Skip to content
2000
image of Unveiling the Health Potential of Myricetin: Bio-accessibility, Safety Considerations, and Therapeutic Mechanisms

Abstract

Myricetin, a naturally occurring flavanol, has gained significant attention due to its diverse pharmacological properties, including antioxidant, anti-inflammatory, anticancer, antidiabetic, and neuroprotective effects. Found abundantly in various plant families, such as Myricaceae, Anacardiaceae, and Polygonaceae, Myricetin exerts its therapeutic effects by modulating key cellular pathways, including Nrf2/HO-1, MAPK, and PI3K/Akt signaling. This review systematically evaluates Myricetin’s bioaccessibility, pharmacokinetics, and therapeutic potential, highlighting its role in modulating oxidative stress, inhibiting tumor proliferation, and protecting against neurodegenerative diseases. Despite its promising benefits, Myricetin exhibits limited bioavailability due to poor aqueous solubility and extensive phase II metabolism (glucuronidation and sulfation). Additionally, Myricetin interacts with cytochrome P450 enzymes (CYP3A4, CYP2C9, CYP2D6), potentially altering drug metabolism and increasing the risk of drug interactions. Toxicological studies indicate an LD50 of 800 mg/kg in mice, with potential hepatic and renal toxicity at high doses, mainly due to redox cycling and quinone formation. While Myricetin shows excellent radical-scavenging properties, it may act as a pro-oxidant in the presence of metal ions, leading to oxidative stress and cellular damage. This review underscores the need for advanced formulation strategies to enhance bioavailability and mitigate toxicity risks. Future clinical investigations are essential to establish optimal therapeutic dosages, assess long-term safety, and validate Myricetin’s potential as a nutraceutical and therapeutic agent in chronic diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128369420250707163438
2025-07-29
2025-09-09
Loading full text...

Full text loading...

References

  1. Dias D.A. Urban S. Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012 2 2 303 336 10.3390/metabo2020303 24957513
    [Google Scholar]
  2. Mushtaq S. Abbasi B.H. Uzair B. Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018 17 420 451 29805348
    [Google Scholar]
  3. Imran M. Salehi B. Sharifi-Rad J. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019 24 12 2277 10.3390/molecules24122277 31248102
    [Google Scholar]
  4. Sharifi-Rad J. Sharifi-Rad M. Salehi B. In vitro and in vivo assessment of free radical scavenging and antioxidant activities of Veronica persica Poir. Cell. Mol. Biol. 2018 64 8 57 64 10.14715/cmb/2018.64.8.9 29981684
    [Google Scholar]
  5. Zhuang W.B. Li Y.H. Shu X.C. The classification, molecular structure and biological biosynthesis of flavonoids, and their roles in biotic and abiotic stresses. Molecules 2023 28 8 3599 10.3390/molecules28083599 37110833
    [Google Scholar]
  6. Yao Y. Lin G. Xie Y. Preformulation studies of myricetin: A natural antioxidant flavonoid. Pharmazie 2014 69 1 19 26 24601218
    [Google Scholar]
  7. Büchter C. Ackermann D. Havermann S. Myricetin-mediated lifespan extension in Caenorhabditis elegans is modulated by DAF-16. Int. J. Mol. Sci. 2013 14 6 11895 11914 10.3390/ijms140611895 23736695
    [Google Scholar]
  8. Kabra A. Martins N. Sharma R. Kabra R. Baghel U.S. Myrica esculenta buch.-ham. ex d. don: A natural source for health promotion and disease prevention. Plants 2019 8 6 149 10.3390/plants8060149
    [Google Scholar]
  9. Dhiman N. Ahmad G. Khan S.U. Myrica esculenta Buch.-Ham. (ex D. Don): A review on its phytochemistry, pharmacology and nutritional potential. Comb. Chem. High Throughput Screen. 2022 25 14 2372 2386 10.2174/1386207325666220428105255 36330658
    [Google Scholar]
  10. Nardini M. Garaguso I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020 305 125437 10.1016/j.foodchem.2019.125437 31499290
