Skip to content
2000
image of Predictive Value of 48-hour Anion Gap Fluctuations in ICU Patients with Acute Kidney Injury: An Analysis based on MIMIC Database

Abstract

Introduction

Increasing anion gap (AG) correlates with both short- and long-term mortality in intensive care unit (ICU) patients with acute kidney injury (AKI). However, the relationship between AG fluctuations and AKI prognosis has been understudied. This study aims to evaluate the predictive value of AG fluctuations within the first 48 hours after ICU admission for renal recovery and 30-day all-cause mortality in AKI patients.

Methods

Data were extracted from the Medical Information Mart for Intensive Care (MIMIC-IV, v2.2) database, including AKI patients aged 18 and older. A multifactorial Cox regression model was employed to assess the impact of AG fluctuations within 48 hours of ICU admission on mortality, adjusted using five models. Kaplan-Meier survival curves and curve-fitting analysis were used to illustrate the relationship between AG fluctuations and mortality risk.

Results

A total of 15,438 patients with AKI were included, 57.0% of whom were male. The 30-day all-cause mortality rate was 19.19%. Patients were categorized into three groups based on AG fluctuations within the first 48 hours: <3 mmol/L, 3-5 mmol/L, and >5 mmol/L. Cox regression and survival analysis indicated a significantly higher 30-day mortality rate in the >5 mmol/L group (HR = 1.63; 95% CI = 1.50-1.77, < 0.001), with the worst prognosis. Restricted cubic spline analysis revealed a nonlinear relationship between AG fluctuations and 30-day mortality risk.

Discussion

The findings suggest that AG fluctuations during the first 48 hours of ICU admission are closely associated with adverse outcomes in AKI patients. Monitoring AG dynamics may aid clinicians in identifying high-risk patients and enhancing patient management by allowing for timely interventions that may improve prognosis.

Conclusion

AG fluctuations within the first 48 hours of ICU admission are a key predictor of renal recovery and 30-day mortality in AKI patients. AG fluctuations greater than 5 mmol/L are significantly associated with increased mortality risk.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128385046250912044104
2025-10-07
2025-12-25
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128385046250912044104/BMS-CPD-2025-85.html?itemId=/content/journals/cpd/10.2174/0113816128385046250912044104&mimeType=html&fmt=ahah

