Skip to content
2000
Volume 31, Issue 40
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Colorectal cancer is a highly prevalent gastrointestinal malignancy leading to mortality. The prolonged efficacy of chemotherapeutic medications has been hindered by their limited capacity to reach the intended target, their lack of specificity in targeting tumors, their non-specific dispersion throughout the body and limited availability at the tumor location, and their undesired adverse effects. Targeted drug delivery to the colon enhances drug concentration at the desired location, resulting in a reduced dosage requirement and consequently, fewer side effects. This review article provides a thorough discussion of the numerous pathways that may cause colorectal cancer. The concept of drug targeting in colorectal cancer using nanovesicles has been addressed in detail in this article. This can be accomplished either by passive targeting or active targeting through receptor-ligand interaction by attaching certain active targeting moieties, such as folic acid, epidermal growth factor receptor, GE-11 peptide, EpCAM aptamer, and transferrin, over the surface of nanovesicle. This review showcases applications of nanovesicle systems, such as liposomes, phytosomes, polymeric micelles, niosomes, cubosomes, emulsomes, polymersomes and lipopolymersomes in drug delivery for the management of colorectal cancer. The nanovesicle systems have significant potential in managing colorectal cancer and overcoming the challenges encountered with current therapy methods.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128362419250523061958
2025-06-02
2025-09-11
Loading full text...

Full text loading...

References

  1. BuccafuscaG. ProserpioI. TralongoA.C. Rametta GiulianoS. TralongoP. Early colorectal cancer: Diagnosis, treatment and survivorship care.Crit. Rev. Oncol. Hematol.2019136203010.1016/j.critrevonc.2019.01.023 30878125
    [Google Scholar]
  2. ZygulskaA.L. PierzchalskiP. Novel diagnostic biomarkers in colorectal cancer.Int. J. Mol. Sci.202223285210.3390/ijms23020852 35055034
    [Google Scholar]
  3. TorreL.A. SiegelR.L. WardE.M. JemalA. Global cancer incidence and mortality rates and trends-an update.Cancer Epidemiol. Biomarkers Prev.2016251162710.1158/1055‑9965.EPI‑15‑0578 26667886
    [Google Scholar]
  4. SiegelR.L. MillerK.D. Goding SauerA. Colorectal cancer statistics, 2020.CA Cancer J. Clin.202070314516410.3322/caac.21601 32133645
    [Google Scholar]
  5. SiegelR.L. MillerK.D. FedewaS.A. Colorectal cancer statistics, 2017.CA Cancer J. Clin.201767317719310.3322/caac.21395 28248415
    [Google Scholar]
  6. WongK.E. NgaiS.C. ChanK.G. LeeL.H. GohB.H. ChuahL.H. Curcumin nanoformulations for colorectal cancer: A review.Front. Pharmacol.20191015210.3389/fphar.2019.00152 30890933
    [Google Scholar]
  7. IoeleG. ChieffalloM. OcchiuzziM.A. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties.Molecules20222717543610.3390/molecules27175436 36080203
    [Google Scholar]
  8. KavousipourS. KhademiF. ZamaniM. VakiliB. MokarramP. Novel biotechnology approaches in colorectal cancer diagnosis and therapy.Biotechnol. Lett.201739678580310.1007/s10529‑017‑2303‑8 28238060
    [Google Scholar]
  9. ZhangW. GordonM. LenzH.J. Novel approaches to treatment of advanced colorectal cancer with anti‐EGFR monoclonal antibodies.Ann. Med.200638854555110.1080/09546630601070812 17438669
