2020 22 2 1335 1341 10.3892/mmr.2020.11241 32627001
    [Google Scholar]
  53. Iampanichakul M. Mowong C. Rachiwong N. Potue P. Khamseekaew J. Rattanakanokchai S. Maneesai P. Pocasap P. Pakdeechote P. Unveiling the molecular mechanism of diosmin to resolve cardiovascular dysfunction and remodeling in hypertension. Biomed. Pharmacother. 2025 190 118389 10.1016/j.biopha.2025.118389 40749341
    [Google Scholar]
  54. de Almeida G.K.M. Jesus I.C.G. Mesquita T. Post-ischemic reperfusion with diosmin attenuates myocardial injury through a nitric oxidase synthase-dependent mechanism. Life Sci. 2020 258 118188 10.1016/j.lfs.2020.118188 32755623
    [Google Scholar]
  55. Senthamizhselvan O. Manivannan J. Silambarasan T. Raja B. Diosmin pretreatment improves cardiac function and suppresses oxidative stress in rat heart after ischemia/reperfusion. Eur. J. Pharmacol. 2014 736 131 137 10.1016/j.ejphar.2014.04.026 24769512
    [Google Scholar]
  56. Sharmila Queenthy S. Stanely Mainzen Prince P. John B. Diosmin prevents isoproterenol-induced heart mitochondrial oxidative stress in rats. Cardiovasc. Toxicol. 2018 18 2 120 130 10.1007/s12012‑017‑9422‑2 26936762
    [Google Scholar]
  57. Ahmad T. Khan T. Kirabo A. Shah A.J. Antioxidant flavonoid diosmetin is cardioprotective in a rat model of myocardial infarction induced by beta 1-adrenergic receptors activation. Curr. Issues Mol. Biol. 2023 45 6 4675 4686 10.3390/cimb45060297 37367046
    [Google Scholar]
  58. Halliwell B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Pathophysiol. Haemost. Thromb. 1993 23 118 126 10.1159/000216921 8495863
    [Google Scholar]
  59. Halliwell B. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 2006 97 6 1634 1658 10.1111/j.1471‑4159.2006.03907.x 16805774
    [Google Scholar]
  60. Luan L Cao L Zhu L Sun J Diosmetin ameliorates cerebral ischemia/reperfusion injury in pc12 cells through nuclear factorkB (NF-kB) and nuclear factor erythroid 2-related factor/heme oxygenase- 1 (Nrf 2/HO-1) pathway. Curr Topic Nutraceutical Res 2019 17 3 322 10.1002/tox.23504
    [Google Scholar]
  61. Saghaei E. Nasiri Boroujeni S. Safavi P. Borjian Boroujeni Z. Bijad E. Diosmetin mitigates cognitive and memory impairment provoked by chronic unpredictable mild stress in mice. Evid. Based Complement. Alternat. Med. 2020 2020 1 5725361 10.1155/2020/5725361 33414836
    [Google Scholar]
  62. Sawmiller D. Habib A. Li S. Diosmin reduces cerebral Aβ levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. J. Neuroimmunol. 2016 299 98 106 10.1016/j.jneuroim.2016.08.018 27725131
    [Google Scholar]
  63. Sasikumar N. Subamalani S. Ramaswamy N. Srirangaramasamy J. Diosmetin retrieves the hippocampal neuropathology on alzheimer’s-like ethanol-induced cognitive impairment rat models. Indian J. Public Health Res. Dev. 2018 9 8 191 10.5958/0976‑5506.2018.00719.2
    [Google Scholar]
  64. Zhang Y. Jiang Y. Lu D. Diosmetin suppresses neuronal apoptosis and inflammation by modulating the phosphoinositide 3-kinase (PI3K)/AKT/Nuclear Factor-κB (NF-κB) signaling pathway in a rat model of Pneumococcal Meningitis. Med. Sci. Monit. 2019 25 2238 2245 10.12659/MSM.911860 30914630
    [Google Scholar]
  65. Groneberg D.A. Grosse-Siestrup C. Fischer A. In vitro models to study hepatotoxicity. Toxicol. Pathol. 2002 30 3 394 399 10.1080/01926230252929972 12051557
    [Google Scholar]