References

  1. Valdenebro M. Portoles J. Serrano Salazar M.L. Transitions and long-term clinical outcomes in patients admitted in intensive care units receiving continuous renal replacement therapy. J. Clin. Med. 2024 13 17 5085 10.3390/jcm13175085 39274298
    [Google Scholar]
  2. Schiefer J. Bernardi M.H. Lichtenegger P. Incidence and outcomes of AKI in postoperative patients admitted to ICU using full KDIGO criteria – A cohort study. J. Clin. Anesth. 2023 89 111156 10.1016/j.jclinane.2023.111156 37356195
    [Google Scholar]
  3. Hoste E.A.J. Bagshaw S.M. Bellomo R. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015 41 8 1411 1423 10.1007/s00134‑015‑3934‑7 26162677
    [Google Scholar]
  4. Srisawat N. Kulvichit W. Mahamitra N. The epidemiology and characteristics of acute kidney injury in the Southeast Asia intensive care unit: A prospective multicentre study. Nephrol. Dial. Transplant. 2020 35 10 1729 1738 10.1093/ndt/gfz087 31075172
    [Google Scholar]
  5. Deng Y. Chi R. Chen S. Evaluation of clinically available renal biomarkers in critically ill adults: A prospective multicenter observational study. Crit. Care 2017 21 1 46 10.1186/s13054‑017‑1626‑0 28264714
    [Google Scholar]
  6. Shaikhouni S. Yessayan L. Management of acute kidney injury/renal replacement therapy in the intensive care unit. Surg. Clin. North Am. 2022 102 1 181 198 10.1016/j.suc.2021.09.013 34800386
    [Google Scholar]
  7. Susantitaphong P. Cruz D.N. Cerda J. World Incidence of AKI. Clin. J. Am. Soc. Nephrol. 2013 8 9 1482 1493 10.2215/CJN.00710113 23744003
    [Google Scholar]
  8. Coca S.G. Yusuf B. Shlipak M.G. Garg A.X. Parikh C.R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: A systematic review and meta-analysis. Am. J. Kidney Dis. 2009 53 6 961 973 10.1053/j.ajkd.2008.11.034 19346042
    [Google Scholar]
  9. Griffin B.R. Liu K.D. Teixeira J.P. Critical care nephrology: Core curriculum 2020. Am. J. Kidney Dis. 2020 75 3 435 452 10.1053/j.ajkd.2019.10.010 31982214
    [Google Scholar]
  10. Singbartl K. Kellum J.A. AKI in the ICU: Definition, epidemiology, risk stratification, and outcomes. Kidney Int. 2012 81 9 819 825 10.1038/ki.2011.339 21975865
    [Google Scholar]
  11. Lisa A. Carbone F. Liberale L. Montecucco F. The need to identify novel markers for early renal injury in cardiorenal syndrome. Cells 2024 13 15 1283 10.3390/cells13151283 39120314
    [Google Scholar]
  12. Chávez-Íñiguez J.S. Maggiani-Aguilera P. Aranda-García de Quevedo A. Serum potassium trajectory during acute kidney injury and mortality risk. Nephron J. 2023 147 9 521 530 10.1159/000529588 36808092
    [Google Scholar]
  13. Asakage A. Ishihara S. Boutin L. Predictive performance of neutrophil gelatinase associated lipocalin, liver type fatty acid binding protein, and cystatin C for Acute kidney injury and mortality in severely ill patients. Ann. Lab. Med. 2024 44 2 144 154 10.3343/alm.2023.0083 37749888
    [Google Scholar]
  14. Zhang T. Widdop R.E. Ricardo S.D. Transition from acute kidney injury to chronic kidney disease: Mechanisms, models, and biomarkers. Am. J. Physiol. Renal Physiol. 2024 327 5 F788 F805 10.1152/ajprenal.00184.2024 39298548
    [Google Scholar]
  15. Lu Z. Yao Y. Xu Y. Zhang X. Wang J. Albumin corrected anion gap for predicting in-hospital death among patients with acute myocardial infarction: A retrospective cohort study. Clinics (São Paulo) 2024 79 100455 10.1016/j.clinsp.2024.100455 39079461
    [Google Scholar]
  16. Peng S. Chen Q. Ke W. Wu Y. The relationship between serum anion gap levels and short-, medium-, and long-term all-cause mortality in ICU patients with congestive heart failure: A retrospective cohort study. Acta Cardiol. 2024 79 6 705 719 10.1080/00015385.2024.2371627 38953283