    [Google Scholar]
  10. RahmanM.M. IslamM.R. AkashS. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance.Biomed. Pharmacother.202215311330510.1016/j.biopha.2022.113305 35717779
    [Google Scholar]
  11. ParkK. LeeS. KangE. KimK. ChoiK. KwonI.C. New generation of multifunctional nanoparticles for cancer imaging and therapy.Adv. Funct. Mater.200919101553156610.1002/adfm.200801655
    [Google Scholar]
  12. WangX. YangL. ChenZ. ShinD.M. Application of nanotechnology in cancer therapy and imaging.CA Cancer J. Clin.20085829711010.3322/CA.2007.0003 18227410
    [Google Scholar]
  13. JeonJ. DuM. SchoenR.E. Determining risk of colorectal cancer and starting age of screening based on lifestyle, environmental, and genetic factors.Gastroenterology2018154821522164.e1910.1053/j.gastro.2018.02.021 29458155
    [Google Scholar]
  14. FanZ. JiangC. WangY. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine.Nanoscale Horiz.20227768271410.1039/D2NH00070A 35662310
    [Google Scholar]
  15. JainA. BhattacharyaS. Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: A critical review.Front. Oncol.202313121160310.3389/fonc.2023.1211603 37427139
    [Google Scholar]
  16. RudzinskiW.E. PalaciosA. AhmedA. LaneM.A. AminabhaviT.M. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles.Carbohydr. Polym.201614732333210.1016/j.carbpol.2016.04.041 27178938
    [Google Scholar]
  17. WuP. ZhouQ. ZhuH. ZhuangY. BaoJ. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon.BMC Cancer202020135410.1186/s12885‑020‑06803‑7 32345258
    [Google Scholar]
  18. ProkopA. DavidsonJ.M. Nanovehicular intracellular delivery systems.J. Pharm. Sci.20089793518359010.1002/jps.21270 18200527
    [Google Scholar]
  19. RajpootK. JainS.K. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: Preparation, optimization, and in vitro evaluation.Artif. Cells Nanomed. Biotechnol.20184661236124710.1080/21691401.2017.1366338 28849671
    [Google Scholar]
  20. MakeenH.A. MohanS. Al-KasimM.A. Gefitinib loaded nanostructured lipid carriers: Characterization, evaluation and anti-human colon cancer activity in vitro.Drug Deliv.202027162263110.1080/10717544.2020.1754526 32329374
    [Google Scholar]
  21. CarvalhoM.R. CarvalhoC.R. MaiaF.R. Peptide‐modified dendrimer nanoparticles for targeted therapy of colorectal cancer.Adv. Ther.2019211190013210.1002/adtp.201900132
    [Google Scholar]
  22. GrahamE.G. MacNeillC.M. Levi-PolyachenkoN.H. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation.J. Nanopart. Res.2013155164910.1007/s11051‑013‑1649‑7
    [Google Scholar]
  23. BhattacharyaS. Fabrication and characterization of chitosan-based polymeric nanoparticles of Imatinib for colorectal cancer targeting application.Int. J. Biol. Macromol.202015110411510.1016/j.ijbiomac.2020.02.151 32070732
    [Google Scholar]
  24. JainS. JainV. MahajanS.C. Lipid based vesicular drug delivery systems.Advances in Pharmaceutics201420141574673
    [Google Scholar]
  25. DinF. AmanW. UllahI. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S146315 29042776
    [Google Scholar]
  26. ApolinárioA.C. HauschkeL. NunesJ.R. LopesL.B. Lipid nanovesicles for biomedical applications: ‘What is in a name’?Prog. Lipid Res.20218210109610.1016/j.plipres.2021.101096 33831455
    [Google Scholar]
