Skip to content
2000
Volume 31, Issue 40
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Numerous edible vegetables and fruits possess plant-based compounds with enormous anti-carcinogenic attributes, including phenolic, vitamins, and alkaloid compounds. Cancer therapies mainly encompass surgery, chemotherapy, and radiation therapy, sometimes accompanied by rapid recurrence and significant side effects. Consequently, elucidating efficacious chemotherapeutic procedures are needed to diminish the likelihood of recurrence and metastasis. Erianin (Shihu, Traditional Chinese Medicine), a naturally occurring compound derived from Dendrobium chrysotoxum Lindl., has been documented to possess anticancer and antioxidative properties. This review presented an overview of Erianin's (ER) involvement in cancer and elucidated the molecular mechanisms underlying its anticancer effect regulating signaling pathways, including PI3K/AKT, MEK, JNK, NRF2/PLOOH, JAK/STAT3, GSK3β, and NLRP3/ROS pathways. All these mechanisms ultimately induce apoptosis targeting mainly invasion, migration, and angiogenesis. This review is thus intended to include all possible recent progress in the anticancer efficacy of erianin and to justify the necessity for further investigation into its anticancer properties in the future.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128372087250528163929
2025-06-18
2025-10-23
Loading full text...

Full text loading...

References

  1. MillimounoF.M. DongJ. YangL. LiJ. LiX. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature.Cancer Prev. Res. (Phila.)20147111081110710.1158/1940‑6207.CAPR‑14‑0136 25161295
    [Google Scholar]
  2. AlamK. HaoJ. ZhangY. LiA. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways.Biotechnol. Adv.20214910775910.1016/j.biotechadv.2021.107759 33930523
    [Google Scholar]
  3. LiuR. LiX. LamK.S. Combinatorial chemistry in drug discovery.Curr. Opin. Chem. Biol.20173811712610.1016/j.cbpa.2017.03.017 28494316
    [Google Scholar]
  4. NanY. SuH. ZhouB. LiuS. The function of natural compounds in important anticancer mechanisms.Front. Oncol.202312104988810.3389/fonc.2022.1049888 36686745
    [Google Scholar]
  5. OkaiyetoK. OguntibejuO.O. African herbal medicines: Adverse effects and cytotoxic potentials with different therapeutic applications.Int. J. Environ. Res. Public Health20211811598810.3390/ijerph18115988 34199632
    [Google Scholar]
  6. FranconiR. MassaS. PaoliniF. ViciP. VenutiA. Plant-derived natural compounds in genetic vaccination and therapy for HPV-associated cancers.Cancers (Basel)20201211310110.3390/cancers12113101 33114220
    [Google Scholar]
  7. DominiakA. ChełstowskaB. OlejarzW. NowickaG. Communication in the cancer microenvironment as a target for therapeutic interventions.Cancers (Basel)2020125123210.3390/cancers12051232 32422889
    [Google Scholar]
  8. WuF. YangJ. LiuJ. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer.Signal Transduct. Target. Ther.20216121810.1038/s41392‑021‑00641‑0 34108441
    [Google Scholar]
  9. YanL. ZhangZ. LiuY. Anticancer activity of erianin: Cancer-specific target prediction based on network pharmacology.Front. Mol. Biosci.2022986293210.3389/fmolb.2022.862932 35372513
    [Google Scholar]
  10. HuoD. LiuF. JiaoC. Effects of different extraction solvents on the major chemical compounds and in vitro biological activities of Dendrobium chrysotoxum Lindl. stems.Ind. Crops Prod.202422211967810.1016/j.indcrop.2024.119678