    [Google Scholar]
  17. Lou Z. Zeng F. Huang W. Xiao L. Zou K. Zhou H. Association between the anion-gap and 28-day mortality in critically ill adult patients with sepsis: A retrospective cohort study. Medicine (Baltimore) 2024 103 30 e39029 10.1097/MD.0000000000039029 39058855
    [Google Scholar]
  18. Yu W. Wen Y. Shao Y. Hu T. Wan X. Relationship between anion gap and in-hospital mortality in intensive care patients with liver failure: A retrospective propensity score matching analysis. Am. J. Transl. Res. 2024 16 1 98 108 10.62347/UVCX1997 38322565
    [Google Scholar]
  19. Cheng B. Li D. Gong Y. Ying B. Wang B. Serum Anion gap predicts all-cause mortality in critically ill patients with acute kidney injury: Analysis of the MIMIC-III database. Dis. Markers 2020 2020 1 10 10.1155/2020/6501272 32051697
    [Google Scholar]
  20. Zhong L. Xie B. Ji X.W. Yang X.H. The association between albumin corrected anion gap and ICU mortality in acute kidney injury patients requiring continuous renal replacement therapy. Intern. Emerg. Med. 2022 17 8 2315 2322 10.1007/s11739‑022‑03093‑8 36112320
    [Google Scholar]
  21. Zhu J. Zhang Z. Lei Y. The prediction value of serum anion gap for short-term mortality in pulmonary hypertension patients with sepsis: A retrospective cohort study. Front. Med. 2025 11 1499677 10.3389/fmed.2024.1499677 39839613
    [Google Scholar]
  22. Li M. Li C. Wang J. Yuan Q. The association between anion gap and prognosis in patients myocardial infarction with congestive heart failure: A retrospective analysis of the MIMIC-IV database. Int. J. Emerg. Med. 2025 18 1 33 10.1186/s12245‑025‑00828‑0 39994567
    [Google Scholar]
  23. Zhang S. Chen N. Huang Z. Yan N. Ma L. Gao X. Geriatric nutritional risk index is associated with the occurrence of acute kidney injury in critically ill patients with acute heart failure. Ren. Fail. 2024 46 1 2349122 10.1080/0886022X.2024.2349122 38721891
    [Google Scholar]
  24. Zhu Q Zong Q Guo S Mean amplitude of glycemic excursion and mortality in critically ill patients: A retrospective analysis using the MIMIC ‐ IV database. Diabetes Obes Metab 2025 dom.16410 10.1111/dom.16410 40259524
    [Google Scholar]
  25. Chen Y. Zhou B. Peng C. Liu Y. Lai W. Prognostic implications of system inflammation response index in atrial fibrillation patients with type 2 diabetes mellitus. Sci. Rep. 2025 15 1 1025 10.1038/s41598‑024‑84666‑9 39762446
    [Google Scholar]
  26. Peng H. Su Y. Luo J. Ding N. Association between admission hemoglobin level and prognosis in sepsis patients based on a critical care database. Sci. Rep. 2024 14 1 5212 10.1038/s41598‑024‑55954‑1 38433267
    [Google Scholar]
  27. Kellum J.A. Lameire N. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013 17 1 204 10.1186/cc11454 23394211
    [Google Scholar]
  28. Marecek R. Kissling S. Teso A.D. Vuignier Y. Wojtusciszyn A. Chronic metabolic acidosis in a patient with diabetes on maintenance haemodialysis: Mind the anion gap. Lancet 2024 404 10452 570 571 10.1016/S0140‑6736(24)01452‑1 39127481
    [Google Scholar]
  29. Hu T. Zhang Z. Jiang Y. Albumin corrected anion gap for predicting in-hospital mortality among intensive care patients with sepsis: A retrospective propensity score matching analysis. Clin. Chim. Acta 2021 521 272 277 10.1016/j.cca.2021.07.021 34303712
    [Google Scholar]
  30. Oh M.S. Carroll H.J. The anion gap. N. Engl. J. Med. 1977 297 15 814 817 10.1056/NEJM197710132971507 895822
    [Google Scholar]