  27. MondalJ. PillarisettiS. JunnuthulaV. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications.J. Control. Release20233531127114910.1016/j.jconrel.2022.12.027 36528193
    [Google Scholar]
  28. LimongiT. SusaF. MariniM. Lipid-based nanovesicular drug delivery systems.Nanomaterials20211112339110.3390/nano11123391 34947740
    [Google Scholar]
  29. MbahC.C. BuildersP.F. AttamaA.A. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus.Expert Opin. Drug Deliv.2014111455910.1517/17425247.2013.860130 24294974
    [Google Scholar]
  30. SiegelR.L. WagleN.S. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2023.CA Cancer J. Clin.202373323325410.3322/caac.21772 36856579
    [Google Scholar]
  31. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  32. SchmittM. GretenF.R. The inflammatory pathogenesis of colorectal cancer.Nat. Rev. Immunol.2021211065366710.1038/s41577‑021‑00534‑x 33911231
    [Google Scholar]
  33. VacanteM. CiuniR. BasileF. BiondiA. Gut microbiota and colorectal cancer development: A closer look to the adenoma-carcinoma sequence.Biomedicines202081148910.3390/biomedicines8110489 33182693
    [Google Scholar]
  34. YangZ.H. DangY.Q. JiG. Role of epigenetics in transformation of inflammation into colorectal cancer.World J. Gastroenterol.201925232863287710.3748/wjg.v25.i23.2863 31249445
    [Google Scholar]
  35. PinoM.S. ChungD.C. The chromosomal instability pathway in colon cancer.Gastroenterology201013862059207210.1053/j.gastro.2009.12.065 20420946
    [Google Scholar]
  36. QiL. SunB. LiuZ. LiH. GaoJ. LengX. Dickkopf-1 inhibits epithelial-mesenchymal transition of colon cancer cells and contributes to colon cancer suppression.Cancer Sci.2012103482883510.1111/j.1349‑7006.2012.02222.x 22321022
    [Google Scholar]
  37. De' AngelisGL BottarelliL AzzoniC Microsatellite instability in colorectal cancer.Acta Biomed.2018899-S9710110.23750/abm.v89i9‑S.7960 30561401
    [Google Scholar]
  38. LeD.T. UramJ.N. WangH. PD-1 blockade in tumors with mismatch-repair deficiency.N. Engl. J. Med.2015372262509252010.1056/NEJMoa1500596 26028255
    [Google Scholar]
  39. AgrawalA. MurphyR.F. AgrawalD.K. DNA methylation in breast and colorectal cancers.Mod. Pathol.200720771172110.1038/modpathol.3800822 17464311
    [Google Scholar]
  40. KambaraT. SimmsL.A. WhitehallV.L.J. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum.Gut20045381137114410.1136/gut.2003.037671 15247181
    [Google Scholar]
  41. MinooP. MoyerM.P. JassJ.R. Role of BRAF‐V600E in the serrated pathway of colorectal tumourigenesis.J. Pathol.2007212212413310.1002/path.2160 17427169
    [Google Scholar]
  42. ByrneJ.D. BetancourtT. Brannon-PeppasL. Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv. Drug Deliv. Rev.200860151615162610.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  43. BazakR. HouriM. AchyS.E. HusseinW. RefaatT. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature.Mol. Clin. Oncol.20142690490810.3892/mco.2014.356 25279172
    [Google Scholar]
  44. KreuterJ. Nanoparticles—A historical perspective.Int. J. Pharm.2007331111010.1016/j.ijpharm.2006.10.021 17110063
    [Google Scholar]
  45. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.009 24270007
    [Google Scholar]
  46. BaraniM. BilalM. RahdarA. Nanodiagnosis and nanotreatment of colorectal cancer: An overview.J. Nanopart. Res.20212311810.1007/s11051‑020‑05129‑6
    [Google Scholar]
