Skip to content
2000
Volume 31, Issue 40
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Radiation therapy is a crucial method used to treat various tumors, but it can lead to radiation pneumonitis. Shashen Maidong Decoction (SMD) is clinically used to treat radiation pneumonitis, but the exact mechanism remains unclear.

Methods

Herbal components and targets of SMD were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), the Encyclopedia of Traditional Chinese Medicine (ETCM), and Swiss Target Prediction platforms. Moreover, disease-related targets were retrieved from the GeneCards database. A Protein-protein Interaction (PPI) network was constructed using the STRING database and analyzed using the Cytoscape software. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the DAVID database. Subsequently, the disease-active component-target network and drug-pathway-target network were constructed using Cytoscape. The molecular docking results were validated and visualized using Auto Dock and PyMOL software.

Results

In this study, 115 conserved active ingredients, 316 drug targets, and 355 radiation pneumonitis targets were identified. Among these, 75 targets were identified as intersecting targets. GO enrichment analysis revealed 494 biological processes, 36 cell components, and 59 molecular functions. KEGG analysis uncovered 118 signaling pathways, including the IL17 signaling pathway, TNF signaling pathway, HIF-1 signaling pathway, . The molecular docking results showed the core active ingredients of SMD, including quercetin, kaempferol, beta-carotene, and naringenin, to have strong binding ability with the core targets.

Conclusion

This study preliminarily confirmed that SMD may act on the TNF, IL17, and HIF-1 signaling pathways to exert its therapeutic effects on radiation pneumonitis by regulating the expression of inflammatory factors.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128346708241223110504
2025-06-25
2025-09-11
Loading full text...

Full text loading...

