Skip to content
2000
image of Targeting Ocular Tissue through Surface-Modified and Multifunctional Biomaterials and mRNA-Based Therapeutics

Abstract

Targeting the ocular surfaces and improving retention time are crucial to achieving high therapeutic outcomes for eye diseases. The most frequently used ophthalmic preparation is ocular drops, which, however, come with various limitations; therefore, advanced eye formulations are essential for the ocular medical field. Different methods, such as penetration enhancers, nanoparticles, ocular inserts, and lenses, have been utilized to improve the eye retention time. Although these formulations present limited advantages, combining them with surface-modified polymers can improve the therapeutic outcomes. Surface modification can be achieved through physical, chemical, and other methods. Chemical grafting is one of the most preferable methods, given that it is a straightforward methodology. This review summarizes the ocular microenvironment and eye barriers that should be overcome when designing ocular drug delivery systems. Most importantly, it summarizes ocular drug delivery systems based on surface-modified materials and emerging nanocarriers, also combined with IVT-mRNA therapeutics, offering promising advancements by enhancing targeting precision and therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128373593250619074556
2025-07-04
2025-09-09
Loading full text...

Full text loading...

References

  1. Nayak K. Choudhari M.V. Bagul S. Chavan T.A. Misra M. Ocular drug delivery systems. Drug delivery devices and therapeutic systems. Academic Press 2021 515 566
    [Google Scholar]
  2. Hornof M. Toropainen E. Urtti A. Cell culture models of the ocular barriers. Eur. J. Pharm. Biopharm. 2005 60 2 207 225 10.1016/j.ejpb.2005.01.009 15939234
    [Google Scholar]
  3. Kari O.K. Tavakoli S. Parkkila P. Light-activated liposomes coated with hyaluronic acid as a potential drug delivery system. Pharmaceutics 2020 12 8 763 10.3390/pharmaceutics12080763 32806740
    [Google Scholar]
  4. Ren N. Sun R. Xia K. DNA-based hybrid hydrogels sustain water-insoluble ophthalmic therapeutic delivery against allergic conjunctivitis. ACS Appl. Mater. Interfaces 2019 11 30 26704 26710 10.1021/acsami.9b08652 31264833
    [Google Scholar]
  5. Tang Z. Fan X. Chen Y. Gu P. Ocular nanomedicine. Adv. Sci. 2022 9 15 2003699 10.1002/advs.202003699 35150092
    [Google Scholar]
  6. Jamaledin R. Yiu C.K.Y. Zare E.N. Advances in antimicrobial microneedle patches for combating infections. Adv. Mater. 2020 32 33 2002129 10.1002/adma.202002129 32602146
    [Google Scholar]
  7. Lee K. Goudie M.J. Tebon P. Non-transdermal microneedles for advanced drug delivery. Adv. Drug Deliv. Rev. 2020 165-166 41 59 10.1016/j.addr.2019.11.010 31837356
    [Google Scholar]
  8. Chang M-C. Kuo Y-J. Hung K-H. Peng C-L. Chen K-Y. Liposomal dexamethasone-moxifloxacin nanoparticles combinations with collagen/gelatin/alginate hydrogel for corneal infection treatment and wound healing. Biomed. Mater. 2020 15 5 055022 10.1088/1748‑605X/ab9510
    [Google Scholar]
  9. Tavakoli S. Peynshaert K. Lajunen T. Ocular barriers to retinal delivery of intravitreal liposomes: Impact of vitreoretinal interface. J. Control. Release 2020 328 952 961 10.1016/j.jconrel.2020.10.028 33091527
    [Google Scholar]
  10. Schnichels S. Hurst J. de Vries J.W. Improved treatment options for glaucoma with brimonidine-loaded lipid DNA nanoparticles. ACS Appl. Mater. Interfaces 2021 13 8 9445 9456 10.1021/acsami.0c18626 33528240
    [Google Scholar]
  11. Heredero-Bermejo I. Martín-Pérez T. Copa-Patiño J.L. Ultrastructural study of acanthamoeba polyphaga trophozoites and cysts treated in vitro with cationic carbosilane dendrimers. Pharmaceutics 2020 12 6 565 10.3390/pharmaceutics12060565 32570829
    [Google Scholar]
  12. Soiberman U. Kambhampati S.P. Wu T. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials 2017 125 38 53 10.1016/j.biomaterials.2017.02.016 28226245
    [Google Scholar]
  13. Jiang G. Jia H. Qiu J. PLGA nanoparticle platform for trans-ocular barrier to enhance drug delivery: A comparative study based on the application of oligosaccharides in the outer membrane of carriers. Int. J. Nanomedicine 2020 15 9373 9387 10.2147/IJN.S272750 33262593