    [Google Scholar]
  11. MustaphaA IsmailA AbdullahiSU HassanON UgwunnajiPI BerinyuyEB Cancer chemotherapy: A review update of the mechanisms of actions, prospects and associated problems.BIOMED Nat Appl Sci202111011910.53858/bnas01010119
    [Google Scholar]
  12. AnandU. DeyA. ChandelA.K.S. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  13. SchirrmacherV. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review).Int. J. Oncol.201854240741910.3892/ijo.2018.4661 30570109
    [Google Scholar]
  14. YuanW. SuC. YangX. Biological and anti‐vascular activity evaluation of ethoxy‐erianin phosphate as a vascular disrupting agent.J. Cell. Biochem.201912010169781698910.1002/jcb.28959 31111562
    [Google Scholar]
  15. GoraI.M. CiechanowskaA. LadyzynskiP. NLRP3 inflammasome at the interface of inflammation, endothelial dysfunction, and type 2 diabetes.Cells202110231410.3390/cells10020314 33546399
    [Google Scholar]
  16. HamarshehS. ZeiserR. NLRP3 inflammasome activation in cancer: A double-edged sword.Front. Immunol.202011144410.3389/fimmu.2020.01444 32733479
    [Google Scholar]
  17. SharmaB.R. KannegantiT.D. NLRP3 inflammasome in cancer and metabolic diseases.Nat. Immunol.202122555055910.1038/s41590‑021‑00886‑5 33707781
    [Google Scholar]
  18. Vande WalleL. LamkanfiM. Drugging the NLRP3 inflammasome: From signalling mechanisms to therapeutic targets.Nat. Rev. Drug Discov.2024231436610.1038/s41573‑023‑00822‑2 38030687
    [Google Scholar]
  19. LouS. WuM. CuiS. Targeting NLRP3 inflammasome: Structure, function, and inhibitors.Curr. Med. Chem.202431152021205110.2174/0109298673289984231127062528 38310392
    [Google Scholar]
  20. ZhangX. HuL. XuS. YeC. ChenA. Erianin: A direct NLRP3 inhibitor with remarkable anti-inflammatory activity.Front. Immunol.20211273995310.3389/fimmu.2021.739953 34745110
    [Google Scholar]
  21. TsaiS.W. WangJ.H. ChangY.K. LinC.C. Erianin alleviates collagen-induced arthritis in mice by inhibiting Th17 cell differentiation.Open Life Sci.20231812022070310.1515/biol‑2022‑0703 37711216
    [Google Scholar]
  22. YanW. ZhouY. YuanX. The cytotoxic natural compound erianin binds to colchicine site of β-tubulin and overcomes taxane resistance.Bioorg. Chem.202415010756910.1016/j.bioorg.2024.107569 38905886
    [Google Scholar]
  23. PassosC.L.A. PolinatiR.M. FerreiraC. Curcumin and melphalan cotreatment induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells.Sci. Rep.20231311344610.1038/s41598‑023‑40535‑5 37596331
    [Google Scholar]
  24. SunJ. FuX. WangY. Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration.Am. J. Transl. Res.20168730773086 27508028
    [Google Scholar]
  25. MehrtabarE. KhalajiA. PandehM. Impact of microRNA variants on PI3K/AKT signaling in triple-negative breast cancer: Comprehensive review.Med. Oncol.202441922210.1007/s12032‑024‑02469‑4 39120634
    [Google Scholar]
  26. XuY. FangR. ShaoJ. CaiZ. Erianin induces triple-negative breast cancer cells apoptosis by activating PI3K/Akt pathway.Biosci. Rep.2021416BSR2021009310.1042/BSR20210093 34036307
    [Google Scholar]
  27. JanaS. SarkarN. ChakrabortyM. Combination synergy between β-carotene and lupeol against breast adenocarcinoma in vitro and in vivo using combination index.Phytomedicine Plus20233110039210.1016/j.phyplu.2022.100392
    [Google Scholar]