    [Google Scholar]
  11. Sultana B. Anwar F. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 2008 108 3 879 884 10.1016/j.foodchem.2007.11.053 26065748
    [Google Scholar]
  12. Dias M.C. Pinto D.C.G.A. Silva A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021 26 17 5377 10.3390/molecules26175377 34500810
    [Google Scholar]
  13. Pathak R Chandra P. Bioactive Compounds from Myrica esculenta: Antioxidant Insights and Docking Studies on H+K+-ATPase and H2 Receptor Targets. United Arab Emirates: Medicinal chemistry (Shariqah 2025 1 6
    [Google Scholar]
  14. Gaspar R.S. da Silva S.A. Stapleton J. Myricetin, the main flavonoid in Syzygium cumini leaf, is a novel inhibitor of platelet thiol isomerases pdi and erp5. Front. Pharmacol. 2020 10 1678 10.3389/fphar.2019.01678 32116678
    [Google Scholar]
  15. Park K.S. Chong Y. Kim M.K. Myricetin: Biological activity related to human health. Appl Biolog Chem 2016 59 2 259 269 10.1007/s13765‑016‑0150‑2
    [Google Scholar]
  16. Semwal D. Semwal R. Combrinck S. Viljoen A. Myricetin: A dietary molecule with diverse biological activities. Nutrients 2016 8 2 90 10.3390/nu8020090 26891321
    [Google Scholar]
  17. Taheri Y. Suleria H.A.R. Martins N. Myricetin bioactive effects: Moving from preclinical evidence to potential clinical applications. BMC Complement Med Therap 2020 20 1 241 10.1186/s12906‑020‑03033‑z 32738903
    [Google Scholar]
  18. Ortega J.T. Suárez A.I. Serrano M.L. Baptista J. Pujol F.H. Rangel H.R. The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Res. Ther. 2017 14 1 57 10.1186/s12981‑017‑0183‑6 29025433
    [Google Scholar]
  19. Du H. Pan R. Huan W. Li J. Feng L. Theoretical study on the molecular and crystal structures of myricetin. Bull. Chem. Soc. Ethiop. 2024 38 5 1469 1478 10.4314/bcse.v38i5.21
    [Google Scholar]
  20. Nan H. Ma H. Zhang R. Zhan R. Physiochemical properties of the complex of myricetin and hydroxypropyl-β-cyclodextrin. Trop. J. Pharm. Res. 2014 13 11 1791 10.4314/tjpr.v13i11.3
    [Google Scholar]
  21. Cho S. Kong B. Jung Y. Synthesis and physicochemical characterization of acyl myricetins as potential anti-neuroexocytotic agents. Sci. Rep. 2023 13 1 5136 10.1038/s41598‑023‑32361‑6 36991086
    [Google Scholar]
  22. Golonko A. Olichwier A.J. Swislocka R. Szczerbinski L. Lewandowski W. Why do dietary flavonoids have a promising effect as enhancers of anthracyclines? hydroxyl substituents, bioavailability and biological activity. Int. J. Mol. Sci. 2022 24 1 391 10.3390/ijms24010391 36613834
    [Google Scholar]
  23. Dang Y. Lin G. Xie Y. Quantitative determination of myricetin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and its absolute bioavailability. Drug Res. 2014 64 10 516 522 24357136
    [Google Scholar]
  24. Imran M. Saeed F. Hussain G. Myricetin: A comprehensive review on its biological potentials. Food Sci. Nutr. 2021 9 10 5854 5868 10.1002/fsn3.2513 34646551
    [Google Scholar]
  25. Gupta G. Siddiqui M.A. Khan M.M. Current pharmacological trends on myricetin. Drug Res. 2020 70 10 448 454 10.1055/a‑1224‑3625 32877951
    [Google Scholar]
  26. Ogu C.C. Maxa J.L. Drug interactions due to cytochrome P450. Proc. Bayl. Univ. Med. Cent. 2000 13 4 421 423 10.1080/08998280.2000.11927719 16389357
    [Google Scholar]
  27. Bhatt S. Manhas D. Kumar V. Effect of myricetin on cyp2c8 inhibition to assess the likelihood of drug interaction using in silico, in vitro, and in vivo approaches. ACS Omega 2022 7 15 13260 13269 10.1021/acsomega.2c00726 35474783
    [Google Scholar]
  28. Lou D. Bao S. Li Y. Lin Q. Yang S. He J. Inhibitory Mechanisms of Myricetin on Human and Rat Liver Cytochrome P450 Enzymes. Eur. J. Drug Metab. Pharmacokinet. 2019 44 5 611 618 10.1007/s13318‑019‑00546‑y 30825074
    [Google Scholar]