    [Google Scholar]
  14. Sánchez-López E. Egea M.A. Davis B.M. Memantine-loaded PEGylated biodegradable nanoparticles for the treatment of glaucoma. Small 2018 14 2 1701808 10.1002/smll.201701808 29154484
    [Google Scholar]
  15. Van Hoorick J. Delaey J. Vercammen H. Designer descemet membranes containing PDLLA and functionalized gelatins as corneal endothelial scaffold. Adv. Healthc. Mater. 2020 9 16 2000760 10.1002/adhm.202000760 32603022
    [Google Scholar]
  16. Balijepalli A.S. Sabatelle R.C. Chen M. Suki B. Grinstaff M.W. A synthetic bioinspired carbohydrate polymer with mucoadhesive properties. Angew. Chem. Int. Ed. 2020 59 2 704 710 10.1002/anie.201911720 31701611
    [Google Scholar]
  17. Yan D. Yao Q. Yu F. Surface modified electrospun poly(lactic acid) fibrous scaffold with cellulose nanofibrils and Ag nanoparticles for ocular cell proliferation and antimicrobial application. Mater. Sci. Eng. C 2020 111 110767 10.1016/j.msec.2020.110767 32279789
    [Google Scholar]
  18. Nguyen D.D. Luo L.J. Lai J.Y. Toward understanding the purely geometric effects of silver nanoparticles on potential application as ocular therapeutics via treatment of bacterial keratitis. Mater. Sci. Eng. C 2021 119 111497 10.1016/j.msec.2020.111497 33321598
    [Google Scholar]
  19. Zhu Y. Li S. Li J. Lab-on-a-contact lens: Recent advances and future opportunities in diagnostics and therapeutics. Adv. Mater. 2022 34 24 2108389 10.1002/adma.202108389 35130584
    [Google Scholar]
  20. Migdadi E.M. Courtenay A.J. Tekko I.A. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release 2018 285 142 151 10.1016/j.jconrel.2018.07.009 29990526
    [Google Scholar]
  21. Cui M. Zheng M. Wiraja C. Ocular delivery of predatory bacteria with cryomicroneedles against eye infection. Adv. Sci. 2021 8 21 2102327 10.1002/advs.202102327 34494724
    [Google Scholar]
  22. Vivero-Lopez M. Pereira-da-Mota A.F. Carracedo G. Phosphorylcholine-based contact lenses for sustained release of resveratrol: Design, antioxidant and antimicrobial performances, and in vivo behavior. ACS Appl. Mater. Interfaces 2022 14 50 55431 55446 10.1021/acsami.2c18217 36495267
    [Google Scholar]
  23. Xie M. Yao G. Zhang T. Multifunctional flexible contact lens for eye health monitoring using inorganic magnetic oxide nanosheets. J. Nanobiotechnology 2022 20 1 202 10.1186/s12951‑022‑01415‑8 35477463
    [Google Scholar]
  24. Siafaka P. Üstündağ Okur N. Karavas E. Bikiaris D. Surface] modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. Int. J. Mol. Sci. 2016 17 9 1440 10.3390/ijms17091440 27589733
    [Google Scholar]
  25. Liu D. Lian Y. Fang Q. Liu L. Zhang J. Li J. Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int. J. Biol. Macromol. 2018 116 1026 1036 10.1016/j.ijbiomac.2018.05.113 29778883
    [Google Scholar]
  26. Gómez-Aguado I. Rodríguez-Castejón J. Vicente-Pascual M. Rodríguez-Gascón A. Solinís M.Á. del Pozo-Rodríguez A. Nanomedicines to deliver mRNA: State of the art and future perspectives. Nanomaterials 2020 10 2 364 10.3390/nano10020364 32093140
    [Google Scholar]
  27. Gómez-Aguado I. Rodríguez-Castejón J. Beraza-Millor M. mRNA-based nanomedicinal products to address corneal inflammation by interleukin-10 supplementation. Pharmaceutics 2021 13 9 1472 10.3390/pharmaceutics13091472 34575548
    [Google Scholar]
  28. Singh M. Guzman-Aranguez A. Hussain A. Srinivas C.S. Kaur I.P. Solid lipid nanoparticles for ocular delivery of isoniazid: Evaluation, proof of concept and in vivo safety & kinetics. Nanomedicine 2019 14 4 465 491 10.2217/nnm‑2018‑0278 30694726
    [Google Scholar]
  29. Antas P. Carvalho C. Cabral-Teixeira J. de Lemos L. Seabra M.C. Toward low-cost gene therapy: MRNA-based therapeutics for treatment of inherited retinal diseases. Trends Mol. Med. 2024 30 2 136 146 10.1016/j.molmed.2023.11.009 38044158
    [Google Scholar]
  30. Alqawlaq S. Huzil J.T. Ivanova M.V. Foldvari M. Challenges in neuroprotective nanomedicine development: Progress towards noninvasive gene therapy of glaucoma. Nanomedicine 2012 7 7 1067 1083 10.2217/nnm.12.69 22846092
    [Google Scholar]