  28. Corte-RealM. VeigaF. Paiva-SantosA.C. PiresP.C. Improving skin cancer treatment by dual drug co-encapsulation into liposomal systems - An integrated approach towards anticancer synergism and targeted delivery.Pharmaceutics2024169120010.3390/pharmaceutics16091200 39339235
    [Google Scholar]
  29. XieH. FengS. FaragM.A. SunP. ShaoP. Synergistic cytotoxicity of erianin, a bisbenzyl in the dietetic Chinese herb Dendrobium against breast cancer cells.Food Chem. Toxicol.202114911196010.1016/j.fct.2020.111960 33385512
    [Google Scholar]
  30. ZhengJ HeW ChenY Erianin serves as an NFATc1 inhibitor to prevent breast cancer-induced osteoclastogenesis and bone destruction.J Adv Res2024S2090-12322400121810.1016/j.jare.2024.03.02138556044
    [Google Scholar]
  31. OcañaM.C. Martínez-PovedaB. QuesadaA.R. MedinaM.Á. Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target.Med. Res. Rev.20193917011310.1002/med.21511 29785785
    [Google Scholar]
  32. LiM. KangS. DengX. Erianin inhibits the progression of triple-negative breast cancer by suppressing SRC-mediated cholesterol metabolism.Cancer Cell Int.202424116610.1186/s12935‑024‑03332‑2 38734640
    [Google Scholar]
  33. EsmeetaA. AdhikaryS. DharshnaaV. Plant-derived bioactive compounds in colon cancer treatment: An updated review.Biomed. Pharmacother.202215311338410.1016/j.biopha.2022.113384 35820317
    [Google Scholar]
  34. IslamM.R. AkashS. RahmanM.M. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products.Chem. Biol. Interact.202236811017010.1016/j.cbi.2022.110170 36202214
    [Google Scholar]
  35. TangJ. LiuJ. ZhangC. ZhouC. ChenJ. Erianin induces apoptosis of colorectal cancer cells via activation of JNK signaling pathways.Int. J. Clin. Exp. Med.2019121140411411
    [Google Scholar]
  36. SunY. LiG. ZhouQ. ShaoD. LvJ. ZhouJ. Dual targeting of cell growth and phagocytosis by erianin for human colorectal cancer.Drug Des. Devel. Ther.2020143301331310.2147/DDDT.S259006 32848368
    [Google Scholar]
  37. TianY. LeiY. WangY. LaiJ. WangJ. XiaF. Mechanism of multidrug resistance to chemotherapy mediated by P glycoprotein (Review).Int. J. Oncol.202363511910.3892/ijo.2023.5567 37654171
    [Google Scholar]
  38. AshiqueS BhowmickM PalR Multi drug resistance in colorectal cancer - Approaches to overcome, advancements and future success.Adv Cancer Biol - Met20241010011410.1016/j.adcanc.2024.100114
    [Google Scholar]
  39. GuoY. AshrafizadehM. TambuwalaM.M. RenJ. OriveG. YuG. P-glycoprotein (P-gp)-driven cancer drug resistance: Biological profile, non-coding RNAs, drugs and nanomodulators.Drug Discov. Today2024291110416110.1016/j.drudis.2024.104161 39245345
    [Google Scholar]
  40. SuC. LiuS. MaX. The effect and mechanism of erianin on the reversal of oxaliplatin resistance in human colon cancer cells.Cell Biol. Int.202145122420242810.1002/cbin.11684 34351659
    [Google Scholar]
  41. WangY. WuX. RenZ. Overcoming cancer chemotherapy resistance by the induction of ferroptosis.Drug Resist. Updat.20236610091610.1016/j.drup.2022.100916 36610291
    [Google Scholar]
  42. KhanF. PandeyP. VermaM. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy.Biomed. Pharmacother.202417311636310.1016/j.biopha.2024.116363 38479184
    [Google Scholar]
  43. AlshammariN. PandeyP. RedhwanA. BakhshH.R. LakhanpalS. RabS.O. Unraveling the ferroptosis-inducing potential of methanol leaves extract of Prosopis juliflora via downregulation of SLC7A11 and GPX4 mRNA expression in A549 lung cancer cells.Curr. Med. Chem.20253271442145610.2174/0109298673343133241011072425 39449336