  66. Vargas-Mendoza N. Madrigal-Santillán E. Morales-González A. Hepatoprotective effect of silymarin. World J. Hepatol. 2014 6 3 144 149 10.4254/wjh.v6.i3.144 24672644
    [Google Scholar]
  67. Luo N. Yang C. Zhu Y. Chen Q. Zhang B. Diosmetin ameliorates nonalcoholic steatohepatitis through modulating lipogenesis and inflammatory response in a STAT1/CXCL10-dependent manner. J. Agric. Food Chem. 2021 69 2 655 667 10.1021/acs.jafc.0c06652 33404223
    [Google Scholar]
  68. Tanrikulu Y. Şahin M. Kismet K. The protective effect of diosmin on hepatic ischemia reperfusion injury: An experimental study. Bosn. J. Basic Med. Sci. 2013 13 4 218 224 10.17305/bjbms.2013.2305 24289756
    [Google Scholar]
  69. Yang Y. Gong X.B. Huang L.G. Diosmetin exerts anti-oxidative, anti-inflammatory and anti-apoptotic effects to protect against endotoxin-induced acute hepatic failure in mice. Oncotarget 2017 8 19 30723 30733 10.18632/oncotarget.15413 28430612
    [Google Scholar]
  70. Zhang G. Yan Y. Feng X. Effect of diosmetin on young rats with high-fat diet-induced non-alcoholic fatty liver disease. Trop. J. Pharm. Res. 2022 20 2 315 320 10.4314/tjpr.v20i2.14
    [Google Scholar]
  71. Vaidya S.R. Aeddula N.R. Chronic Kidney Disease.StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  72. Tienda-Vázquez M.A. Morreeuw Z.P. Sosa-Hernández J.E. Nephroprotective plants: A review on the use in pre-renal and post-renal diseases. Plants 2022 11 6 818 10.3390/plants11060818 35336700
    [Google Scholar]
  73. Yang K. Li W.F. Yu J.F. Yi C. Huang W.F. Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice. J. Surg. Res. 2017 214 69 78 10.1016/j.jss.2017.02.067 28624062
    [Google Scholar]
  74. Rehman M.U. Tahir M. Quaiyoom Khan A. Diosmin protects against trichloroethylene-induced renal injury in Wistar rats: Plausible role of p53, Bax and caspases. Br. J. Nutr. 2013 110 4 699 710 10.1017/S0007114512005752 23402272
    [Google Scholar]
  75. Wang W. Zhang S. Yang F. Xie J. Chen J. Li Z. Diosmetin alleviates acute kidney injury by promoting the TUG1/Nrf2/HO-1 pathway in sepsis rats. Int. Immunopharmacol. 2020 88 106965 10.1016/j.intimp.2020.106965 33182044
    [Google Scholar]
  76. Dodoala S. Peruru R. Therapeutic potential of diosmin, a citrus flavonoid against arsenic-induced neurotoxicity via suppression of NOX 4 and its subunits. Indian J. Pharmacol. 2021 53 2 132 142 10.4103/ijp.IJP_837_19 34100397
    [Google Scholar]
  77. Jiang Y. Liu J. Zhou Z. Liu K. Liu C. Diosmetin attenuates Akt signaling pathway by modulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/inducible nitric oxide synthase (iNOS) in streptozotocin (STZ)-induced diabetic nephropathy mice. Med. Sci. Monit. 2018 24 7007 7014 10.12659/MSM.910764 30278036
    [Google Scholar]
  78. Tripathy S. Pradhan D. Anjana M. Anti-inflammatory and antiarthritic potential of Ammaniabaccifera Linn. Int J Pharm Bio Sci 2010 1 1 7
    [Google Scholar]
  79. Chunxia C. Peng Z. Huifang P. Hanli R. Zehua H. Jizhou W. Extracts of Arisaema rhizomatum C.E.C. Fischer attenuate inflammatory response on collagen-induced arthritis in BALB/c mice. J. Ethnopharmacol. 2011 133 2 573 582 10.1016/j.jep.2010.10.035 21029771
    [Google Scholar]
  80. Chen Y. Wang Y. Liu M. Zhou B. Yang G. Diosmetin exhibits anti-proliferative and anti-inflammatory effects on TNF-α-stimulated human rheumatoid arthritis fibroblast-like synoviocytes through regulating the Akt and NF‐κB signaling pathways. Phytother. Res. 2020 34 6 1310 1319 10.1002/ptr.6596 31833613