  31. Giri B.R. Jakka D. Sandoval M.A. Kulkarni V.R. Bao Q. Advancements in ocular therapy: A review of emerging drug delivery approaches and pharmaceutical technologies. Pharmaceutics 2024 16 10 1325 10.3390/pharmaceutics16101325 39458654
    [Google Scholar]
  32. Wu Y. Li X. Fu X. Innovative nanotechnology in drug delivery systems for advanced treatment of posterior segment ocular diseases. Adv. Sci. (Weinh.) 2024 11 32 2403399 10.1002/advs.202403399 39031809
    [Google Scholar]
  33. Kim H.M. Woo S.J. Ocular drug delivery to the retina: Current innovations and future perspectives. Pharmaceutics 2021 13 1 108 10.3390/pharmaceutics13010108 33467779
    [Google Scholar]
  34. Gote V. Sikder S. Sicotte J. Pal D. Ocular drug delivery: Present innovations and future challenges. J. Pharmacol. Exp. Ther. 2019 370 3 602 624 10.1124/jpet.119.256933 31072813
    [Google Scholar]
  35. Advancements in ocular drug delivery. 2024 Available from: https://www.modernretina.com/view/advancements-in-ocular-drug-delivery
  36. Ophthalmic drugs global market report 2025 Innovations in retinal disorders, glaucoma drive global ophthalmic medicines surge. 2025 Available from: https://www.globenewswire.com/news-release/2025/01/13/3008183/0/en/Ophthalmic-Drugs-Global-Market-Report-2025-Innovations-in-Retinal-Disorders-Glaucoma-Drive-Global-Ophthalmic-Medicines-Surge.html
    [Google Scholar]
  37. Moiseev R.V. Morrison P.W.J. Steele F. Khutoryanskiy V.V. Penetration enhancers in ocular drug delivery. Pharmaceutics 2019 11 7 321 10.3390/pharmaceutics11070321 31324063
    [Google Scholar]
  38. Zhang X M VJ Qu Y et al Dry eye management: Targeting] the ocular surface microenvironment. Int. J. Mol. Sci. 2017 18 7 1398 10.3390/ijms18071398 28661456
    [Google Scholar]
  39. Siafaka P.I. Özcan Bülbül E. Miliotou A.N. Karantas I.D. Okur M.E. Üstündağ Okur N. Delivering active molecules to the eye; The concept of electrospinning as potent tool for drug delivery systems. J. Drug Deliv. Sci. Technol. 2023 84 104565 10.1016/j.jddst.2023.104565
    [Google Scholar]
  40. Rahimi M. Charmi G. Matyjaszewski K. Banquy X. Pietrasik J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater. 2021 123 31 50 10.1016/j.actbio.2021.01.003 33444800
    [Google Scholar]
  41. Li Y.N. Liang H.W. Zhang C.L. Ophthalmic solution of smart supramolecular peptides to capture semaphorin 4D against diabetic retinopathy. Adv. Sci. 2023 10 3 2203351 10.1002/advs.202203351 36437109
    [Google Scholar]
  42. Cai X. Conley S. Naash M. Nanoparticle applications in ocular gene therapy. Vision Res. 2008 48 3 319 324 10.1016/j.visres.2007.07.012
    [Google Scholar]
  43. Tisi A. Feligioni M. Passacantando M. Ciancaglini M. Maccarone R. The impact of oxidative stress on blood-retinal barrier physiology in age-related macular degeneration. Cells 2021 10 1 64 10.3390/cells10010064 33406612
    [Google Scholar]
  44. Li S. Chen L. Fu Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J. Nanobiotechnology 2023 21 1 232 10.1186/s12951‑023‑01992‑2 37480102
    [Google Scholar]
  45. Sun K. Hu K. Preparation and characterization of tacrolimus-loaded slns in situ gel for ocular drug delivery for the treatment of immune conjunctivitis. Drug Des. Devel. Ther. 2021 15 141 150 10.2147/DDDT.S287721 33469266
    [Google Scholar]
  46. Hackett S.F. Fu J. Kim Y.C. Sustained delivery of acriflavine from the suprachoroidal space provides long term suppression of choroidal neovascularization. Biomaterials 2020 243 119935 10.1016/j.biomaterials.2020.119935 32172031
    [Google Scholar]
  47. Robinson R. Viviano S.R. Criscione J.M. Nanospheres delivering the EGFR TKI AG1478 promote optic nerve regeneration: The role of size for intraocular drug delivery. ACS Nano 2011 5 6 4392 4400 10.1021/nn103146p 21619059
    [Google Scholar]
  48. Ahmed S. Amin M.M. Sayed S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023 24 2 66 10.1208/s12249‑023‑02516‑9 36788150
    [Google Scholar]
  49. Singh M. Bharadwaj S. Lee K.E. Kang S.G. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J. Control. Release 2020 328 895 916 10.1016/j.jconrel.2020.10.025 33069743
    [Google Scholar]