    [Google Scholar]
  44. PandeyP. ElsoriD. KumarR. Ferroptosis targeting natural compounds as a promising approach for developing potent liver cancer agents.Front. Pharmacol.202415139967710.3389/fphar.2024.1399677 38738178
    [Google Scholar]
  45. BebberC.M. MüllerF. Prieto ClementeL. WeberJ. von KarstedtS. Ferroptosis in cancer cell biology.Cancers (Basel)202012116410.3390/cancers12010164 31936571
    [Google Scholar]
  46. YanH. TaltyR. AladelokunO. BosenbergM. JohnsonC.H. Ferroptosis in colorectal cancer: A future target?Br. J. Cancer202312881439145110.1038/s41416‑023‑02149‑6 36703079
    [Google Scholar]
  47. WangY. ZhangZ. SunW. Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets.Biomed. Pharmacother.202215311352410.1016/j.biopha.2022.113524 36076606
    [Google Scholar]
  48. MiaoQ. DengW. LyuW. Erianin inhibits the growth and metastasis through autophagy-dependent ferroptosis in KRASG13D colorectal cancer.Free Radic. Biol. Med.202320430131210.1016/j.freeradbiomed.2023.05.008 37217090
    [Google Scholar]
  49. WangP. JiaX. LuB. Erianin suppresses constitutive activation of MAPK signaling pathway by inhibition of CRAF and MEK1/2.Signal Transduct. Target. Ther.2023819610.1038/s41392‑023‑01329‑3 36872366
    [Google Scholar]
  50. SahooG. SamalD. KhandayatarayP. MurthyM.K. A review on caspases: Key regulators of biological activities and apoptosis.Mol. Neurobiol.202360105805583710.1007/s12035‑023‑03433‑5 37349620
    [Google Scholar]
  51. AsadiM. TaghizadehS. KavianiE. Caspase‐3: Structure, function, and biotechnological aspects.Biotechnol. Appl. Biochem.20226941633164510.1002/bab.2233 34342377
    [Google Scholar]
  52. ArayaL.E. SoniI.V. HardyJ.A. JulienO. Deorphanizing caspase-3 and caspase-9 substrates in and out of apoptosis with deep substrate profiling.ACS Chem. Biol.202116112280229610.1021/acschembio.1c00456 34553588
    [Google Scholar]
  53. PandeyP. KhanF. FarhanM. JafriA. Elucidation of rutin’s role in inducing caspase-dependent apoptosis via HPV-E6 and E7 down-regulation in cervical cancer HeLa cells.Biosci. Rep.2021416BSR2021067010.1042/BSR20210670 34109976
    [Google Scholar]
  54. YadavP. YadavR. JainS. VaidyaA. Caspase‐3: A primary target for natural and synthetic compounds for cancer therapy.Chem. Biol. Drug Des.202198114416510.1111/cbdd.13860 33963665
    [Google Scholar]
  55. BoiceA. Bouchier-HayesL. Targeting apoptotic caspases in cancer.Biochim. Biophys. Acta Mol. Cell Res.20201867611868810.1016/j.bbamcr.2020.118688 32087180
    [Google Scholar]
  56. WangJ. AnJ. ZhuQ. LuoL. MaY. TangY. Abstract 1617: Erianin induces apoptosis of human hepatocellular carcinoma HepG2 cells.Cancer Res.2012728_Supplement1617710.1158/1538‑7445.AM2012‑1617
    [Google Scholar]
  57. ZhangX. WangY. LiX. YangA. LiZ. WangD. The anti-carcinogenesis properties of erianin in the modulation of oxidative stress-mediated apoptosis and immune response in liver cancer.Aging (Albany NY)20191122102841030010.18632/aging.102456 31754081
    [Google Scholar]
  58. Barcena-VarelaM. LujambioA. The endless sources of hepatocellular carcinoma heterogeneity.Cancers (Basel)20211311262110.3390/cancers13112621 34073538
    [Google Scholar]
  59. CarusoS. O’BrienD.R. ClearyS.P. RobertsL.R. Zucman-RossiJ. Genetics of hepatocellular carcinoma: Approaches to explore molecular diversity.Hepatology202173S1142610.1002/hep.31394 32463918