  29. Choi D.H. Li C. Choi J.S. Effects of myricetin, an antioxidant, on the pharmacokinetics of losartan and its active metabolite, EXP-3174, in rats: Possible role of cytochrome P450 3A4, cytochrome P450 2C9 and P-glycoprotein inhibition by myricetin. J. Pharm. Pharmacol. 2010 62 7 908 914 10.1211/jpp.62.07.0012 20636879
    [Google Scholar]
  30. Singh S.P. Deb C.R. Ahmed S.U. Saratchandra Y. Konwar B.K. Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90. J. Biomed. Res. 2015 30 67 74 26423731
    [Google Scholar]
  31. Martemucci G. Costagliola C. Mariano M. D’andrea L. Napolitano P. D’Alessandro A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022 2 2 48 78 10.3390/oxygen2020006
    [Google Scholar]
  32. Di Meo S. Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxid. Med. Cell. Longev. 2020 2020 1 32 10.1155/2020/9829176 32411336
    [Google Scholar]
  33. Md Jaffri J. Reactive oxygen species and antioxidant system in selected skin disorders. Malays. J. Med. Sci. 2023 30 1 7 20 10.21315/mjms2023.30.1.2 36875194
    [Google Scholar]
  34. Li Y.R. Trush M. Trush M.A. Defining ROS in biology and medicine. React Oxyg Spec 2016 1 1 9 21 10.20455/ros.2016.803 29707643
    [Google Scholar]
  35. Aranda-Rivera A.K. Cruz-Gregorio A. Arancibia-Hernández Y.L. Hernández-Cruz E.Y. Pedraza-Chaverri J. Rons and oxidative stress: An overview of basic concepts. Oxygen 2022 2 4 437 478 10.3390/oxygen2040030
    [Google Scholar]
  36. Pizzino G. Irrera N. Cucinotta M. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 10.1155/2017/8416763 28819546
    [Google Scholar]
  37. Bhattacharyya A. Chattopadhyay R. Mitra S. Crowe S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014 94 2 329 354 10.1152/physrev.00040.2012 24692350
    [Google Scholar]
  38. Kurutas E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2015 15 1 71 10.1186/s12937‑016‑0186‑5 27456681
    [Google Scholar]
  39. Pathak R. Pandey S.P. Chandra P. Gastroprotective effects of biological macromolecule: Polysaccharides. Macromol. Symp. 2024 413 1 2300122 10.1002/masy.202300122
    [Google Scholar]
  40. Ghosh R. Girigoswami K. NADH dehydrogenase subunits are overexpressed in cells exposed repeatedly to H2O2. Mutat. Res. 2008 638 1-2 210 215 10.1016/j.mrfmmm.2007.08.008 17905312
    [Google Scholar]
  41. Hajam Y.A. Rani R. Ganie S.Y. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells 2022 11 3 552 10.3390/cells11030552 35159361
    [Google Scholar]
  42. Arfin S. Jha N.K. Jha S.K. Oxidative stress in cancer cell metabolism. Antioxidants 2021 10 5 642 10.3390/antiox10050642 33922139
    [Google Scholar]
  43. Chaudhary P. Janmeda P. Docea A.O. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023 11 1158198 10.3389/fchem.2023.1158198 37234200
    [Google Scholar]
  44. Sarangarajan R. Meera S. Rukkumani R. Sankar P. Anuradha G. Antioxidants: Friend or foe? Asian Pac. J. Trop. Med. 2017 10 12 1111 1116 10.1016/j.apjtm.2017.10.017 29268965
    [Google Scholar]
  45. Panche A.N. Diwan A.D. Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016 5 47 10.1017/jns.2016.41 28620474
    [Google Scholar]
  46. Ullah A. Munir S. Badshah S.L. Important flavonoids and their role as a therapeutic agent. Molecules 2020 25 22 5243 10.3390/molecules25225243 33187049
    [Google Scholar]
  47. Rodríguez-García C. Sánchez-Quesada C. Gaforio J.J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants 2019 8 5 137 10.3390/antiox8050137 31109072
    [Google Scholar]
  48. Agraharam G. Girigoswami A. Girigoswami K. Myricetin: A multifunctional flavonol in biomedicine. Curr. Pharmacol. Rep. 2022 8 1 48 61 10.1007/s40495‑021‑00269‑2 35036292
    [Google Scholar]
  49. Klein E. Rimarčík J. Senajová E. Vagánek A. Lengyel J. Deprotonation of flavonoids severely alters the thermodynamics of the hydrogen atom transfer. Comput. Theor. Chem. 2016 1085 7 17 10.1016/j.comptc.2016.04.004
    [Google Scholar]