    [Google Scholar]
  81. Salimian J. Salehi Z. Ahmadi A. Atopic dermatitis: Molecular, cellular, and clinical aspects. Mol. Biol. Rep. 2022 49 4 3333 3348 10.1007/s11033‑021‑07081‑7 34989960
    [Google Scholar]
  82. Li W. Man X.Y. Immunotherapy in atopic dermatitis. Immunotherapy 2022 14 14 1149 1164 10.2217/imt‑2022‑0054 36046941
    [Google Scholar]
  83. Lee D Park J Choi J Jang H Seol J Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model. Int Immunopharmacol 2020 89 Pt A 107046 10.1016/j.intimp.2020.107046 33045572
    [Google Scholar]
  84. Park S. Bong S.K. Lee J.W. Diosmetin and its glycoside, diosmin, improve atopic dermatitis- like lesions in 2,4-dinitrochlorobenzene-induced murine models. Biomol. Ther. (Seoul) 2020 28 6 542 548 10.4062/biomolther.2020.135 32938818
    [Google Scholar]
  85. Braganza J.M. The Pancreas: Biology, pathobiology and disease. Gut 1994 35 3 431 432 10.1136/gut.35.3.431‑b
    [Google Scholar]
  86. Gloor B. Müller C.A. Worni M. Martignoni M.E. Uhl W. Büchler M.W. Late mortality in patients with severe acute pancreatitis. Br. J. Surg. 2001 88 7 975 979 10.1046/j.0007‑1323.2001.01813.x 11442530
    [Google Scholar]
  87. Carnovale A. Rabitti P.G. Manes G. Esposito P. Pacelli L. Uomo G. Mortality in acute pancreatitis: Is it an early or a late event? JOP 2005 6 5 438 16186665
    [Google Scholar]
  88. Yu G. Wan R. Yin G. Diosmetin ameliorates the severity of cerulein-induced acute pancreatitis in mice by inhibiting the activation of the nuclear factor-κB. Int. J. Clin. Exp. Pathol. 2014 7 5 2133 2142 24966921
    [Google Scholar]
  89. Rubenfeld G.D. Caldwell E. Peabody E. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 2005 353 16 1685 1693 10.1056/NEJMoa050333 16236739
    [Google Scholar]
  90. Dowdy D.W. Eid M.P. Dennison C.R. Quality of life after acute respiratory distress syndrome: A meta-analysis. Intensive Care Med. 2006 32 8 1115 1124 10.1007/s00134‑006‑0217‑3 16783553
    [Google Scholar]
  91. Liu Q. Ci X. Wen Z. Peng L. Diosmetin alleviates lipopolysaccharide-induced acute lung injury through activating the Nrf2 pathway and inhibiting the NLRP3 inflammasome. Biomol. Ther. (Seoul) 2018 26 2 157 166 10.4062/biomolther.2016.234 28365974
    [Google Scholar]
  92. Imam F. Al-Harbi N.O. Al-Harbi M.M. Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-κB activation against LPS-induced acute lung injury in mice. Pharmacol. Res. 2015 102 1 11 10.1016/j.phrs.2015.09.001 26361726
    [Google Scholar]
  93. Ge A. Liu Y. Zeng X. Effect of diosmetin on airway remodeling in a murine model of chronic asthma. Acta Biochim. Biophys. Sin. (Shanghai) 2015 47 8 604 611 10.1093/abbs/gmv052 26033789
    [Google Scholar]
  94. Yu J. Xu Y. Diosmetin, methylated flavonoid mitigates ovalbumin induced allergic rhinitis in mice by attenuating inflammatory signaling proteins. IndJ PharmEdu Res 2024 58 2 685 694 10.5530/ijper.58.2.7
    [Google Scholar]
  95. Grigore M.E. Drug delivery systems in hard tissue engineering. SF J Biotechnol Biomed Eng (NY) 2018 1 1001 1006
    [Google Scholar]
  96. Ma M. Zeng H. Yang P. Xu J. Zhang X. He W. Drug delivery and therapy strategies for osteoporosis intervention. Molecules 2023 28 18 6652 10.3390/molecules28186652 37764428
    [Google Scholar]
  97. Carbone E.J. Rajpura K. Allen B.N. Cheng E. Ulery B.D. Lo K.W.H. Osteotropic nanoscale drug delivery systems based on small molecule bone-targeting moieties. Nanomedicine 2017 13 1 37 47 10.1016/j.nano.2016.08.015 27562211