    [Google Scholar]
  60. Garcia-LezanaT. Lopez-CanovasJ.L. VillanuevaA. Signaling pathways in hepatocellular carcinoma.Adv. Cancer Res.20211496310110.1016/bs.acr.2020.10.002 33579428
    [Google Scholar]
  61. DimriM. SatyanarayanaA. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma.Cancers (Basel)202012249110.3390/cancers12020491 32093152
    [Google Scholar]
  62. MartinG.S. Cell signaling and cancer.Cancer Cell20034316717410.1016/S1535‑6108(03)00216‑2 14522250
    [Google Scholar]
  63. MoonH. RoS.W. MAPK/ERK signaling pathway in hepatocellular carcinoma.Cancers (Basel)20211312302610.3390/cancers13123026 34204242
    [Google Scholar]
  64. YangL. HuY. ZhouG. ChenQ. SongZ. Erianin suppresses hepatocellular carcinoma cells through down-regulation of PI3K/AKT, p38 and ERK MAPK signaling pathways.Biosci. Rep.2020407BSR2019313710.1042/BSR20193137 32677672
    [Google Scholar]
  65. DongH. WangM. ChangC. Erianin inhibits the oncogenic properties of hepatocellular carcinoma via inducing DNA damage and aberrant mitosis.Biochem. Pharmacol.202018211426610.1016/j.bcp.2020.114266 33035506
    [Google Scholar]
  66. ShengY. ChenY. ZengZ. Identification of pyruvate carboxylase as the cellular target of natural bibenzyls with potent anticancer activity against hepatocellular carcinoma via metabolic reprogramming.J. Med. Chem.202265146048410.1021/acs.jmedchem.1c01605 34931827
    [Google Scholar]
  67. HongJ. XieZ. YangF. Erianin suppresses proliferation and migration of cancer cells in a pyruvate carboxylase-dependent manner.Fitoterapia202215710513610.1016/j.fitote.2022.105136 35093481
    [Google Scholar]
  68. ChenJ. LiuJ. XuB. Ethoxy-erianin phosphate and afatinib synergistically inhibit liver tumor growth and angiogenesis via regulating VEGF and EGFR signaling pathways.Toxicol. Appl. Pharmacol.202243811591110.1016/j.taap.2022.115911 35143806
    [Google Scholar]
  69. ChenL. SunR. FangK. Erianin inhibits tumor growth by promoting ferroptosis and inhibiting invasion in hepatocellular carcinoma through the JAK2/STAT3/SLC7A11 pathway.Pathol. Int.202474311912810.1111/pin.13403 38240458
    [Google Scholar]
  70. RuQ. LiY. ChenL. WuY. MinJ. WangF. Iron homeostasis and ferroptosis in human diseases: Mechanisms and therapeutic prospects.Signal Transduct. Target. Ther.20249127110.1038/s41392‑024‑01969‑z 39396974
    [Google Scholar]
  71. YangX. LiuY. WangZ. JinY. GuW. Ferroptosis as a new tool for tumor suppression through lipid peroxidation.Commun. Biol.202471147510.1038/s42003‑024‑07180‑8 39521912
    [Google Scholar]
  72. ChenP. WuQ. FengJ. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis.Signal Transduct. Target. Ther.2020515110.1038/s41392‑020‑0149‑3 32382060
    [Google Scholar]
  73. ZhangH. XieX. LiG. Erianin inhibits human lung cancer cell growth via PI3K/Akt/mTOR pathway in vitro and in vivo.Phytother. Res.20213584511452510.1002/ptr.7154 34236105
    [Google Scholar]
  74. WangX. WangL. HaoQ. CaiM. WangX. AnW. Harnessing glucose metabolism with nanomedicine for cancer treatment.Theranostics202414176831688210.7150/thno.100036 39479443
    [Google Scholar]
  75. HanS. ChenS. WangJ. HuangS. XiaoY. DengG. Erianin promotes apoptosis and inhibits Akt-mediated aerobic glycolysis of cancer cells.J. Cancer20241582380239010.7150/jca.92780 38495480
    [Google Scholar]