  50. D’Ambrosio M. Bigagli E. Cinci L. Ethyl acetate extract from Cistus x incanus L. leaves enriched in myricetin and quercetin derivatives, inhibits inflammatory mediators and activates Nrf2/HO-1 pathway in LPS-stimulated RAW 264.7 macrophages. Z. Naturforsch. C J. Biosci. 2021 76 1-2 79 86 10.1515/znc‑2020‑0053 33027057
    [Google Scholar]
  51. Justino G.C. Vieira A.J.S.C. Antioxidant mechanisms of Quercetin and Myricetin in the gas phase and in solution – a comparison and validation of semi-empirical methods. J. Mol. Model. 2010 16 5 863 876 10.1007/s00894‑009‑0583‑1 19779937
    [Google Scholar]
  52. Mendes R.A. Almeida S.K.C. Soares I.N. Evaluation of the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside and myricetin 4′-O-α-L-rhamnopyranoside through a computational study. J. Mol. Model. 2019 25 4 89 10.1007/s00894‑019‑3959‑x 30847605
    [Google Scholar]
  53. Sajedi N. Homayoun M. Mohammadi F. Soleimani M. Myricetin exerts its apoptotic effects on MCF-7 breast cancer cells through evoking the BRCA1-GADD45 pathway. Asian Pac. J. Cancer Prev. 2020 21 12 3461 3468 10.31557/APJCP.2020.21.12.3461 33369440
    [Google Scholar]
  54. Liu J. Guo X. Miao Q. Ji X. Liang Y. Tong T. Deep eutectic solvent extraction of myricetin and antioxidant properties. RSC Advances 2024 14 26 18126 18135 10.1039/D4RA01438C 38854824
    [Google Scholar]
  55. Gaetke L.M. Chow-Johnson H.S. Chow C.K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014 88 11 1929 1938 10.1007/s00204‑014‑1355‑y 25199685
    [Google Scholar]
  56. Pantopoulos K. Porwal S.K. Tartakoff A. Devireddy L. Mechanisms of mammalian iron homeostasis. Biochemistry 2012 51 29 5705 5724 10.1021/bi300752r 22703180
    [Google Scholar]
  57. Bayram I. Laze A. Decker E.A. Synergistic mechanisms of interactions between myricetin or taxifolin with α-tocopherol in oil-in-water emulsions. J. Agric. Food Chem. 2023 71 24 9490 9500 10.1021/acs.jafc.3c01226 37279160
    [Google Scholar]
  58. Jomová K. Hudecova L. Lauro P. A switch between antioxidant and prooxidant properties of the phenolic compounds myricetin, morin, 3′,4′-dihydroxyflavone, taxifolin and 4-hydroxy-coumarin in the presence of copper(II) ions: A spectroscopic, absorption titration and dna damage study. Molecules 2019 24 23 4335 10.3390/molecules24234335 31783535
    [Google Scholar]
  59. López-Lázaro M. Willmore E. Austin C.A. The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2010 696 1 41 47 10.1016/j.mrgentox.2009.12.010 20025993
    [Google Scholar]
  60. Chobot V. Hadacek F. Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin. Redox Rep. 2011 16 6 242 247 10.1179/1351000211Y.0000000015
    [Google Scholar]
  61. Simunkova M. Barbierikova Z. Jomova K. Antioxidant vs. prooxidant properties of the flavonoid, kaempferol, in the presence of Cu(II) Ions: A ROS-scavenging activity, fenton reaction and DNA damage study. Int. J. Mol. Sci. 2021 22 4 1619 10.3390/ijms22041619 33562744
    [Google Scholar]
  62. Zhao J. Hong T. Dong M. Meng Y. Mu J. Protective effect of myricetin in dextran sulphate sodium-induced murine ulcerative colitis. Mol. Med. Rep. 2013 7 2 565 570 10.3892/mmr.2012.1225 23232835
    [Google Scholar]
  63. Jiang M. Zhu M. Wang L. Yu S. Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed. Pharmacother. 2019 120 109506 10.1016/j.biopha.2019.109506 31586904
    [Google Scholar]
  64. Ci Y. Zhang Y. Liu Y. Myricetin suppresses breast cancer metastasis through down‐regulating the activity of matrix metalloproteinase (MMP)‐2/9. Phytother. Res. 2018 32 7 1373 1381 10.1002/ptr.6071 29532526
    [Google Scholar]
  65. Tavsan Z. Kayali H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother. 2019 116 109004 10.1016/j.biopha.2019.109004 31128404
    [Google Scholar]
  66. Zhang S. Wang L. Liu H. Zhao G. Ming L. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells. Diagn. Pathol. 2014 9 1 68 10.1186/1746‑1596‑9‑68 24650056
    [Google Scholar]