    [Google Scholar]
  98. Hu S. Huang Y. Chen Y. Diosmetin reduces bone loss and osteoclastogenesis by regulating the expression of TRPV1 in osteoporosis rats. Ann. Transl. Med. 2020 8 20 1312 10.21037/atm‑20‑6309 33209892
    [Google Scholar]
  99. Hsu Y.L. Kuo P.L. Diosmetin induces human osteoblastic differentiation through the protein kinase C/p38 and extracellular signal-regulated kinase 1/2 pathway. J. Bone Miner. Res. 2008 23 6 949 960 10.1359/jbmr.080219 18269307
    [Google Scholar]
  100. Shao S. Fu F. Wang Z. Diosmetin inhibits osteoclast formation and differentiation and prevents LPS‐induced osteolysis in mice. J. Cell. Physiol. 2019 234 8 12701 12713 10.1002/jcp.27887 30515812
    [Google Scholar]
  101. American Diabetes Association Diagnosis and classification of diabetes mellitus. Diabetes Care 2009 32 Suppl. 1 S62 S69 10.2337/dc09‑S062 19118289
    [Google Scholar]
  102. Cole J.B. Florez J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020 16 7 377 390 10.1038/s41581‑020‑0278‑5 32398868
    [Google Scholar]
  103. Harding J.L. Pavkov M.E. Magliano D.J. Shaw J.E. Gregg E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019 62 1 3 16 10.1007/s00125‑018‑4711‑2 30171279
    [Google Scholar]
  104. Deshpande A.D. Harris-Hayes M. Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 2008 88 11 1254 1264 10.2522/ptj.20080020 18801858
    [Google Scholar]
  105. Michael H.N. Salib J.Y. Eskander E.F. Bioactivity of diosmetin glycosides isolated from the epicarp of date fruits, Phoenix dactylifera, on the biochemical profile of alloxan diabetic male rats. Phytother. Res. 2013 27 5 699 704 10.1002/ptr.4777 22761049
    [Google Scholar]
  106. Gong X. Xiong L. Bi C. Zhang B. Diosmetin ameliorate type 2 diabetic mellitus by up-regulating Corynebacterium glutamicum to regulate IRS/PI3K/AKT-mediated glucose metabolism disorder in KK-Ay mice. Phytomedicine 2021 87 153582 10.1016/j.phymed.2021.153582 34091150
    [Google Scholar]
  107. Lee M. Cao Y. Liu L. Diosmetin Improves Palmitate-Induced Insulin Resistance in 3T3-L1 Adipocytes. Biomedical and Health Research. 28 35 10.3233/BHR190021
    [Google Scholar]
  108. Srinivasan S. Pari L. Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chem. Biol. Interact. 2012 195 1 43 51 10.1016/j.cbi.2011.10.003 22056647
    [Google Scholar]
  109. Tong N. Zhang Z. Gong Y. Yin L. Wu X. Diosmin protects rat retina from ischemia/reperfusion injury. J. Ocul. Pharmacol. Ther. 2012 28 5 459 466 10.1089/jop.2011.0218 22509733
    [Google Scholar]
  110. Shen Z. Shao J. Dai J. Diosmetin protects against retinal injury via reduction of DNA damage and oxidative stress. Toxicol. Rep. 2016 3 78 86 10.1016/j.toxrep.2015.12.004 28959525
    [Google Scholar]
  111. Guo G. Dong J. Diosmetin attenuates oxidative stress-induced damage to lens epithelial cells via the mitogen-activated protein kinase (MAPK) pathway. Bioengineered 2022 13 4 11072 11081 10.1080/21655979.2022.2068755 35481411
    [Google Scholar]
  112. Noah D. Fidas G. National intelligence estimate: the global infectious disease threat and its implications for the United States. Environ. Change Secur. Proj. Rep. 2000 6 33 65 12296202
    [Google Scholar]
  113. Chopra I. Drugs for the superbugs. Microbiol Today 2000 27 4 6
    [Google Scholar]