  50. Dhull A. Yu C. Wilmoth A.H. Chen M. Sharma A. Yiu S. Dendrimers in corneal drug delivery: Recent developments and translational opportunities. Pharmaceutics 2023 15 6 1591 10.3390/pharmaceutics15061591 37376040
    [Google Scholar]
  51. Chaw S.Y. Novera W. Chacko A.M. Wong T.T.L. Venkatraman S. In vivo fate of liposomes after subconjunctival ocular delivery. J. Control. Release 2021 329 162 174 10.1016/j.jconrel.2020.11.053 33271203
    [Google Scholar]
  52. Lin S. Ge C. Wang D. Overcoming the anatomical and physiological barriers in topical eye surface medication using a peptide-decorated polymeric micelle. ACS Appl. Mater. Interfaces 2019 11 43 39603 39612 10.1021/acsami.9b13851 31580053
    [Google Scholar]
  53. Varela-Fernández R. García-Otero X. Díaz-Tomé V. Design, optimization, and characterization of lactoferrin-loaded chitosan/TPP and chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a pharmacological alternative for keratoconus treatment. ACS Appl. Mater. Interfaces 2021 13 3 3559 3575 10.1021/acsami.0c18926 33428398
    [Google Scholar]
  54. Martens T.F. Remaut K. Deschout H. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J. Control. Release 2015 202 83 92 10.1016/j.jconrel.2015.01.030 25634806
    [Google Scholar]
  55. Liu S. Han X. Liu H. Incorporation of ion exchange functionalized-montmorillonite into solid lipid nanoparticles with low irritation enhances drug bioavailability for glaucoma treatment. Drug Deliv. 2020 27 1 652 661 10.1080/10717544.2020.1756984 32347126
    [Google Scholar]
  56. Senturk B. Cubuk M.O. Ozmen M.C. Aydin B. Guler M.O. Tekinay A.B. Inhibition of VEGF mediated corneal neovascularization by anti-angiogenic peptide nanofibers. Biomaterials 2016 107 124 132 10.1016/j.biomaterials.2016.08.045 27616429
    [Google Scholar]
  57. Khan F.U. Nasir F. Iqbal Z. Improved ocular bioavailability of moxifloxacin HCl using PLGA nanoparticles: Fabrication, characterization, in-vitro and in-vivo evaluation. Iran. J. Pharm. Res. 2021 20 3 592 608 [PMID: 34904011
    [Google Scholar]
  58. Gorantla S. Rapalli V.K. Waghule T. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances 2020 10 46 27835 27855 10.1039/D0RA04971A 35516960
    [Google Scholar]
  59. Yang H. Zhao M. Xing D. Contact lens as an emerging platform for ophthalmic drug delivery: A systematic review. Asian J Pharm Sci 2023 18 5 100847 10.1016/j.ajps.2023.100847 37915758
    [Google Scholar]
  60. Han H. Li S. Xu M. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv. Drug Deliv. Rev. 2023 196 114770 10.1016/j.addr.2023.114770 36894134
    [Google Scholar]
  61. Reimondez-Troitiño S Csaba N Alonso MJ de la Fuente M Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm 2015 95 (Pt B) 279 93 10.1016/j.ejpb.2015.02.019 25725262
    [Google Scholar]
  62. Janagam D.R. Wu L. Lowe T.L. Nanoparticles for drug delivery to the anterior segment of the eye. Adv. Drug Deliv. Rev. 2017 122 31 64 10.1016/j.addr.2017.04.001 28392306
    [Google Scholar]
  63. Siafaka P.I. Titopoulou A. Koukaras E.N. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int. J. Pharm. 2015 495 1 249 264 10.1016/j.ijpharm.2015.08.100 26341322
    [Google Scholar]
  64. Ai X. Wang S. Duan Y. Emerging approaches to functionalizing cell membrane-coated nanoparticles. Biochemistry 2021 60 13 941 955 10.1021/acs.biochem.0c00343 32452667
    [Google Scholar]
  65. Akdoğan E. Şirin H.T. Plasma surface modification strategies for the preparation of antibacterial biomaterials: A review of the recent literature. Mater. Sci. Eng. C 2021 131 112474 10.1016/j.msec.2021.112474 34857260
    [Google Scholar]
  66. Ger T.Y. Yang C.J. Bui H.L. Lue S.J. Yao C.H. Lai J.Y. Alginate-functionalized nanoceria as ion-responsive eye drop formulation to treat corneal abrasion. Carbohydr. Polym. 2025 352 123164 10.1016/j.carbpol.2024.123164 39843069
    [Google Scholar]
  67. Moskalewicz T. Warcaba M. Łukaszczyk A. Electrophoretic deposition, microstructure and properties of multicomponent sodium alginate-based coatings incorporated with graphite oxide and hydroxyapatite on titanium biomaterial substrates. Appl. Surf. Sci. 2022 575 151688 10.1016/j.apsusc.2021.151688
    [Google Scholar]