  67. Sharma V. Janmeda P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab. J. Chem. 2017 10 4 509 514 10.1016/j.arabjc.2014.08.019
    [Google Scholar]
  68. Knickle A. Fernando W. Greenshields A.L. Rupasinghe H.P.V. Hoskin D.W. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem. Toxicol. 2018 118 154 167 10.1016/j.fct.2018.05.005 29742465
    [Google Scholar]
  69. Zang W. Wang T. Wang Y. Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Tumour Biol. 2014 35 12 12583 12592 10.1007/s13277‑014‑2579‑4 25192723
    [Google Scholar]
  70. Ye C. Zhang C. Huang H. The natural compound myricetin effectively represses the malignant progression of prostate cancer by inhibiting PIM1 and disrupting the PIM1/CXCR4 interaction. Cell. Physiol. Biochem. 2018 48 3 1230 1244 10.1159/000492009 30045021
    [Google Scholar]
  71. Li M. Chen J. Yu X. Myricetin suppresses the propagation of hepatocellular carcinoma via down-regulating expression of YAP. Cells 2019 8 4 358 10.3390/cells8040358 30999669
    [Google Scholar]
  72. Huang H. Chen A. Ye X. Myricetin inhibits proliferation of cisplatin-resistant cancer cells through a p53-dependent apoptotic pathway. Int. J. Oncol. 2015 47 4 1494 1502 10.3892/ijo.2015.3133 26315556
    [Google Scholar]
  73. Wang L. Lee I.M. Zhang S.M. Blumberg J.B. Buring J.E. Sesso H.D. Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am. J. Clin. Nutr. 2009 89 3 905 912 10.3945/ajcn.2008.26913 19158208
    [Google Scholar]
  74. Rajendran P. Maheshwari U. Muthukrishnan A. Myricetin: Versatile plant based flavonoid for cancer treatment by inducing cell cycle arrest and ROS–reliant mitochondria-facilitated apoptosis in A549 lung cancer cells and in silico prediction. Mol. Cell. Biochem. 2021 476 1 57 68 10.1007/s11010‑020‑03885‑6 32851589
    [Google Scholar]
  75. Salvamani S. Gunasekaran B. Shaharuddin N.A. Ahmad S.A. Shukor M.Y. Antiartherosclerotic effects of plant flavonoids. BioMed Res. Int. 2014 2014 1 11 10.1155/2014/480258 24971331
    [Google Scholar]
  76. Qiu Y. Cong N. Liang M. Wang Y. Wang J. Systems pharmacology dissection of the protective effect of myricetin against acute ischemia/reperfusion-induced myocardial injury in isolated rat heart. Cardiovasc. Toxicol. 2017 17 3 277 286 10.1007/s12012‑016‑9382‑y 27484498
    [Google Scholar]
  77. Liao H. Zhang N. Meng Y. Myricetin alleviates pathological cardiac hypertrophy via TRAF6/TAK1/MAPK and Nrf2 signaling pathway. Oxid. Med. Cell. Longev. 2019 2019 1 14 10.1155/2019/6304058 31885808
    [Google Scholar]
  78. Lescano C.H. Freitas de Lima F. Mendes-Silvério C.B. Effect of polyphenols from Campomanesia adamantium on platelet aggregation and inhibition of cyclooxygenases: Molecular docking and in vitro analysis. Front. Pharmacol. 2018 9 617 10.3389/fphar.2018.00617 29946259
    [Google Scholar]
  79. Daino G.L. Frau A. Sanna C. Identification of Myricetin as an Ebola Virus VP35–Double-Stranded RNA Interaction Inhibitor through a Novel Fluorescence-Based Assay. Biochemistry 2018 57 44 6367 6378 10.1021/acs.biochem.8b00892 30298725
    [Google Scholar]
  80. Keum Y.S. Jeong Y.J. Development of chemical inhibitors of the SARS coronavirus: Viral helicase as a potential target. Biochem. Pharmacol. 2012 84 10 1351 1358 10.1016/j.bcp.2012.08.012 22935448
    [Google Scholar]
  81. Li W. Xu C. Hao C. Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway. Antiviral Res. 2020 177 104714 10.1016/j.antiviral.2020.104714 32165083
    [Google Scholar]
  82. Mani J.S. Johnson J.B. Steel J.C. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020 284 197989 10.1016/j.virusres.2020.197989 32360300
    [Google Scholar]
  83. Goyal A. Sikarwar O. Verma A. Unveiling myricetin’s pharmacological potency: A comprehensive exploration of the molecular pathways with special focus on PI3K/AKT and Nrf2 signaling. J. Biochem. Mol. Toxicol. 2024 38 6 23739 10.1002/jbt.23739 38769721
    [Google Scholar]