  76. YanL. LiuY. HuangY. SunX. JiangH. GuJ. XiaJ. SunX. SuiX. Erianin inhibits the proliferation of lung cancer cells by suppressing mTOR activation and disrupting pyrimidine metabolism.Cancer Biol. Med.202522214416510.20892/j.issn.2095‑3941.2024.0385 39995202
    [Google Scholar]
  77. LinC.W. YangS.F. Abstract 717: Erianin induces autophagy-dependent apoptosis in oral cancer cells.Cancer Res.20197913_Supplement717-710.1158/1538‑7445.AM2019‑717
    [Google Scholar]
  78. ChenY.T. HsiehM.J. ChenP.N. WengC.J. YangS.F. LinC.W. Erianin promotes apoptosis and autophagy in oral squamous cell carcinoma cells.Am. J. Chin. Med.202048118320010.1142/S0192415X2050010X 31903779
    [Google Scholar]
  79. LuoQ. HuS. TangY. YangD. ChenQ. PPT1 promotes growth and inhibits ferroptosis of oral squamous cell carcinoma cells.Curr. Cancer Drug Targets202424101047106010.2174/0115680096294098240123104657 38299399
    [Google Scholar]
  80. LuoQ. LiX. GanG. YangM. ChenX. ChenF. PPT1 reduction contributes to erianin-induced growth inhibition in oral squamous carcinoma cells.Front. Cell Dev. Biol.2021976426310.3389/fcell.2021.764263 35004674
    [Google Scholar]
  81. TianX.Y. HanR. HuangQ.Y. Erianin inhibits oral cancer cell growth, migration, and invasion via the Nrf2/HO-1/GPX4 pathway.Asian Pac. J. Trop. Biomed.2022121043744510.4103/2221‑1691.357743
    [Google Scholar]
  82. WangY. ChuF. LinJ. Erianin, the main active ingredient of Dendrobium chrysotoxum Lindl, inhibits precancerous lesions of gastric cancer (PLGC) through suppression of the HRAS-PI3K-AKT signaling pathway as revealed by network pharmacology and in vitro experimental verification.J. Ethnopharmacol.202127911439910.1016/j.jep.2021.114399 34246740
    [Google Scholar]
  83. YalnizZ. TigliH. TigliH. SanliO. DalayN. BuyruN. Novel mutations and role of the LKB1 gene as a tumor suppressor in renal cell carcinoma.Tumour Biol.20143512123611236810.1007/s13277‑014‑2550‑4 25179843
    [Google Scholar]
  84. WeiX. LiuQ. LiuL. Discovery of the natural bibenzyl compound erianin in dendrobium inhibiting the growth and EMT of gastric cancer through downregulating the LKB1-SIK2/3-PARD3 pathway.Int. J. Mol. Sci.20242514797310.3390/ijms25147973 39063214
    [Google Scholar]
  85. LiY. XiaR. ZhangB. LiC. Chronic atrophic gastritis: A review.J. Environ. Pathol. Toxicol. Oncol.201837324125910.1615/JEnvironPatholToxicolOncol.2018026839 30317974
    [Google Scholar]
  86. JiangQ. FanG. WuK. Potential action mechanism of erianin in relieving MNNG-triggered chronic atrophic gastritis.Cell Biochem. Biophys.20248311035104410.1007/s12013‑024‑01536‑x 39298066
    [Google Scholar]
  87. DengX. WuQ. LiD. LiuY. Erianin exerts antineoplastic effects on esophageal squamous cell carcinoma cells by activating the cGMP-PKG signaling pathway.Nutr. Cancer20237561473148410.1080/01635581.2023.2205047 37099024
    [Google Scholar]
  88. ZhuY. KangN. ZhangL. Targeting and degradation of OTUB1 by Erianin for antimetastasis in esophageal squamous cell carcinoma.Phytomedicine202413515596910.1016/j.phymed.2024.155969 39566402
    [Google Scholar]
  89. HuA. LiK. Erianin impedes the proliferation and metastatic migration through suppression of STAT-3 phosphorylation in human esophageal cancer cells.Appl. Biochem. Biotechnol.202419695859587410.1007/s12010‑023‑04829‑8 38165593
    [Google Scholar]
  90. LiM. HeY. PengC. XieX. HuG. Erianin inhibits human cervical cancer cell through regulation of tumor protein p53 via the extracellular signal regulated kinase signaling pathway.Oncol. Lett.20181645006501210.3892/ol.2018.9267 30250566