  68. Cho Y. Lee M. Park S. Kim Y. Lee E. Im S.G. A versatile surface modification method via vapor-phase deposited functional polymer films for biomedical device applications. Biotechnol. Bioprocess Eng.; BBE 2021 26 2 165 178 10.1007/s12257‑020‑0269‑1 33821132
    [Google Scholar]
  69. Roh S. Jang Y. Yoo J. Seong H. Surface modification strategies for biomedical applications: Enhancing cell-biomaterial interfaces and biochip performances. Biochip J. 2023 17 2 174 191 10.1007/s13206‑023‑00104‑4
    [Google Scholar]
  70. Hu X. Wang T. Li F. Mao X. Surface modifications of biomaterials in different applied fields. RSC Advances 2023 13 30 20495 20511 10.1039/D3RA02248J 37435384
    [Google Scholar]
  71. Abesekara M.S. Chau Y. Recent advances in surface modification of micro- and nano-scale biomaterials with biological membranes and biomolecules. Front. Bioeng. Biotechnol. 2022 10 972790 10.3389/fbioe.2022.972790 36312538
    [Google Scholar]
  72. Bose S. Robertson S.F. Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 2018 66 6 22 10.1016/j.actbio.2017.11.003 29109027
    [Google Scholar]
  73. Rahman M.H. Liza N.Y. Hossain K.R. Kalambhe D.R. Shyeed M.A. Noor D.H. Additive manufacturing in nano drug delivery systems. Pharm Sci Adv 2024 2 100036 10.1016/j.pscia.2024.100036
    [Google Scholar]
  74. Joudeh N. Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnology 2022 20 1 262 10.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  75. Irimia T. Ghica M. Popa L. Anuţa V. Arsene A.L. Dinu-Pîrvu C.E. Strategies for improving ocular drug bioavailability and corneal wound healing with chitosan-based delivery systems. Polymers 2018 10 11 1221 10.3390/polym10111221 30961146
    [Google Scholar]
  76. Hsu C.Y. Rheima A.M. Kadhim M.M. An overview of nanoparticles in drug delivery: Properties and applications. S. Afr. J. Chem. Eng. 2023 46 233 270 10.1016/j.sajce.2023.08.009
    [Google Scholar]
  77. Amgoth C. Phan C. Banavoth M. Rompivalasa S. Tang G. Polymer properties: Functionalization and surface modified nanoparticles. In:Role of Novel Drug Delivery Vehicles in Nanobiomedicine. IntechOpen 2020 10.5772/intechopen.84424
    [Google Scholar]
  78. Zhai Z. Cheng Y. Hong J. Nanomedicines for the treatment of glaucoma: Current status and future perspectives. Acta Biomater. 2021 125 41 56 10.1016/j.actbio.2021.02.017 33601065
    [Google Scholar]
  79. Apaolaza P.S. Busch M. Asin-Prieto E. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution. Exp. Eye Res. 2020 198 108151 10.1016/j.exer.2020.108151 32721426
    [Google Scholar]
  80. Choi S.W. Kim W.S. Kim J.H. Surface modification of functional nanoparticles for controlled drug delivery. J. Dispers. Sci. Technol. 2003 24 3-4 475 487 10.1081/DIS‑120021803
    [Google Scholar]
  81. Salama A.H. AbouSamra M.M. Awad G.E.A. Mansy S.S. Promising bioadhesive ofloxacin-loaded polymeric nanoparticles for the treatment of ocular inflammation: Formulation and in vivo evaluation. Drug Deliv. Transl. Res. 2021 11 5 1943 1957 10.1007/s13346‑020‑00856‑8 33006742
    [Google Scholar]
  82. Galindo R. Sánchez-López E. Gómara M.J. Development of peptide targeted PLGA-PEGylated nanoparticles loading licochalcone-A for ocular inflammation. Pharmaceutics 2022 14 2 285 10.3390/pharmaceutics14020285 35214019
    [Google Scholar]
  83. Laddha U.D. Kshirsagar S.J. Sayyad L.S. Development of surface modified nanoparticles of curcumin for topical treatment of diabetic retinopathy: In vitro, ex vivo and in vivo investigation. J. Drug Deliv. Sci. Technol. 2022 76 103835 10.1016/j.jddst.2022.103835
    [Google Scholar]
  84. Laddha U.D. Kshirsagar S.J. Formulation of PPAR-gamma agonist as surface modified PLGA nanoparticles for non-invasive treatment of diabetic retinopathy: In vitro and in vivo evidences. Heliyon 2020 6 8 e04589 10.1016/j.heliyon.2020.e04589 32832706
    [Google Scholar]
  85. Dadashi F. Esmaeili A. Optimization, in-vitro release and in-vivo evaluation of bismuth-hyaluronic acid-melittin-chitosan modified with oleic acid nanoparticles computed imaging-guided radiotherapy of cancer tumor in eye cells. Mater. Sci. Eng. B 2021 270 115197 10.1016/j.mseb.2021.115197
    [Google Scholar]
  86. Zhuang H. Xu Y.N. Zheng H.H. Carboplatin-loaded surface modified-PLGA nanoparticles confer sustained inhibitory effect against retinoblastoma cell in vitro. Arq. Bras. Oftalmol. 2022 85 5 450 458 [PMID: 35170632