  84. Agrawal P.K. Agrawal C. Blunden G.J.N.P.C. Antiviral and possible prophylactic significance of myricetin for COVID-19. Nat. Prod. Commun. 2023 18 4 1 6 10.1177/1934578X231166283
    [Google Scholar]
  85. Pasetto S. Pardi V. Murata R.M. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model. PLoS One 2014 9 12 115323 10.1371/journal.pone.0115323 25546350
    [Google Scholar]
  86. Jo S. Kim S. Shin D.H. Kim M.S. Inhibition of African swine fever virus protease by myricetin and myricitrin. J. Enzyme Inhib. Med. Chem. 2020 35 1 1045 1049 10.1080/14756366.2020.1754813 32299265
    [Google Scholar]
  87. Lim H. Nguyen T.T.H. Kim N.M. Park J.S. Jang T.S. Kim D. Inhibitory effect of flavonoids against NS2B-NS3 protease of ZIKA virus and their structure activity relationship. Biotechnol. Lett. 2017 39 3 415 421 10.1007/s10529‑016‑2261‑6 27885509
    [Google Scholar]
  88. Zou M. Liu H. Li J. Structure-activity relationship of flavonoid bifunctional inhibitors against Zika virus infection. Biochem. Pharmacol. 2020 177 113962 10.1016/j.bcp.2020.113962 32272109
    [Google Scholar]
  89. Xiao T. Cui M. Zheng C. Myricetin inhibits SARS-CoV-2 viral replication by targeting Mpro and ameliorates pulmonary inflammation. Front. Pharmacol. 2021 12 669642 10.3389/fphar.2021.669642 34220507
    [Google Scholar]
  90. Lee Y.S. Choi E.M. Myricetin inhibits IL-1β-induced inflammatory mediators in SW982 human synovial sarcoma cells. Int. Immunopharmacol. 2010 10 7 812 814 10.1016/j.intimp.2010.04.010 20403460
    [Google Scholar]
  91. Domitrović R. Rashed K. Cvijanović O. Vladimir-Knežević S. Škoda M. Višnić A. Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem. Biol. Interact. 2015 230 21 29 10.1016/j.cbi.2015.01.030 25656916
    [Google Scholar]
  92. Lee D.H. Lee C.S. Flavonoid myricetin inhibits TNF-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR and NF-κB pathways in human keratinocytes. Eur. J. Pharmacol. 2016 784 164 172 10.1016/j.ejphar.2016.05.025 27221774
    [Google Scholar]
  93. Yang L. Gao Y. Wang H. Zhong W. Gong J. Farag M.A. Myricetin attenuates the inflammatory bowel disease in prediabetic mice via inflammation inhibition and gut microbiota modulation. Food Saf Health 2024 2 2 303 317
    [Google Scholar]
  94. Kumar S. Swamy N. Tuli H.S. Myricetin: A potential plant-derived anticancer bioactive compound—an updated overview. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 10 2179 2196 10.1007/s00210‑023‑02479‑5 37083713
    [Google Scholar]
  95. Sethiya N.K. Ghiloria N. Srivastav A. Therapeutic potential of myricetin in the treatment of neurological, neuropsychiatric, and neurodegenerative disorders. CNS Neurol. Disord. Drug Targets 2024 23 7 865 882 37461364
    [Google Scholar]
  96. Boriero D. Carcereri de Prati A. Antonini L. The anti‐STAT1 polyphenol myricetin inhibits M1 microglia activation and counteracts neuronal death. FEBS J. 2021 288 7 2347 2359 10.1111/febs.15577 32981207
    [Google Scholar]
  97. Wang L. Tang Z. Li B. Myricetin ameliorates cognitive impairment in 3×Tg Alzheimer’s disease mice by regulating oxidative stress and tau hyperphosphorylation. Biomed. Pharmacother. 2024 177 116963 10.1016/j.biopha.2024.116963 38889642
    [Google Scholar]
  98. Joshi V. Mishra R. Upadhyay A. Polyphenolic flavonoid (Myricetin) upregulated proteasomal degradation mechanisms: Eliminates neurodegenerative proteins aggregation. J. Cell. Physiol. 2019 234 11 20900 20914 10.1002/jcp.28695 31004355
    [Google Scholar]
  99. Shimmyo Y. Kihara T. Akaike A. Niidome T. Sugimoto H. Multifunction of myricetin on Aβ: Neuroprotection via a conformational change of Aβ and reduction of Aβ via the interference of secretases. J. Neurosci. Res. 2008 86 2 368 377 10.1002/jnr.21476 17722071
    [Google Scholar]
  100. Gu S.C. Xie Z.G. Gu M.J. Myricetin mitigates motor disturbance and decreases neuronal ferroptosis in a rat model of Parkinson’s disease. Sci. Rep. 2024 14 1 15107 10.1038/s41598‑024‑62910‑6 38956066