References

  1. ZhaoJ. HanD.X. WangC.B. WangX.L. Zbtb7b suppresses aseptic inflammation by regulating m6A modification of IL6 mRNA.Biochem. Biophys. Res. Commun.2020530133634110.1016/j.bbrc.2020.07.011 32828308
    [Google Scholar]
  2. YanY. ZhuY. YangS. Clinical predictors of severe radiation pneumonitis in patients undergoing thoracic radiotherapy for lung cancer.Transl. Lung Cancer Res.20241351069108310.21037/tlcr‑24‑328 38854946
    [Google Scholar]
  3. LiC. ZhangJ. NingB. Radiation pneumonitis prediction with dual-radiomics for esophageal cancer underwent radiotherapy.Radiat. Oncol.20241917210.1186/s13014‑024‑02462‑1 38851718
    [Google Scholar]
  4. PuD. LiuQ. ZhangS. Real-world incidence and risk factors of pneumonitis in chemoradiation plus immune checkpoint inhibitors compared with chemoradiation alone in lung cancer: A retrospective cohort study.Transl. Lung Cancer Res.202413113915110.21037/tlcr‑23‑756 38405001
    [Google Scholar]
  5. ThomasR. ChenY.H. HatabuH. MakR.H. NishinoM. Radiographic patterns of symptomatic radiation pneumonitis in lung cancer patients: Imaging predictors for clinical severity and outcome.Lung Cancer202014513213910.1016/j.lungcan.2020.03.023 32447116
    [Google Scholar]
  6. JiX. ZhouB. HuangH. Efficacy and safety of stereotactic radiotherapy on elderly patients with stage I-II central non-small cell lung cancer.Front. Oncol.202414123563010.3389/fonc.2024.1235630 38803531
    [Google Scholar]
  7. Voruganti MaddaliI.S. CunninghamC. McLeodL. Optimal management of radiation pneumonitis: Findings of an international Delphi consensus study.Lung Cancer202419210782210.1016/j.lungcan.2024.107822 38788551
    [Google Scholar]
  8. LiZ. WangD. ZhangY. Efficacy and safety of Xuebijing injection for radiation pneumonitis: A meta-analysis.PLoS One2022176e026881910.1371/journal.pone.0268819 35648739
    [Google Scholar]
  9. WuL. ZhuY. YuanX. The efficacy and safety of Zengxiao Jiandu decoction combined with definitive concurrent chemoradiotherapy for unresectable locally advanced non-small cell lung cancer: A randomized, double-blind, placebo-controlled clinical trial.Ann. Transl. Med.2022101480010.21037/atm‑22‑2814 35965813
    [Google Scholar]
  10. ZhengY. YangS. SiJ. ZhaoY. ZhaoM. JiE. Shashen-Maidong Decoction inhibited cancer growth under intermittent hypoxia conditions by suppressing oxidative stress and inflammation.J. Ethnopharmacol.202229911565410.1016/j.jep.2022.115654 36058477
    [Google Scholar]
  11. QiaoX. HuangF. ShiX. Herbal small RNAs in patients with COVID-19 linked to reduced DEG expression.Sci. China Life Sci.20236661280128910.1007/s11427‑022‑2225‑3 36738432
    [Google Scholar]
  12. WuX.M. WuC.F. Network pharmacology: A new approach to unveiling traditional chinese medicine.Chin. J. Nat. Med.20151311210.1016/S1875‑5364(15)60001‑2 25660283
    [Google Scholar]
  13. LiP. XiaX. ZhouJ. WuJ. Exploring the pharmacological mechanism of Radix Salvia miltiorrhizae in the treatment of radiation pneumonia by using network pharmacology.Front. Oncol.20211168431510.3389/fonc.2021.684315 34395252
    [Google Scholar]
  14. LvM. FengY. ZengS. Network pharmacology in combination with bibliometrics analysis on the mechanism of compound Kushen injection in the treatment of radiation pneumonia and lung cancer.Naunyn Schmiedebergs Arch. Pharmacol.2024397129789980910.1007/s00210‑024‑03238‑w 38918234
    [Google Scholar]
  15. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  16. RuJ. LiP. WangJ. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  17. WanY. JiangH. LiuZ. Exploring the molecular mechanisms of huaier on modulating metabolic reprogramming of hepatocellular carcinoma: A study based on network pharmacology, molecular docking and bioinformatics.Curr. Pharm. Des.202430241894191110.2174/0113816128287535240429043610 38747231
    [Google Scholar]
  18. ZhangY. LiX. ShiY. ETCM v2.0: An update with comprehensive resource and rich annotations for traditional Chinese medicine.Acta Pharm. Sin. B20231362559257110.1016/j.apsb.2023.03.012 37425046
    [Google Scholar]
  19. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357-6410.1093/nar/gkz382 31106366
    [Google Scholar]
  20. SafranM. DalahI. AlexanderJ. GeneCards Version 3: The human gene integrator.Database (Oxford)201020100baq02010.1093/database/baq020 20689021
    [Google Scholar]
  21. SzklarczykD. KirschR. KoutrouliM. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  22. ShermanB.T. HaoM. QiuJ. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216-2110.1093/nar/gkac194 35325185