  31. Abramowitz M.K. Hostetter T.H. Melamed M.L. The serum anion gap is altered in early kidney disease and associates with mortality. Kidney Int. 2012 82 6 701 709 10.1038/ki.2012.196 22622500
    [Google Scholar]
  32. Zhou P. Liu B. Shen N. Acute kidney injury in patients treated with immune checkpoint inhibitors: A single-center retrospective study. Ren. Fail. 2024 46 1 2326186 10.1080/0886022X.2024.2326186 38466161
    [Google Scholar]
  33. Zhao G. Xu C. Ying J. Association between furosemide administration and outcomes in critically ill patients with acute kidney injury. Crit. Care 2020 24 1 75 10.1186/s13054‑020‑2798‑6 32131879
    [Google Scholar]
  34. Lin C-Y. Su Y-J. Cheng T-T. Increased risk of end-stage renal disease in patients with systemic sclerosis. Scand. J. Rheumatol. 2022 51 2 120 127 10.1080/03009742.2021.1917143 34169793
    [Google Scholar]
  35. Ruan A. Zheng J. Sun S. Liu X. Chen T. The association of albumin-corrected anion gap and acute kidney injury in heart failure patients: A competing risk model analysis. BMC Cardiovasc. Disord. 2025 25 1 277 10.1186/s12872‑025‑04723‑7 40217175
    [Google Scholar]
  36. Yao H. Tian J. Cheng S. Association of anion gap and albumin corrected anion gap with acute kidney injury in patients with acute ischemic stroke. Adv. Clin. Exp. Med. 2025 34 3 351 359 10.17219/acem/186814 38860714
    [Google Scholar]
  37. Wang Y. Zhong L. Min J. Lu J. Zhang J. Su J. Albumin corrected anion gap and clinical outcomes in elderly patients with acute kidney injury caused or accompanied by sepsis: A MIMIC-IV retrospective study. Eur. J. Med. Res. 2025 30 1 11 10.1186/s40001‑024‑02238‑z 39773636
    [Google Scholar]
  38. Pratumvinit B. Lam L. Kongruttanachok N. Anion gap reference intervals show instrument dependence and weak correlation with albumin levels. Clin. Chim. Acta 2020 500 172 179 10.1016/j.cca.2019.10.012 31669932
    [Google Scholar]
  39. Acid-Base H.K. Acid-Base. Vet. Clin. North Am. Small Anim. Pract. 2023 53 191 206 10.1016/j.cvsm.2022.07.014 36270834
    [Google Scholar]
  40. Alhamad T. Blandon J. Meza A.T. Bilbao J.E. Hernandez G.T. Acute kidney injury with oxalate deposition in a patient with a high anion gap metabolic acidosis and a normal osmolal gap. J. Nephropathol. 2013 2 2 139 143 10.5812/nephropathol.10657 24475441
    [Google Scholar]
  41. Zhao X. Han J. Hu J. Association between albumin-corrected anion gap level and the risk of acute kidney injury in intensive care unit. Int. Urol. Nephrol. 2023 56 3 1117 1127 10.1007/s11255‑023‑03755‑2 37642797
    [Google Scholar]
  42. Lo K.B. Garvia V. Stempel J.M. Ram P. Rangaswami J. Bicarbonate use and mortality outcome among critically ill patients with metabolic acidosis: A meta analysis. Heart Lung 2020 49 2 167 174 10.1016/j.hrtlng.2019.10.007 31733880
    [Google Scholar]
  43. Nagami G.T. Kraut J.A. The role of the endocrine system in the regulation of acid–base balance by the kidney and the progression of chronic kidney disease. Int. J. Mol. Sci. 2024 25 4 2420 10.3390/ijms25042420 38397097
    [Google Scholar]
  44. Gao P. Min J. Zhong L. Shao M. Association between albumin corrected anion gap and all-cause mortality in critically ill patients with acute kidney injury: A retrospective study based on MIMIC-IV database. Ren. Fail. 2023 45 2 2282708 10.1080/0886022X.2023.2282708 37975171
    [Google Scholar]
  45. Jiang L. Wang Z. Wang L. Predictive value of the serum anion gap for 28-day in-hospital all-cause mortality in sepsis patients with acute kidney injury: A retrospective analysis of the MIMIC-IV database. Ann. Transl. Med. 2022 10 24 1373 10.21037/atm‑22‑5916 36660703