  47. ArshadU. SuttonP.A. AshfordM.B. Critical considerations for targeting colorectal liver metastases with nanotechnology.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020122e158810.1002/wnan.1588 31566913
    [Google Scholar]
  48. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  49. JananiB. VijayakumarM. PriyaK. EGFR-Based targeted therapy for colorectal cancer-Promises and challenges.Vaccines202210449910.3390/vaccines10040499 35455247
    [Google Scholar]
  50. KirsteinM.M. LangeA. PrenzlerA. MannsM.P. KubickaS. VogelA. Targeted therapies in metastatic colorectal cancer: A systematic review and assessment of currently available data.Oncologist201419111156116810.1634/theoncologist.2014‑0032 25326159
    [Google Scholar]
  51. KirpotinD.B. DrummondD.C. ShaoY. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models.Cancer Res.200666136732674010.1158/0008‑5472.CAN‑05‑4199 16818648
    [Google Scholar]
  52. HatakeyamaH. AkitaH. IshidaE. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes.Int. J. Pharm.20073421-219420010.1016/j.ijpharm.2007.04.037 17583453
    [Google Scholar]
  53. BansalD. GulbakeA. TiwariJ. JainS.K. Development of liposomes entrapped in alginate beads for the treatment of colorectal cancer.Int. J. Biol. Macromol.20168268769510.1016/j.ijbiomac.2015.09.052 26464131
    [Google Scholar]
  54. MansooriB. MohammadiA. Abedi-GaballuF. Hyaluronic acid‐decorated liposomal nanoparticles for targeted delivery of 5‐fluorouracil into HT‐29 colorectal cancer cells.J. Cell. Physiol.2020235106817683010.1002/jcp.29576 31989649
    [Google Scholar]
  55. PinhoJ.O. da SilvaI.V. AmaralJ.D. Therapeutic potential of a copper complex loaded in pH-sensitive long circulating liposomes for colon cancer management.Int. J. Pharm.202159912046310.1016/j.ijpharm.2021.120463 33711474
    [Google Scholar]
  56. ZhaoY. XuJ. LeV.M. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139-5p for targeted therapy in colorectal cancer.Mol. Pharm.201916114696471010.1021/acs.molpharmaceut.9b00867 31589818
    [Google Scholar]
  57. QiX. HouX. WeiZ. Macrophage membrane-coated SN-38-encapsulated liposomes for efficient treatment of colorectal cancer.J. Drug Deliv. Sci. Technol.20249110490410.1016/j.jddst.2023.104904
    [Google Scholar]
  58. YangC.Y. LiuH.W. TsaiY.C. Interleukin-4 receptor-targeted liposomal doxorubicin as a model for enhancing cellular uptake and antitumor efficacy in murine colorectal cancer.Cancer Biol. Ther.201516111641165010.1080/15384047.2015.1095397 26436767
    [Google Scholar]
  59. PaivaI. MattinglyS. WuestM. Synthesis and analysis of 64Cu-labeled GE11-modified polymeric micellar nanoparticles for EGFR-targeted molecular imaging in a colorectal cancer model.Mol. Pharm.20201751470148110.1021/acs.molpharmaceut.9b01043 32233491
    [Google Scholar]
  60. ShihY.H. LuoT.Y. ChiangP.F. EGFR-targeted micelles containing near-infrared dye for enhanced photothermal therapy in colorectal cancer.J. Control. Release201725819620710.1016/j.jconrel.2017.04.031 28445743
    [Google Scholar]
  61. LeT.T. KimD. Folate-PEG/Hyd-curcumin/C18-g-PSI micelles for site specific delivery of curcumin to colon cancer cells via Wnt/β-catenin signaling pathway.Mater. Sci. Eng. C201910146447110.1016/j.msec.2019.03.100 31029341
    [Google Scholar]
  62. PramanikA. XuZ. ShamsuddinS.H. Affimer tagged cubosomes: Targeting of carcinoembryonic antigen expressing colorectal cancer cells using in vitro and in vivo models.ACS Appl. Mater. Interfaces2022149110781109110.1021/acsami.1c21655 35196008