    [Google Scholar]
  87. Bhosale V.A. Srivastava V. Valamla B. Yadav R. Singh S.B. Mehra N.K. Preparation and evaluation of modified chitosan nanoparticles using anionic sodium alginate polymer for treatment of ocular disease. Pharmaceutics 2022 14 12 2802 10.3390/pharmaceutics14122802 36559295
    [Google Scholar]
  88. Kaviarasi B. Rajana N. Pooja Y.S. Rajalakshmi A.N. Singh S.B. Mehra N.K. Investigating the effectiveness of Difluprednate-Loaded core-shell lipid-polymeric hybrid nanoparticles for ocular delivery. Int. J. Pharm. 2023 640 123006 10.1016/j.ijpharm.2023.123006 37137420
    [Google Scholar]
  89. Constantin M. Bucatariu S. Secarescu L. Coroaba A. Ursu E.L. Fundueanu G. Poly(lactic-co-glycolic) acid nanoparticles with thermoresponsive shell for sustained release of dexamethasone. React. Funct. Polym. 2025 206 106107 10.1016/j.reactfunctpolym.2024.106107
    [Google Scholar]
  90. Suwannoi P. Chomnawang M. Tunsirikongkon A. Phongphisutthinan A. Müller-Goymann C.C. Sarisuta N. TAT-surface modified acyclovir-loaded albumin nanoparticles as a novel ocular drug delivery system. J. Drug Deliv. Sci. Technol. 2019 52 624 631 10.1016/j.jddst.2019.05.029
    [Google Scholar]
  91. Wang Y. Chen G. Zhang H. Zhao C. Sun L. Zhao Y. Emerging functional biomaterials as medical patches. ACS Nano 2021 15 4 5977 6007 10.1021/acsnano.0c10724 33856205
    [Google Scholar]
  92. Williams R. Lace R. Kennedy S. Doherty K. Levis H. Biomaterials for regenerative medicine approaches for the anterior segment of the eye. Adv. Healthc. Mater. 2018 7 10 1701328 10.1002/adhm.201701328 29388397
    [Google Scholar]
  93. Yan D. Zhang S. Yu F. Insight into levofloxacin loaded biocompatible electrospun scaffolds for their potential as conjunctival substitutes. Carbohydr. Polym. 2021 269 118341 10.1016/j.carbpol.2021.118341 34294349
    [Google Scholar]
  94. Zhang S. Yu F. Chen J. A thin film comprising silk peptide and cellulose nanofibrils implanting on the electrospun poly(lactic acid) fibrous scaffolds for biomedical reconstruction. Int. J. Biol. Macromol. 2023 251 126209 10.1016/j.ijbiomac.2023.126209 37567522
    [Google Scholar]
  95. Shi X. Zhou T. Huang S. An electrospun scaffold functionalized with a ROS-scavenging hydrogel stimulates ocular wound healing. Acta Biomater. 2023 158 266 280 10.1016/j.actbio.2023.01.016 36638943
    [Google Scholar]
  96. Bhattacharjee P. Madden P.W. Patriarca E. Ahearne M. Optimization and evaluation of oxygen-plasma-modified, aligned, poly (Є-caprolactone) and silk fibroin nanofibrous scaffold for corneal stromal regeneration. Biomater Biosyst 2023 12 100083 10.1016/j.bbiosy.2023.100083 37731910
    [Google Scholar]
  97. Fernández-Pérez J. Kador K.E. Lynch A.P. Ahearne M. Characterization of extracellular matrix modified poly(ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration. Mater. Sci. Eng. C 2020 108 110415 10.1016/j.msec.2019.110415 31924032
    [Google Scholar]
  98. Kailasam V. Hiremath M.S. Sudharsan P. Nagarjuna V. Garg P. Nirmal J. Stability enhancement of Amphotericin B using 3D printed biomimetic polymeric corneal patch to treat fungal infections. Int. J. Pharm. 2025 670 125149 10.1016/j.ijpharm.2024.125149 39736279
    [Google Scholar]
  99. Apple D.J. Sims J. Sims J. Harold Ridley and the invention of the intraocular lens. Surv. Ophthalmol. 1996 40 4 279 292 10.1016/S0039‑6257(96)82003‑0 8658339
    [Google Scholar]
  100. Yousaf S. Keshel S.H. Farzi G.A. Momeni-Moghadam M. Ahmadi E.D. Mozafari M. Scaffolds for intraocular lens. In:Handbook of Tissue Engineering Scaffolds. Volume Two. Woodhead Publishing Series in Biomaterials 2019 693 709 10.1016/B978‑0‑08‑102561‑1.00028‑2
    [Google Scholar]
  101. Werner L. Intraocular lenses. Ophthalmology 2021 128 11 e74 e93 10.1016/j.ophtha.2020.06.055 32619547
    [Google Scholar]
  102. Nazeer N. Ahmed M. Polymers in medicine. In:Polymer science and nanotechnology fundamentals and applications. Elsevier 2020 281 323 10.1016/B978‑0‑12‑816806‑6.00013‑3
    [Google Scholar]
  103. Terrada C. Julian K. Cassoux N. Cataract surgery with primary intraocular lens implantation in children with uveitis: Long-term outcomes. J. Cataract Refract. Surg. 2011 37 11 1977 1983 10.1016/j.jcrs.2011.05.037 21940141