    [Google Scholar]
  23. DouB. CuiY. ZhouQ. Mechanism of baicalein in treatment of castration-resistant prostate cancer based on network pharmacology and cell experiments.Front. Pharmacol.202415139770310.3389/fphar.2024.1397703 38989144
    [Google Scholar]
  24. KimS. ChenJ. ChengT. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac956 36305812
    [Google Scholar]
  25. BurleyS.K. BhikadiyaC. BiC. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning.Nucleic Acids Res.202351D1D488D50810.1093/nar/gkac1077 36420884
    [Google Scholar]
  26. HsinK.Y. GhoshS. KitanoH. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology.PLoS One2013812e8392210.1371/journal.pone.0083922 24391846
    [Google Scholar]
  27. LiuB. WangY. HanG. ZhuM. Tolerogenic dendritic cells in radiation-induced lung injury.Front. Immunol.202414132367610.3389/fimmu.2023.1323676 38259434
    [Google Scholar]
  28. ChenF. NiuJ. WangM. ZhuH. GuoZ. Re-evaluating the risk factors for radiation pneumonitis in the era of immunotherapy.J. Transl. Med.202321136810.1186/s12967‑023‑04212‑5 37287014
    [Google Scholar]
  29. TangY. WangT. GuL. USP11 exacerbates radiation-induced pneumonitis by activating endothelial cell inflammatory response via OTUD5-STING signaling.Int. J. Radiat. Oncol. Biol. Phys.202411941261127410.1016/j.ijrobp.2024.01.220 38364946
    [Google Scholar]
  30. ZhangX. QiuH. LiC. CaiP. QiF. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer.Biosci. Trends202115528329810.5582/bst.2021.01318 34421064
    [Google Scholar]
  31. CaiJ. ChenY. WangK. Decoding the key compounds and mechanism of Shashen Maidong decoction in the treatment of lung cancer.BMC Complement. Med. Ther.202323115810.1186/s12906‑023‑03985‑y 37189139
    [Google Scholar]
  32. WangJ. MaX. WeiS. Clinical efficacy and safety of shashen maidong decoction in the treatment of pediatric Mycoplasma pneumonia: A systematic review and meta-analysis.Front. Pharmacol.20211276565610.3389/fphar.2021.765656 34712144
    [Google Scholar]
  33. XieY.C. DongX.W. WuX.M. YanX.F. XieQ.M. Inhibitory effects of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice.Int. Immunopharmacol.20099219420010.1016/j.intimp.2008.11.004 19071231
    [Google Scholar]
  34. FatimaI. SaharA. TariqA. NazT. UsmanM. Exploring the role of licorice and its derivatives in cell signaling pathway NF‐κB and MAPK.J. Nutr. Metab.202420241998816710.1155/2024/9988167 39479405
    [Google Scholar]
  35. YaoQ.W. WangX.Y. LiJ.C. ZhangJ. Ophiopogon japonicus inhibits radiation-induced pulmonary inflammation in mice.Ann. Transl. Med.201972262210.21037/atm.2019.11.01 31930023
    [Google Scholar]
  36. QiJ. JinY. WangX. Ruscogenin exerts anxiolytic-like effect via microglial NF-κB/MAPKs/NLRP3 signaling pathways in mouse model of chronic inflammatory pain.Phytother. Res.202438115417544010.1002/ptr.8325
    [Google Scholar]
  37. JiandongL. YangY. PengJ. Trichosanthes kirilowii lectin ameliorates streptozocin-induced kidney injury via modulation of the balance between M1/M2 phenotype macrophage.Biomed. Pharmacother.20191099310210.1016/j.biopha.2018.10.060 30396096
    [Google Scholar]
  38. LiuP. TanX. ZhangH. Optimal compatibility proportional screening of Trichosanthis pericarpium: Trichosanthis radix and its anti-inflammatory components effect on experimental zebrafish and coughing mice.J. Ethnopharmacol.2024319Pt 111709610.1016/j.jep.2023.117096 37634750
    [Google Scholar]
  39. DiniyahN. AlamM.B. ChoiH.J. LeeS.H. Lablab purpureus protects HaCaT cells from oxidative stress-induced cell death through Nrf2-mediated heme oxygenase-1 expression via the activation of p38 and ERK1/2.Int. J. Mol. Sci.20202122858310.3390/ijms21228583 33202535
    [Google Scholar]
  40. DuY. ZhangR. ZhengX. Mulberry (Morus alba L.) leaf water extract attenuates type 2 diabetes mellitus by regulating gut microbiota dysbiosis, lipopolysaccharide elevation and endocannabinoid system disorder.J. Ethnopharmacol.202432311768110.1016/j.jep.2023.117681 38163557
    [Google Scholar]
  41. DuanY. DaiH. AnY. Mulberry leaf flavonoids inhibit liver inflammation in type 2 diabetes rats by regulating TLR4/MyD88/NF-κB signaling pathway.Evid. Based Complement. Alternat. Med.2022202211010.1155/2022/3354062 35845591
    [Google Scholar]