    [Google Scholar]
  63. WeiY. GuX. SunY. MengF. StormG. ZhongZ. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo.J. Control. Release202031940741510.1016/j.jconrel.2020.01.012 31923538
    [Google Scholar]
  64. AlibolandiM. RezvaniR. FarzadS.A. TaghdisiS.M. AbnousK. RamezaniM. Tetrac-conjugated polymersomes for integrin-targeted delivery of camptothecin to colon adenocarcinoma in vitro and in vivo.Int. J. Pharm.2017532158159410.1016/j.ijpharm.2017.09.039 28935257
    [Google Scholar]
  65. HuangX. JainP.K. El-SayedI.H. El-SayedM.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles.Lasers Med. Sci.200823321722810.1007/s10103‑007‑0470‑x 17674122
    [Google Scholar]
  66. SirsiS.R. BordenM.A. State-of-the-art materials for ultrasound-triggered drug delivery.Adv. Drug Deliv. Rev.20147231410.1016/j.addr.2013.12.010 24389162
    [Google Scholar]
  67. Kolosnjaj-TabiJ. GibotL. FourquauxI. GolzioM. RolsM.P. Electric field-responsive nanoparticles and electric fields: Physical, chemical, biological mechanisms and therapeutic prospects.Adv. Drug Deliv. Rev.2019138566710.1016/j.addr.2018.10.017 30414494
    [Google Scholar]
  68. MitragotriS. Healing sound: The use of ultrasound in drug delivery and other therapeutic applications.Nat. Rev. Drug Discov.20054325526010.1038/nrd1662 15738980
    [Google Scholar]
  69. FerraraK. PollardR. BordenM. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery.Annu. Rev. Biomed. Eng.20079141544710.1146/annurev.bioeng.8.061505.095852 17651012
    [Google Scholar]
  70. JiangY. ChenH. LinT. Ultrasound-activated prodrug-loaded liposome for efficient cancer targeting therapy without chemotherapy-induced side effects.J. Nanobiotechnology2024221210.1186/s12951‑023‑02195‑5 38169390
    [Google Scholar]
  71. EzekielC.I. BapolisiA.M. WalkerR.B. KrauseR.W.M. Ultrasound-triggered release of 5-fluorouracil from soy lecithin echogenic liposomes.Pharmaceutics202113682110.3390/pharmaceutics13060821 34205990
    [Google Scholar]
  72. ShabahangS. KimS. YunS.H. Light‐guiding biomaterials for biomedical applications.Adv. Funct. Mater.20182824170663510.1002/adfm.201706635 31435205
    [Google Scholar]
  73. FayB.L. MelamedJ.R. DayE.S. Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells.Int. J. Nanomedicine20151069316941 26609231
    [Google Scholar]
  74. MinJ.W.S. SaeedN. CoeneA. AdriaensM. CeelenW. Electromotive Enhanced Drug Administration in Oncology: Principles, evidence, current and emerging applications.Cancers20221420498010.3390/cancers14204980 36291762
    [Google Scholar]
  75. ItaK. Perspectives on transdermal electroporation.Pharmaceutics201681910.3390/pharmaceutics8010009 26999191
    [Google Scholar]
  76. FarzinA. EtesamiS.A. QuintJ. MemicA. TamayolA. Magnetic nanoparticles in cancer therapy and diagnosis.Adv. Healthc. Mater.202099190105810.1002/adhm.201901058 32196144
    [Google Scholar]
  77. NybergL. MånssonW. AbrahamssonB. SeidegårdJ. BorgåO. A convenient method for local drug administration at predefined sites in the entire gastrointestinal tract: Experiences from 13 phase I studies.Eur. J. Pharm. Sci.200730543244010.1016/j.ejps.2007.01.005 17336045
    [Google Scholar]
  78. BajpaiA.K. ShuklaS.K. BhanuS. KankaneS. Responsive polymers in controlled drug delivery.Prog. Polym. Sci.200833111088111810.1016/j.progpolymsci.2008.07.005