    [Google Scholar]
  101. Giglio R.V. Patti A.M. Cicero A.F.G. Polyphenols: Potential use in the prevention and treatment of cardiovascular diseases. Curr. Pharm. Des. 2018 24 2 239 258 10.2174/1381612824666180130112652 29384050
    [Google Scholar]
  102. Angelone T. Pasqua T. Di Majo D. Distinct signalling mechanisms are involved in the dissimilar myocardial and coronary effects elicited by quercetin and myricetin, two red wine flavonols. Nutr. Metab. Cardiovasc. Dis. 2011 21 5 362 371 10.1016/j.numecd.2009.10.011 20096547
    [Google Scholar]
  103. Bhatia G. Khanna A.K. Sonkar R. Mishra S.K. Srivastava S. Lakshmi V. Lipid lowering and antioxidant activity of flavones in triton treated hyperlipidemic rats. Med. Chem. Res. 2011 20 9 1622 1626 10.1007/s00044‑010‑9444‑9
    [Google Scholar]
  104. Tiwari R. Mohan M. Kasture S. Maxia A. Ballero M. Cardioprotective potential of myricetin in isoproterenol‐induced myocardial infarction in wistar rats. Phytother. Res. 2009 23 10 1361 1366 10.1002/ptr.2688 19306480
    [Google Scholar]
  105. Scarabelli T.M. Mariotto S. Abdel-Azeim S. Targeting STAT1 by myricetin and delphinidin provides efficient protection of the heart from ischemia/reperfusion‐induced injury. FEBS Lett. 2009 583 3 531 541 10.1016/j.febslet.2008.12.037 19116149
    [Google Scholar]
  106. Hagenacker T. Hillebrand I. Wissmann A. Büsselberg D. Schäfers M. Anti‐allodynic effect of the flavonoid myricetin in a rat model of neuropathic pain: Involvement of p38 and protein kinase C mediated modulation of Ca2+ channels. Eur. J. Pain 2010 14 10 992 998 10.1016/j.ejpain.2010.04.005 20471878
    [Google Scholar]
  107. Tong Y. Zhou X.M. Wang S.J. Yang Y. Cao Y.L. Analgesic activity of myricetin isolated from Myrica rubra Sieb. et Zucc. leaves. Arch. Pharm. Res. 2009 32 4 527 533 10.1007/s12272‑009‑1408‑6 19407970
    [Google Scholar]
  108. Borde P. Mohan M. Kasture S. Effect of myricetin on deoxycorticosterone acetate (DOCA)-salt-hypertensive rats. Nat. Prod. Res. 2011 25 16 1549 1559 10.1080/14786410903335190 21391110
    [Google Scholar]
  109. Yang Z. Zhang J. Shi B. Qian J. Guo H.J.A.A. Antihyperlipidemic activity of myricetin. Acta Aliment. 2024 53 2 292 304 10.1556/066.2024.00068
    [Google Scholar]
  110. Moghadam S. Ebrahimi S. Salehi P. Moridi Farimani M. Hamburger M. Jabbarzadeh E. Wound healing potential of chlorogenic acid and myricetin-3-o-β-rhamnoside isolated from parrotia persica. Molecules 2017 22 9 1501 10.3390/molecules22091501 28885580
    [Google Scholar]
  111. Jung S.K. Lee K.W. Kim H.Y. Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf. Biochem. Pharmacol. 2010 79 10 1455 1461 10.1016/j.bcp.2010.01.004 20093107
    [Google Scholar]
  112. Zhang N. Yang Y. Wang X. Shi T. Lv P. Li Q.X. Myricetin inhibits photodegradation of profenofos in water: Pathways and mechanisms. Agronomy 2024 14 2 399 10.3390/agronomy14020399
    [Google Scholar]
  113. Kim W. Yang H.J. Youn H. Yun Y.J. Seong K.M. Youn B. Myricetin inhibits Akt survival signaling and induces Bad-mediated apoptosis in a low dose ultraviolet (UV)-B-irradiated HaCaT human immortalized keratinocytes. J. Radiat. Res. (Tokyo) 2010 51 3 285 296 10.1269/jrr.09141 20339252
    [Google Scholar]
  114. Kumamoto T. Fujii M. Hou D.X. Akt is a direct target for myricetin to inhibit cell transformation. Mol. Cell. Biochem. 2009 332 1-2 33 41 10.1007/s11010‑009‑0171‑9 19504174
    [Google Scholar]
  115. Nie N. Li Z. Li W. Huang X. Jiang Z. Shen Y. Myricetin ameliorates experimental autoimmune myocarditis in mice by modulating immune response and inhibiting MCP-1 expression. Eur. J. Pharmacol. 2023 942 175549 10.1016/j.ejphar.2023.175549 36708976
    [Google Scholar]
  116. Zhu S. Yang C. Zhang L. Development of M10, myricetin-3-O-β-d-lactose sodium salt, a derivative of myricetin as a potent agent of anti-chronic colonic inflammation. Eur. J. Med. Chem. 2019 174 9 15 10.1016/j.ejmech.2019.04.031 31022552