    [Google Scholar]
  91. YangA. LiM.Y. ZhangZ.H. Erianin regulates programmed cell death ligand 1 expression and enhances cytotoxic T lymphocyte activity.J. Ethnopharmacol.202127311359810.1016/j.jep.2020.113598 33220359
    [Google Scholar]
  92. ZhuQ. ShengY. LiW. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits bladder cancer cell growth via the mitochondrial apoptosis and JNK pathways.Toxicol. Appl. Pharmacol.2019371415410.1016/j.taap.2019.03.027 30946863
    [Google Scholar]
  93. XiangY. ChenX. WangW. Natural product erianin inhibits bladder cancer cell growth by inducing ferroptosis via NRF2 inactivation.Front. Pharmacol.20211277550610.3389/fphar.2021.775506 34776986
    [Google Scholar]
  94. MoC. ShettiD. WeiK. Erianin inhibits proliferation and induces apoptosis of HaCaT cells via ROS-mediated JNK/c-Jun and AKT/mTOR signaling pathways.Molecules20192415272710.3390/molecules24152727 31357564
    [Google Scholar]
  95. ShenH. GengZ. NieX. LiuT. Erianin induces ferroptosis of renal cancer stem cells via promoting ALOX12/P53 mRNA N6-methyladenosine modification.J. Cancer202314336737810.7150/jca.81027 36860916
    [Google Scholar]
  96. TrapikaI.G.M.G.S.C. LiuX.T. ChungL.H. Ceramide regulates anti-tumor mechanisms of erianin in androgen-sensitive and castration-resistant prostate cancers.Front. Oncol.20211173807810.3389/fonc.2021.738078 34604081
    [Google Scholar]
  97. WangH. ZhangT. SunW. Erianin induces G2/M-phase arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells in vitro and in vivo.Cell Death Dis.201676e2247e710.1038/cddis.2016.138 27253411
    [Google Scholar]
  98. LiuY.T. HsiehM.J. LinJ.T. Erianin induces cell apoptosis through ERK pathway in human nasopharyngeal carcinoma.Biomed. Pharmacother.201911126226910.1016/j.biopha.2018.12.081 30590314
    [Google Scholar]
  99. MansuerM. ZhouL. WangC. GaoL. JiangY. Erianin induces ferroptosis in GSCs via REST/LRSAM1 mediated SLC40A1 ubiquitination to overcome TMZ resistance.Cell Death Dis.202415752210.1038/s41419‑024‑06902‑4 39039049
    [Google Scholar]
  100. PangX. ZhangX. HuangY. QianS. Erianin suppresses endometrial cancer progression by regulating the miR-661/BOK Axis.Rev. Bras. Farmacogn.202131680581310.1007/s43450‑021‑00219‑5
    [Google Scholar]
  101. YuW. LiB. ChenL. Gigantol ameliorates DSS-induced colitis via suppressing β2 integrin mediated adhesion and chemotaxis of macrophage.J. Ethnopharmacol.202432811812310.1016/j.jep.2024.118123 38554854
    [Google Scholar]
  102. YangA. SunZ. LiuR. Transferrin-conjugated erianin-loaded liposomes suppress the growth of liver cancer by modulating oxidative stress.Front. Oncol.20211172760510.3389/fonc.2021.727605 34513705
    [Google Scholar]
  103. TianJ. ChenK. ZhangQ. Mechanism of Self-Assembled Celastrol-Erianin Nanomedicine for treatment of breast cancer.Chem. Eng. J.202449915570910.1016/j.cej.2024.155709
    [Google Scholar]
  104. WeiX. LiuJ. XuZ. Research progress on the pharmacological mechanism, in vivo metabolism and structural modification of Erianin.Biomed. Pharmacother.202417311629510.1016/j.biopha.2024.116295 38401517
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128372087250528163929
Loading
/content/journals/cpd/10.2174/0113816128372087250528163929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test