    [Google Scholar]
  79. JadhavS.M. MoreyP. KarpeM.M. KadamV. Novel vesicular system: An overview.J. Appl. Pharm. Sci.201221193202
    [Google Scholar]
  80. MohammadiM. TaghaviS. AbnousK. TaghdisiS.M. RamezaniM. AlibolandiM. Hybrid vesicular drug delivery systems for cancer therapeutics.Adv. Funct. Mater.20182836180213610.1002/adfm.201802136
    [Google Scholar]
  81. PatilM. HussainA. AltamimiM.A. An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer.Adv. Cancer Biol. Metastasis2023710010310.1016/j.adcanc.2023.100103
    [Google Scholar]
  82. AdebayoA.S. AgbajeK. AdesinaS.K. OlajubutuO. Colorectal cancer: Disease process, current treatment options, and future perspectives.Pharmaceutics20231511262010.3390/pharmaceutics15112620 38004598
    [Google Scholar]
  83. BhattacharyaS. Phytosomes: The new technology for enhancement of bioavailability of botanicals and nutraceuticals.Int J Health Res20092322523210.4314/ijhr.v2i3.47905
    [Google Scholar]
  84. KudatarkarN. JalalpureS. KurangiB. Formulation and characterization of chrysin loaded phytosomes and its cytotoxic effect against colorectal cancer cells.Indian J Pharm Educ Res202256314810.5530/ijper.56.3s.148
    [Google Scholar]
  85. Moradi-MarjanehR. HassanianS.M. RahmaniF. Aghaee-BakhtiariS.H. AvanA. KhazaeiM. Phytosomal curcumin elicits anti-tumor properties through suppression of angiogenesis, cell proliferation and induction of oxidative stress in colorectal cancer.Curr. Pharm. Des.201924394626463810.2174/1381612825666190110145151 30636578
    [Google Scholar]
  86. MarjanehR.M. RahmaniF. HassanianS.M. Phytosomal curcumin inhibits tumor growth in colitis‐associated colorectal cancer.J. Cell. Physiol.2018233106785679810.1002/jcp.26538 29737515
    [Google Scholar]
  87. MahmoodT.H. Al-SamydaiA. SulaibiM.A. Development of pegylated nano‐phytosome formulation with oleuropein and rutin to compare anti‐colonic cancer activity with Olea europaea leaves extract.Chem. Biodivers.2023208e20230053410.1002/cbdv.202300534 37498138
    [Google Scholar]
  88. MufamadiM.S. PillayV. ChoonaraY.E. A review on composite liposomal technologies for specialized drug delivery.J. Drug Deliv.20112011111910.1155/2011/939851 21490759
    [Google Scholar]
  89. ZhangJ. WangK. MaoZ.F. Application of liposomes in drug development – Focus on gastroenterological targets.Int. J. Nanomedicine201381325133410.2147/IJN.S42153 23630417
    [Google Scholar]
  90. SangR. StrattonB. EngelA. DengW. Liposome technologies towards colorectal cancer therapeutics.Acta Biomater.2021127244010.1016/j.actbio.2021.03.055 33812076
    [Google Scholar]
  91. AllenT.M. ChonnA. Large unilamellar liposomes with low uptake into the reticuloendothelial system.FEBS Lett.19872231424610.1016/0014‑5793(87)80506‑9 3666140
    [Google Scholar]
  92. Zununi VahedS. SalehiR. DavaranS. SharifiS. Liposome-based drug co-delivery systems in cancer cells.Mater. Sci. Eng. C2017711327134110.1016/j.msec.2016.11.073 27987688
    [Google Scholar]
  93. MessererC.L. RamsayE.C. WaterhouseD. Liposomal Irinotecan.Clin. Cancer Res.200410196638664910.1158/1078‑0432.CCR‑04‑0221 15475454
    [Google Scholar]
  94. ZalbaS. ContrerasA.M. HaeriA. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer.J. Control. Release2015210263810.1016/j.jconrel.2015.05.271 25998052
    [Google Scholar]