  114. Chanda S.Y. Daravalia M.K. Rakholiya K. Fruit and vegetable peels - strong natural source of antimicrobics. Curr ResTechnol Educat Topic Appl Microbiol Microbial Biotech 2010 444 450
    [Google Scholar]
  115. Osman K.M. Marouf S.H. Samir A. AlAtfeehy N. The prevalence of multidrug resistance of various numbers of antimicrobial classes, multiple resistance patterns, and distribution of Salmonella isolates from human and avian clinical cases of diarrheoa. J. Chemother. 2012 24 5 300 304 10.1179/112000912X13418499354968 23182051
    [Google Scholar]
  116. Meng J.C. Zhu Q.X. Tan R.X. New antimicrobial mono- and sesquiterpenes from Soroseris hookeriana subsp. erysimoides. Planta Med. 2000 66 6 541 544 10.1055/s‑2000‑8607 10985081
    [Google Scholar]
  117. Chan B.C.L. Ip M. Gong H. Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. Phytomedicine 2013 20 7 611 614 10.1016/j.phymed.2013.02.007 23541215
    [Google Scholar]
  118. Wang S.Y. Sun Z.L. Liu T. Gibbons S. Zhang W.J. Qing M. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother. Res. 2014 28 7 1071 1076 10.1002/ptr.5098 24338874
    [Google Scholar]
  119. Liu S. Zhou X. Li W. Diosmetin inhibits the expression of alpha-hemolysin in Staphylococcus aureus. Antonie van Leeuwenhoek 2015 108 2 383 389 10.1007/s10482‑015‑0491‑6 26021482
    [Google Scholar]
  120. Ge A. Ma Y. Liu Y.N. Diosmetin prevents TGF-β1-induced epithelial-mesenchymal transition via ROS/MAPK signaling pathways. Life Sci. 2016 153 1 8 10.1016/j.lfs.2016.04.023 27101925
    [Google Scholar]
  121. Meephat S. Prasatthong P. Rattanakanokchai S. Bunbupha S. Maneesai P. Pakdeechote P. Diosmetin attenuates metabolic syndrome and left ventricular alterations via the suppression of angiotensin II/AT 1 receptor/gp91phox/p-NF-κB protein expression in high-fat diet fed rats. Food Funct. 2021 12 4 1469 1481 10.1039/D0FO02744H 33449987
    [Google Scholar]
  122. Ahmad T. Shah A.J. Khan T. Roberts R. Mechanism underlying the vasodilation induced by diosmetin in porcine coronary artery. Eur. J. Pharmacol. 2020 884 173400 10.1016/j.ejphar.2020.173400 32730832
    [Google Scholar]
  123. Poór M. Veres B. Jakus P.B. Flavonoid diosmetin increases ATP levels in kidney cells and relieves ATP depleting effect of ochratoxin A. J. Photochem. Photobiol. B 2014 132 1 9 10.1016/j.jphotobiol.2014.01.016 24556581
    [Google Scholar]
  124. Angamuthu H. Ramachandrane M. Investigations on the structural, vibrational, computational, and molecular docking studies on potential antidiabetic chemical agent Diosmetin. J. Mol. Recognit. 2020 33 2 e2819 10.1002/jmr.2819 31763736
    [Google Scholar]
  125. Liao W. Ning Z. Chen L. Intracellular antioxidant detoxifying effects of diosmetin on 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress through inhibition of reactive oxygen species generation. J. Agric. Food Chem. 2014 62 34 8648 8654 10.1021/jf502359x 25075433
    [Google Scholar]
  126. Wang C. Liao Y. Wang S. Cytoprotective effects of diosmetin against hydrogen peroxide-induced L02 cell oxidative damage via activation of the Nrf2-ARE signaling pathway. Mol. Med. Rep. 2018 17 5 7331 7338 10.3892/mmr.2018.8750 29568961
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128375348250709222244
Loading
/content/journals/cpd/10.2174/0113816128375348250709222244
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cardioprotective ; Flavonoid ; anticancer ; renal protective ; hepatoprotective ; neuroprotective
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test