    [Google Scholar]
  117. Abidov M. Ramazanov A. Jimenez Del Rio M. Chkhikvishvili I. Effect of Blueberin on fasting glucose, C-reactive protein and plasma aminotransferases, in female volunteers with diabetes type 2: Double-blind, placebo controlled clinical study. Georgian Med. News 2006 141 66 72 17261891
    [Google Scholar]
  118. Ahrens M.J. Thompson D.L. Effect of emulin on blood glucose in type 2 diabetics. J. Med. Food 2013 16 3 211 215 10.1089/jmf.2012.0069 23444965
    [Google Scholar]
  119. Pathak R. Sachan N. Chandra P. Mechanistic approach towards diabetic neuropathy screening techniques and future challenges: A review. Biomed. Pharmacother. 2022 150 113025 10.1016/j.biopha.2022.113025 35658222
    [Google Scholar]
  120. Babotă M. Frumuzachi O. Tanase C. Mocan A. Efficacy of myricetin supplementation on glucose and lipid metabolism: A systematic review and meta-analysis of in vivo mice studies. Nutrients 2024 16 21 3730 10.3390/nu16213730 39519561
    [Google Scholar]
  121. Devi K.P. Rajavel T. Habtemariam S. Nabavi S.F. Nabavi S.M. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci. 2015 142 19 25 10.1016/j.lfs.2015.10.004 26455550
    [Google Scholar]
  122. Knekt P. Kumpulainen J. Järvinen R. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002 76 3 560 568 10.1093/ajcn/76.3.560 12198000
    [Google Scholar]
  123. Gates M.A. Tworoger S.S. Hecht J.L. De Vivo I. Rosner B. Hankinson S.E. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int. J. Cancer 2007 121 10 2225 2232 10.1002/ijc.22790 17471564
    [Google Scholar]
  124. Bobe G. Weinstein S.J. Albanes D. Flavonoid intake and risk of pancreatic cancer in male smokers (Finland). Cancer Epidemiol. Biomarkers Prev. 2008 17 3 553 562 10.1158/1055‑9965.EPI‑07‑2523 18349272
    [Google Scholar]
  125. Tang N.P. Zhou B. Wang B. Yu R.B. Ma J. Flavonoids intake and risk of lung cancer: A meta-analysis. Jpn. J. Clin. Oncol. 2009 39 6 352 359 10.1093/jjco/hyp028 19351659
    [Google Scholar]
  126. Zern T.L. Wood R.J. Greene C. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J. Nutr. 2005 135 8 1911 1917 10.1093/jn/135.8.1911 16046716
    [Google Scholar]
  127. Yang Y. Choi J. Jung C. SNARE-wedging polyphenols as small molecular botox. Planta Med. 2012 78 3 233 236 10.1055/s‑0031‑1280385 22109835
    [Google Scholar]
  128. Chen Y.H. Yang Z.S. Wen C.C. Evaluation of the structure–activity relationship of flavonoids as antioxidants and toxicants of zebrafish larvae. Food Chem. 2012 134 2 717 724 10.1016/j.foodchem.2012.02.166 23107683
    [Google Scholar]
  129. Kim J.D. Liu L. Guo W. Meydani M. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion. J. Nutr. Biochem. 2006 17 3 165 176 10.1016/j.jnutbio.2005.06.006 16169200
    [Google Scholar]
  130. Canada A.T. Watkins W.D. Nguyen T.D. The toxicity of flavonoids to guinea pig enterocytes. Toxicol. Appl. Pharmacol. 1989 99 2 357 361 10.1016/0041‑008X(89)90018‑5 2734797
    [Google Scholar]
  131. Preet G. Haj Hasan A. Ramlagan P. Fawdar S. Boulle F. Jaspars M. Anti-neurodegenerating activity: Structure–activity relationship analysis of flavonoids. Molecules 2023 28 20 7188 10.3390/molecules28207188 37894669
    [Google Scholar]
  132. Šimunková M. Valko M. Bučinský L. Malček M. Structure functionality relationship of flavonoids (myricetin, morin, taxifolin and 3′,4′-dihydroxyflavone). A computational study via the cupric ion probe. J. Mol. Struct. 2020 1222 128923 10.1016/j.molstruc.2020.128923
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128369420250707163438
Loading
/content/journals/cpd/10.2174/0113816128369420250707163438
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anticancer ; flavonoid ; biological activity ; preserving agent ; Myricetin ; Alzheimer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test