    [Google Scholar]
  46. Pan Q. Mu Z. Li Y. The association between serum anion gap and acute kidney injury after coronary artery bypass grafting in patients with acute coronary syndrome. BMC Cardiovasc. Disord. 2023 23 1 542 10.1186/s12872‑023‑03588‑y 37940847
    [Google Scholar]
  47. Adrogué H.J. Madias N.E. Management of life-threatening acid-base disorders. Second of two parts. N. Engl. J. Med. 1998 338 2 107 111 10.1056/NEJM199801083380207 9420343
    [Google Scholar]
  48. Jaber S. Paugam C. Futier E. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): A multicentre, open-label, randomised controlled, phase 3 trial. Lancet 2018 392 10141 31 40 10.1016/S0140‑6736(18)31080‑8 29910040
    [Google Scholar]
  49. Dimeski G. Holford A. Isoardi K. Suggested guide to using lactate gap as a surrogate marker in the diagnosis of ethylene glycol overdose. Ann. Clin. Biochem. 2025 62 2 140 142 10.1177/00045632241292514 39367570
    [Google Scholar]
  50. Rudkin S.E. Grogan T.R. Treger R.M. Relationship between the anion gap and serum lactate in hypovolemic shock. J. Intensive Care Med. 2022 37 12 1563 1568 10.1177/08850666221106413 35668631
    [Google Scholar]
  51. Burggren W.W. Andrewartha S.J. Mueller C.A. Dubansky B. Tazawa H. Acid-base and hematological regulation in chicken embryos during internal progressive hypercapnic hypoxia. Respir. Physiol. Neurobiol. 2023 308 103996 10.1016/j.resp.2022.103996 36402363
    [Google Scholar]
  52. Gough L.A. Brown D. Deb S.K. Sparks S.A. McNaughton L.R. The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions. Eur. J. Appl. Physiol. 2018 118 12 2489 2498 10.1007/s00421‑018‑3975‑z 30196448
    [Google Scholar]
  53. Kattan E. Hernández G. The role of peripheral perfusion markers and lactate in septic shock resuscitation. J. Intensive Med. 2022 2 1 17 21 10.1016/j.jointm.2021.11.002 36789233
    [Google Scholar]
  54. Vincent J.L. Quintairos e Silva A. Couto L. Taccone F.S. The value of blood lactate kinetics in critically ill patients: A systematic review. Crit. Care 2016 20 1 257 10.1186/s13054‑016‑1403‑5 27520452
    [Google Scholar]
  55. Hernandez G. Bellomo R. Bakker J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019 45 1 82 85 10.1007/s00134‑018‑5213‑x 29754310
    [Google Scholar]
  56. Adrogué H.J. Madias N.E. Management of life-threatening acid-base disorders. First of two parts. N. Engl. J. Med. 1998 338 1 26 34 10.1056/NEJM199801013380106 9414329
    [Google Scholar]
  57. Xu C. Sun L. Dong M. Serum anion gap is associated with risk of all-cause mortality in critically ill patients with acute myocardial infarction. Int. J. Gen. Med. 2022 15 223 231 10.2147/IJGM.S336701 35023960
    [Google Scholar]
  58. Kellum J.A. Song M. Li J. Science review: Extracellular acidosis and the immune response: Clinical and physiologic implications. Crit. Care 2004 8 5 331 336 10.1186/cc2900 15469594
    [Google Scholar]
  59. Li N. Li J. Wang K. Independent prognostic importance of the albumin-corrected anion gap in critically ill patients with congestive heart failure: A retrospective study from MIMIC-IV database. BMC Cardiovasc. Disord. 2024 24 1 735 10.1186/s12872‑024‑04422‑9 39707198
    [Google Scholar]
  60. Achanti A. Szerlip H.M. Acid-base disorders in the critically ill patient. Clin. J. Am. Soc. Nephrol. 2023 18 1 102 112 10.2215/CJN.04500422 35998977
    [Google Scholar]
  61. Kraut J.A. Madias N.E. Intravenous sodium bicarbonate in treating patients with severe metabolic acidemia. Am. J. Kidney Dis. 2019 73 4 572 575 10.1053/j.ajkd.2018.08.011 30343957
    [Google Scholar]