  42. KoH. KimC. LeeM.S. ChangE. KimC.T. KimY. High hydrostatic pressure extract of mulberry leaf attenuated obesity-induced inflammation in rats.J. Med. Food202225325126010.1089/jmf.2021.K.0113 35320014
    [Google Scholar]
  43. ZhengQ. FengK. ZhongW. TanW. RengaowaS. HuW. Investigating the hepatoprotective properties of mulberry leaf flavonoids against oxidative stress in HepG2 cells.Molecules20242911259710.3390/molecules29112597 38893475
    [Google Scholar]
  44. Rodríguez-SojoM.J. Ruiz-MalagónA.J. Hidalgo-GarcíaL. The prebiotic effects of an extract with antioxidant properties from Morus alba L. contribute to ameliorate high-fat diet-induced obesity in mice.Antioxidants202312497810.3390/antiox12040978 37107352
    [Google Scholar]
  45. YangM. LiX. ZhangL. Ethnopharmacology, phytochemistry, and pharmacology of the genus Glehnia: A systematic review.Evid. Based Complement. Alternat. Med.2019201913310.1155/2019/1253493 31915441
    [Google Scholar]
  46. NanY. LiangH. PangX. Qualitative and quantitative studies on two commercial specifications of Polygonatum odoratum.Front Chem.202311114615310.3389/fchem.2023.1146153 36909715
    [Google Scholar]
  47. LiuJ. ChenB. JiangM. Polygonatum odoratum polysaccharide attenuates lipopolysaccharide‐induced lung injury in mice by regulating gut microbiota.Food Sci. Nutr.202311116974698610.1002/fsn3.3622 37970373
    [Google Scholar]
  48. DingS. JiangJ. LiY. Quercetin alleviates PM2.5-induced chronic lung injury in mice by targeting ferroptosis.PeerJ202412e1670310.7717/peerj.16703 38188138
    [Google Scholar]
  49. LvP. HanP. CuiY. ChenQ. CaoW. Quercetin attenuates inflammation in LPS‐induced lung epithelial cells via the Nrf2 signaling pathway.Immun. Inflamm. Dis.2024122e118510.1002/iid3.1185 38353312
    [Google Scholar]
  50. AnL. ZhaiQ. TaoK. Quercetin induces itaconic acid-mediated M1/M2 alveolar macrophages polarization in respiratory syncytial virus infection.Phytomedicine202413015576110.1016/j.phymed.2024.155761 38797031
    [Google Scholar]
  51. LuZ. WangH. IshfaqM. Quercetin and AMPK: A dynamic duo in alleviating MG-induced inflammation via the AMPK/SIRT1/NF-κB pathway.Molecules20232821738810.3390/molecules28217388 37959807
    [Google Scholar]
  52. LeeM.J. ChoY. HwangY. Kaempferol alleviates mitochondrial damage by reducing mitochondrial reactive oxygen species production in lipopolysaccharide-induced prostate organoids.Foods20231220383610.3390/foods12203836 37893729
    [Google Scholar]
  53. NasanbatB. UchiyamaA. AmaliaS.N. Kaempferol therapy improved MC903 induced-atopic dermatitis in a mouse by suppressing TSLP, oxidative stress, and type 2 inflammation.J. Dermatol. Sci.202311139310010.1016/j.jdermsci.2023.06.008 37393173
    [Google Scholar]
  54. GaoM. ZhuX. GaoX. Kaempferol mitigates sepsis-induced acute lung injury by modulating the SphK1/S1P/S1PR1/MLC2 signaling pathway to restore the integrity of the pulmonary endothelial cell barrier.Chem. Biol. Interact.202439811108510.1016/j.cbi.2024.111085 38823539
    [Google Scholar]
  55. MolitorisovaM. SutovskaM. KazimierovaI. The anti-asthmatic potential of flavonol kaempferol in an experimental model of allergic airway inflammation.Eur. J. Pharmacol.202189117369810.1016/j.ejphar.2020.173698 33129789
    [Google Scholar]
  56. GuoQ. PengQ.Q. LiY.W. Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene.Crit. Rev. Biotechnol.202444333735110.1080/07388551.2023.2166809 36779332
    [Google Scholar]
  57. El-BazF.K. AliS.I. ElgoharyR. SalamaA. Natural β-carotene prevents acute lung injury induced by cyclophosphamide in mice.PLoS One2023184e028377910.1371/journal.pone.0283779 37018237
    [Google Scholar]
  58. ZhangY. YangJ. NaX. ZhaoA. Association between β-carotene supplementation and risk of cancer: A meta-analysis of randomized controlled trials.Nutr. Rev.20238191118113010.1093/nutrit/nuac110 36715090
    [Google Scholar]
  59. ZainalZ. Abdul RahimA. Khaza’aiH. ChangS. Effects of palm oil tocotrienol-rich fraction (TRF) and carotenes in ovalbumin (OVA)-challenged asthmatic brown norway rats.Int. J. Mol. Sci.2019207176410.3390/ijms20071764 30974772
    [Google Scholar]
  60. ZhangX. LiM. WuH. Naringenin attenuates inflammation, apoptosis, and ferroptosis in silver nanoparticle-induced lung injury through a mechanism associated with Nrf2/HO-1 axis: In vitro and in vivo studies.Life Sci.2022311121127
    [Google Scholar]
  61. ChenY.Y. ChangY.M. WangK.Y. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms.Environ. Toxicol.201934323323910.1002/tox.22677 30431227
    [Google Scholar]