    [Google Scholar]
  104. Huang Q. Cheng G.P.M. Chiu K. Wang G.Q. Surface modification of intraocular lenses. Chin. Med. J. 2016 129 2 206 214 10.4103/0366‑6999.173496 26830993
    [Google Scholar]
  105. Han Y. Tang J. Xia J. Anti-adhesive and antiproliferative synergistic surface modification of intraocular lens for reduced posterior capsular opacification. Int. J. Nanomedicine 2019 14 9047 9061 10.2147/IJN.S215802 31819418
    [Google Scholar]
  106. Liu S. Zhao X. Tang J. Han Y. Lin Q. Drug-eluting hydrophilic coating modification of intraocular lens via facile dopamine self-polymerization for posterior capsular opacification prevention. ACS Biomater. Sci. Eng. 2021 7 3 1065 1073 10.1021/acsbiomaterials.0c01705 33492923
    [Google Scholar]
  107. Huang H. Zhu S. Liu D. Wen S. Lin Q. Antiproliferative drug-loaded multi-functionalized intraocular lens for reducing posterior capsular opacification. J. Biomater. Sci. Polym. Ed. 2021 32 6 735 748 10.1080/09205063.2020.1865691 33332253
    [Google Scholar]
  108. Lu D. Han Y. Liu D. Centrifugally concentric ring-patterned drug-loaded polymeric coating as an intraocular lens surface modification for efficient prevention of posterior capsular opacification. Acta Biomater. 2022 138 327 341 10.1016/j.actbio.2021.11.018 34800717
    [Google Scholar]
  109. Tang J. Liu S. Han Y. Surface modification of intraocular lenses via photodynamic coating for safe and effective PCO prevention. J. Mater. Chem. B Mater. Biol. Med. 2021 9 6 1546 1556 10.1039/D0TB02802A 33527973
    [Google Scholar]
  110. Hosseini M.S. Mohseni M. Naseripour M. Synthesis and evaluation of modified lens using plasma treatment containing timolol-maleate loaded lauric acid-decorated chitosan-alginate nanoparticles for glaucoma. J. Biomater. Sci. Polym. Ed. 2023 34 13 1793 1812 10.1080/09205063.2023.2187204 36872905
    [Google Scholar]
  111. Xia J. Lu D. Han Y. Facile multifunctional IOL surface modification via poly(PEGMA- co -GMA) grafting for posterior capsular opacification inhibition. RSC Advances 2021 11 17 9840 9848 10.1039/D1RA00201E 35423496
    [Google Scholar]
  112. Qin S. Tang X. Chen Y. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 2022 7 1 166 10.1038/s41392‑022‑01007‑w 35597779
    [Google Scholar]
  113. Shi Y. Shi M. Wang Y. You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct. Target. Ther. 2024 9 1 322 10.1038/s41392‑024‑02002‑z 39543114
    [Google Scholar]
  114. Gao M. Zhang Q. Feng X.H. Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater. 2021 131 1 15 10.1016/j.actbio.2021.06.020 34133982
    [Google Scholar]
  115. Vizirianakis I.S. Miliotou A.N. Mystridis G.A. Tackling pharmacological response heterogeneity by PBPK modeling to advance precision medicine productivity of nanotechnology and genomics therapeutics. Expert Rev. Precis. Med. Drug Dev. 2019 4 3 139 151 10.1080/23808993.2019.1605828
    [Google Scholar]
  116. Pardi N. Krammer F. mRNA vaccines for infectious diseases — Advances, challenges and opportunities. Nat. Rev. Drug Discov. 2024 23 11 838 861 10.1038/s41573‑024‑01042‑y 39367276
    [Google Scholar]
  117. Miliotou A.N. Pappas I.S. Spyroulias G. Development of a novel PTD-mediated IVT-mRNA delivery platform for potential protein replacement therapy of metabolic/genetic disorders. Mol. Ther. Nucleic Acids 2021 26 694 710 10.1016/j.omtn.2021.09.008 34703653
    [Google Scholar]
  118. Koblas T. Leontovyc I. Loukotova S. Kosinova L. Saudek F. Reprogramming of pancreatic exocrine cells AR42J into insulin-producing cells using mRNAs for Pdx1, Ngn3, and MafA transcription factors. Mol. Ther. Nucleic Acids 2016 5 5 e320 10.1038/mtna.2016.33 27187823
    [Google Scholar]
  119. Miliotou A.N. Georgiou-Siafis S.K. Ntenti C. Pappas I.S. Papadopoulou L.C. Recruiting in vitro transcribed mRNA against cancer immunotherapy: A contemporary appraisal of the current landscape. Curr. Issues Mol. Biol. 2023 45 11 9181 9214 10.3390/cimb45110576 37998753
    [Google Scholar]