  62. Glasmacher S.A. Stones W. Anion gap as a prognostic tool for risk stratification in critically ill patients – A systematic review and meta-analysis. BMC Anesthesiol. 2015 16 1 68 10.1186/s12871‑016‑0241‑y 27577038
    [Google Scholar]
  63. de Vries V.A. Müller M.C.A. Arbous M.S. Long-term outcome of patients with a hematologic malignancy and multiple organ failure admitted at the intensive care. Crit. Care Med. 2019 47 2 e120 e128 10.1097/CCM.0000000000003526 30335623
    [Google Scholar]
  64. Zhang C. Ning M. Liang W. The association between acute kidney injury and dysglycaemia in critically ill patients with and without diabetes mellitus: A retrospective single-center study. Ren. Fail. 2024 46 2 2397555 10.1080/0886022X.2024.2397555 39230066
    [Google Scholar]
  65. Hu J. Wang Y. Geng X. Metabolic acidosis as a risk factor for the development of acute kidney injury and hospital mortality. Exp. Ther. Med. 2017 13 5 2362 2374 10.3892/etm.2017.4292 28565850
    [Google Scholar]
  66. Mónica Torres A. Mac Laughlin M. Muller A. Brandoni A. Anzai N. Endou H. Altered renal elimination of organic anions in rats with chronic renal failure. Biochim. Biophys. Acta Mol. Basis Dis. 2005 1740 1 29 37 10.1016/j.bbadis.2005.03.002 15878738
    [Google Scholar]
  67. Jung B. Rimmele T. Le Goff C. Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit. Care 2011 15 5 R238 10.1186/cc10487 21995879
    [Google Scholar]
  68. Gabow P.A. Kaehny W.D. Fennessey P.V. Goodman S.I. Gross P.A. Schrier R.W. Diagnostic importance of an increased serum anion gap. N. Engl. J. Med. 1980 303 15 854 858 10.1056/NEJM198010093031505 6774247
    [Google Scholar]
  69. Wang M. Yang S. Deng J. Unveiling the hidden risks: Albumin-corrected anion gap as a superior marker for cardiovascular mortality in type 2 diabetes: Insights from a nationally prospective cohort study. Front. Endocrinol. 2024 15 1461047 10.3389/fendo.2024.1461047 39574951
    [Google Scholar]
  70. Patel M.L. Sachan R. Kumar R. A comparative study of community-acquired acute kidney injury and hospital-acquired acute kidney injury from a tertiary care hospital in North India. Ann. Afr. Med. 2024 23 3 420 428 10.4103/aam.aam_110_23 39034568
    [Google Scholar]
  71. Heyman S.N. Khamaisi M. Zorbavel D. Rosen S. Abassi Z. Role of hypoxia in renal failure caused by nephrotoxins and hypertonic solutions. Semin. Nephrol. 2019 39 6 530 542 10.1016/j.semnephrol.2019.10.003 31836036
    [Google Scholar]
  72. Hua Y. Ding N. Jing H. Association between SOFA score and risk of acute kidney injury in patients with diabetic ketoacidosis: An analysis of the MIMIC-IV database. Front. Endocrinol. 2024 15 1462330 10.3389/fendo.2024.1462330 39764255
    [Google Scholar]
  73. Silva Júnior G.B. Daher E.D.F. Mota R.M.S. Menezes F.A. Risk factors for death among critically ill patients with acute renal failure. Sao Paulo Med. J. 2006 124 5 257 263 10.1590/S1516‑31802006000500004 17262155
    [Google Scholar]
  74. Bonner R. Hladik G. Renal tubular acidosis: Core curriculum 2025. Am. J. Kidney Dis. 2025 85 4 501 512 10.1053/j.ajkd.2024.08.014 39864011
    [Google Scholar]
  75. Fenves A.Z. Emmett M. Approach to patients with high anion gap metabolic acidosis: Core curriculum 2021. Am. J. Kidney Dis. 2021 78 4 590 600 10.1053/j.ajkd.2021.02.341 34400023
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128385046250912044104
Loading
/content/journals/cpd/10.2174/0113816128385046250912044104
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Anion gap ; intensive care unit ; acute kidney injury ; MIMIC database ; hypertension ; mortality
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test