  62. YaoW. ZhangX. XuF. CaoC. LiuT. XueY. The therapeutic effects of naringenin on bronchial pneumonia in children.Pharmacol. Res. Perspect.202194e0082510.1002/prp2.825 34310866
    [Google Scholar]
  63. ZhangJ. FanW. WuH. Naringenin attenuated airway cilia structural and functional injury induced by cigarette smoke extract via IL17 and cAMP pathways.Phytomedicine202412615505310.1016/j.phymed.2023.155053 38359483
    [Google Scholar]
  64. JasemiS.V. KhazaeiH. FakhriS. Mohammadi-NooriE. FarzaeiM.H. Naringenin improves ovalbumin-induced allergic asthma in rats through antioxidant and anti-inflammatory effects.Evid. Based Complement. Alternat. Med.2022202211010.1155/2022/9110798 35419072
    [Google Scholar]
  65. ZhangC. ZengW. YaoY. Naringenin ameliorates radiation-induced lung injury by lowering IL1β level.J. Pharmacol. Exp. Ther.2018366234134810.1124/jpet.118.248807 29866791
    [Google Scholar]
  66. YangC. SongC. WangY. Re-Du-Ning injection ameliorates radiation-induced pneumonitis and fibrosis by inhibiting AIM2 inflammasome and epithelial-mesenchymal transition.Phytomedicine202210215418410.1016/j.phymed.2022.154184 35665679
    [Google Scholar]
  67. DengY. QiuT. PatelN. ZhouS. XueT. ZhangH. Clinical management of risk of radiation pneumonia with serum markers during the radiotherapy for patients with thoracic malignant tumors.Cancer Manag. Res.201911102491025610.2147/CMAR.S231995 31824195
    [Google Scholar]
  68. KrishnamurthyP.M. ShuklaS. RayP. Involvement of p38-βTrCP-Tristetraprolin-TNFα axis in radiation pneumonitis.Oncotarget2017829477674777910.18632/oncotarget.17770 28548957
    [Google Scholar]
  69. ElzayatM.A.M. BayoumiA.M.A. Abdel-BakkyM.S. Ameliorative effect of 2-methoxyestradiol on radiation-induced lung injury.Life Sci.202025511774310.1016/j.lfs.2020.117743 32371064
    [Google Scholar]
  70. ZhaoZ. WanJ. GuoM. Expression and prognostic significance of m6A‐related genes in TP53‐mutant non‐small‐cell lung cancer.J. Clin. Lab. Anal.2022361e2411810.1002/jcla.24118 34812534
    [Google Scholar]
  71. NianZ. DouY. ShenY. Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation.Immunity2024571023442361.e710.1016/j.immuni.2024.08.015 39321806
    [Google Scholar]
  72. SilvaJ.L. FoguelD. FerreiraV.F. Targeting biomolecular condensation and protein aggregation against cancer.Chem. Rev.2023123149094913810.1021/acs.chemrev.3c00131 37379327
    [Google Scholar]
  73. Blázquez-PrietoJ. HuidobroC. López-AlonsoI. Activation of p21 limits acute lung injury and induces early senescence after acid aspiration and mechanical ventilation.Transl. Res.202123310411610.1016/j.trsl.2021.01.008 33515780
    [Google Scholar]
  74. YangT. PanQ. YueR. LiuG. ZhouY. Daphnetin alleviates silica-induced pulmonary inflammation and fibrosis by regulating the PI3K/Akt1 signaling pathway in mice.Int. Immunopharmacol.202413311200410.1016/j.intimp.2024.112004 38613881
    [Google Scholar]
  75. YanC. ChenJ. WangB. PD-L1 expression is increased in LPS-induced acute respiratory distress syndrome by PI3K-Akt-Egr-1/C/EBPδ signaling pathway.Inflammation20244714591478
    [Google Scholar]
  76. YuJ. YuanX. LiuY. Delayed administration of WP1066, an STAT3 inhibitor, ameliorates radiation-induced lung injury in mice.Lung20161941677410.1007/s00408‑015‑9821‑8 26563331
    [Google Scholar]
  77. LiX. BecharaR. ZhaoJ. McGeachyM.J. GaffenS.L. IL17 receptor–based signaling and implications for disease.Nat. Immunol.201920121594160210.1038/s41590‑019‑0514‑y 31745337
    [Google Scholar]
  78. GandhiK.A. GodaJ.S. GandhiV.V. Oral administration of 3,3′-diselenodipropionic acid prevents thoracic radiation induced pneumonitis in mice by suppressing NF-κB/IL17/G-CSF/neutrophil axis.Free Radic. Biol. Med.201914581910.1016/j.freeradbiomed.2019.09.009 31521664
    [Google Scholar]
  79. ZhangM. QianJ. XingX. Inhibition of the tumor necrosis factor-alpha pathway is radioprotective for the lung.Clin. Cancer Res.20081461868187610.1158/1078‑0432.CCR‑07‑1894 18347190
    [Google Scholar]
  80. GuanR. WangJ. LiD. Hydrogen sulfide inhibits cigarette smoke-induced inflammation and injury in alveolar epithelial cells by suppressing PHD2/HIF-1α/MAPK signaling pathway.Int. Immunopharmacol.20208110597910.1016/j.intimp.2019.105979 31771816
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128346708241223110504
Loading
/content/journals/cpd/10.2174/0113816128346708241223110504
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test