  95. NajlahM. Said SulimanA. TolaymatI. Development of injectable PEGylated liposome encapsulating disulfiram for colorectal cancer treatment.Pharmaceutics2019111161010.3390/pharmaceutics11110610 31739556
    [Google Scholar]
  96. ZhangB. WangT. YangS. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy.J. Control. Release2016238102110.1016/j.jconrel.2016.07.022 27432750
    [Google Scholar]
  97. HuangJ.R. LeeM.H. LiW.S. WuH.C. Liposomal irinotecan for treatment of colorectal cancer in a preclinical model.Cancers201911328110.3390/cancers11030281 30818855
    [Google Scholar]
  98. SenK. BanerjeeS. MandalM. Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer.Colloids Surf. B Biointerfaces201918092210.1016/j.colsurfb.2019.04.035 31015105
    [Google Scholar]
  99. AbuzarS.M. ParkE.J. SeoY. LeeJ. BaikS.H. HwangS.J. Preparation and evaluation of intraperitoneal long-acting oxaliplatin-loaded multi-vesicular liposomal depot for colorectal cancer treatment.Pharmaceutics202012873610.3390/pharmaceutics12080736 32764318
    [Google Scholar]
  100. ZalbaS. NavarroI. TrocónizI.F. Tros de IlarduyaC. GarridoM.J. Application of different methods to formulate PEG-liposomes of oxaliplatin: Evaluation in vitro and in vivo.Eur. J. Pharm. Biopharm.201281227328010.1016/j.ejpb.2012.02.007 22369879
    [Google Scholar]
  101. Chaszczewska-MarkowskaM. StebelskaK. SikorskiA. MadejJ. OpolskiA. UgorskiM. Liposomal formulation of 5-fluorocytosine in suicide gene therapy with cytosine deaminase – For colorectal cancer.Cancer Lett.2008262216417210.1016/j.canlet.2007.12.006 18291575
    [Google Scholar]
  102. BarbălatăC.I. PorfireA.S. SesarmanA. A screening study for the development of simvastatin-doxorubicin liposomes, a co-formulation with future perspectives in colon cancer therapy.Pharmaceutics20211310152610.3390/pharmaceutics13101526 34683821
    [Google Scholar]
  103. PandelidouM. DimasK. GeorgopoulosA. HatziantoniouS. DemetzosC. Preparation and characterization of lyophilised egg PC liposomes incorporating curcumin and evaluation of its activity against colorectal cancer cell lines.J. Nanosci. Nanotechnol.20111121259126610.1166/jnn.2011.3093 21456169
    [Google Scholar]
  104. ErdoğA. Putra LimasaleY.D. KeskinD. TezcanerA. BanerjeeS. In vitro characterization of a liposomal formulation of celecoxib containing 1,2-distearoyl-sn-glycero-3-phosphocholine, cholesterol, and polyethylene glycol and its functional effects against colorectal cancer cell lines.J. Pharm. Sci.2013102103666367710.1002/jps.23674 23897281
    [Google Scholar]
  105. XingJ. ZhangX. WangZ. Novel lipophilic SN38 prodrug forming stable liposomes for colorectal carcinoma therapy.Int. J. Nanomedicine2019145201521310.2147/IJN.S204965 31371956
    [Google Scholar]
  106. AlomraniA. BadranM. HarisaG.I. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer.Saudi Pharm. J.201927560361110.1016/j.jsps.2019.02.008 31297013
    [Google Scholar]
  107. PauliG. ChaoP.H. QinZ. BöttgerR. LeeS.E. LiS.D. Liposomal resiquimod for enhanced immunotherapy of peritoneal metastases of colorectal cancer.Pharmaceutics20211310169610.3390/pharmaceutics13101696 34683992
    [Google Scholar]
  108. RibeiroN. AlbinoM. FerreiraA. Liposomal formulations of a new zinc (II) complex exhibiting high therapeutic potential in a murine colon cancer model.Int. J. Mol. Sci.20222312672810.3390/ijms23126728 35743176
    [Google Scholar]