  120. Bansal A. From rejection to the nobel prize: Karikó and Weissman’s pioneering work on mRNA vaccines, and the need for diversity and inclusion in translational immunology. Front. Immunol. 2023 14 1306025 10.3389/fimmu.2023.1306025 38022662
    [Google Scholar]
  121. Di Grandi D. Dayeh D.M. Kaur K. A single-nucleotide resolution capillary gel electrophoresis workflow for poly(A) tail characterization in the development of mRNA therapeutics and vaccines. J. Pharm. Biomed. Anal. 2023 236 115692 10.1016/j.jpba.2023.115692 37696189
    [Google Scholar]
  122. Pardi N. Hogan M.J. Porter F.W. Weissman D. mRNA vaccines — A new era in vaccinology. Nat. Rev. Drug Discov. 2018 17 4 261 279 10.1038/nrd.2017.243 29326426
    [Google Scholar]
  123. Wilson B. Geetha K.M. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J. Drug Deliv. Sci. Technol. 2022 74 103553 10.1016/j.jddst.2022.103553 35783677
    [Google Scholar]
  124. Russell S. Bennett J. Wellman J.A. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017 390 10097 849 860 10.1016/S0140‑6736(17)31868‑8 28712537
    [Google Scholar]
  125. Xue K. Jolly J.K. Barnard A.R. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat. Med. 2018 24 10 1507 1512 10.1038/s41591‑018‑0185‑5 30297895
    [Google Scholar]
  126. Iqbal S. Martins A.F. Sohail M. Synthesis and characterization of poly (β-amino Ester) and applied PEGylated and non-PEGylated poly (β-amino ester)/plasmid DNA nanoparticles for efficient gene delivery. Front. Pharmacol. 2022 13 854859 10.3389/fphar.2022.854859 35462891
    [Google Scholar]
  127. Kansara V.S. Cooper M. Sesenoglu-Laird O. Muya L. Moen R. Ciulla T.A. Suprachoroidally delivered DNA nanoparticles transfect retina and retinal pigment epithelium/choroid in rabbits. Transl. Vis. Sci. Technol. 2020 9 13 21 10.1167/tvst.9.13.21 33364076
    [Google Scholar]
  128. Kelley R.A. Conley S.M. Makkia R. DNA nanoparticles are safe and nontoxic in non-human primate eyes. Int. J. Nanomedicine 2018 13 1361 1379 10.2147/IJN.S157000 29563793
    [Google Scholar]
  129. Gautam M. Jozic A. Su G.L.N. Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat. Commun. 2023 14 1 6468 10.1038/s41467‑023‑42189‑3 37833442
    [Google Scholar]
  130. Patel S. Ryals R.C. Weller K.K. Pennesi M.E. Sahay G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release 2019 303 91 100 10.1016/j.jconrel.2019.04.015 30986436
    [Google Scholar]
  131. Zarghampoor F. Azarpira N. Khatami S.R. Behzad-Behbahani A. Foroughmand A.M. Improved translation efficiency of therapeutic mRNA. Gene 2019 707 231 238 10.1016/j.gene.2019.05.008 31063797
    [Google Scholar]
  132. Hou X. Zaks T. Langer R. Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021 6 12 1078 1094 10.1038/s41578‑021‑00358‑0 34394960
    [Google Scholar]
  133. Devoldere J. Peynshaert K. Dewitte H. Non-viral delivery of chemically modified mRNA to the retina: Subretinal versus intravitreal administration. J. Control. Release 2019 307 315 330 10.1016/j.jconrel.2019.06.042 31265881
    [Google Scholar]
  134. Herrera-Barrera M. Ryals R.C. Gautam M. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci. Adv. 2023 9 2 eadd4623 10.1126/sciadv.add4623 36630502
    [Google Scholar]
  135. Chambers C.Z. Soo G.L. Engel A.L. Lipid nanoparticle-mediated delivery of mRNA into the mouse and human retina and other ocular tissues. BioRxiv 2023 10.1101/2023.07.13.548758
    [Google Scholar]
  136. Li M. Liu Z. Wang D. Intraocular mRNA delivery with endogenous MmPEG10-based virus-like particles. Exp. Eye Res. 2024 243 109899 10.1016/j.exer.2024.109899 38636802
    [Google Scholar]
  137. Eygeris Y. Gupta M. Kim J. Thiophene-based lipids for mRNA delivery to pulmonary and retinal tissues. Proc. Natl. Acad. Sci. USA 2024 121 11 e2307813120 10.1073/pnas.2307813120 38437570
    [Google Scholar]
  138. Safety and efficacy of CRISPR/Cas9 mRNA instantaneous gene editing therapy to treat refractory viral keratitis. Patent NCT04560790 2022
  139. Wei A. Yin D. Zhai Z. In vivo CRISPR gene editing in patients with herpetic stromal keratitis. Mol. Ther. 2023 31 11 3163 3175 10.1016/j.ymthe.2023.08.021 37658603
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128373593250619074556
Loading
/content/journals/cpd/10.2174/0113816128373593250619074556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test