  109. HuY. ZhouP. LinY. YangD. WangB. Anti-colorectal cancer effect via application of polyethylene glycol modified liposomal apatinib.J. Biomed. Nanotechnol.20191561256126610.1166/jbn.2019.2770 31072433
    [Google Scholar]
  110. WuG. LiJ. YueJ. ZhangS. YunusiK. Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma.Mol. Med. Rep.201817224562464 29207088
    [Google Scholar]
  111. RenY. YuanB. HouS. Delivery of RGD-modified liposome as a targeted colorectal carcinoma therapy and its autophagy mechanism.J. Drug Target.202129886387410.1080/1061186X.2021.1882469 33507113
    [Google Scholar]
  112. Matbou RiahiM. SahebkarA. SadriK. Nikoofal-SahlabadiS. JaafariM.R. Stable and sustained release liposomal formulations of celecoxib: In vitro and in vivo anti-tumor evaluation.Int. J. Pharm.20185401-2899710.1016/j.ijpharm.2018.01.039 29371019
    [Google Scholar]
  113. FanciullinoR. MollardS. GiacomettiS. In vitro and in vivo evaluation of lipofufol, a new triple stealth liposomal formulation of modulated 5-fu: Impact on efficacy and toxicity.Pharm. Res.20133051281129010.1007/s11095‑012‑0967‑2 23386105
    [Google Scholar]
  114. Al SabbaghC. TsapisN. NovellA. Formulation and pharmacokinetics of thermosensitive stealth® liposomes encapsulating 5-Fluorouracil.Pharm. Res.20153251585160310.1007/s11095‑014‑1559‑0 25416027
    [Google Scholar]
  115. LiuY. LiX. PenR. Targeted delivery of irinotecan to colon cancer cells using epidermal growth factor receptor-conjugated liposomes.Biomed. Eng. Online20222115310.1186/s12938‑022‑01012‑8 35918704
    [Google Scholar]
  116. FanciullinoR. GiacomettiS. AubertC. Development of stealth liposome formulation of 2′-deoxyinosine as 5-fluorouracil modulator: In vitro and in vivo study.Pharm. Res.200522122051205710.1007/s11095‑005‑8355‑9 16222443
    [Google Scholar]
  117. CasadóA. SagristáM.L. MoraM. Formulation and in vitro characterization of thermosensitive liposomes for the delivery of irinotecan.J. Pharm. Sci.2014103103127313810.1002/jps.24097 25091422
    [Google Scholar]
  118. ZalbaS. ContrerasA.M. MerinoM. EGF-liposomes promote efficient EGFR targeting in xenograft colocarcinoma model.Nanomedicine201611546547710.2217/nnm.15.208 26892017
    [Google Scholar]
  119. HattoriY. ShiL. DingW. Novel irinotecan-loaded liposome using phytic acid with high therapeutic efficacy for colon tumors.J. Control. Release20091361303710.1016/j.jconrel.2009.01.013 19331859
    [Google Scholar]
  120. CasadóA. SagristáM.L. Mora GiménezM. A novel microfluidic liposomal formulation for the delivery of the SN-38 camptothecin: Characterization and in vitro assessment of its cytotoxic effect on two tumor cell lines.Int. J. Nanomedicine2018135301532010.2147/IJN.S166219 30254436
    [Google Scholar]
  121. DeğimZ. MutluN.B. YilmazS. EşsizD. NacarA. Investigation of liposome formulation effects on rivastigmine transport through human colonic adenocarcinoma cell line (Caco-2).Pharmazie20106513240 20187576
    [Google Scholar]
  122. KoraniM. GhaffariS. AttarH. MashreghiM. JaafariM.R. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma.Nanomedicine20192010201310.1016/j.nano.2019.04.016 31103736
    [Google Scholar]
  123. DupertuisY.M. BoulensN. AngibaudE. Antitumor effect of 5-fluorouracil-loaded liposomes containing n-3 polyunsaturated fatty acids in two different colorectal cancer cell lines.AAPS PharmSciTech20212213610.1208/s12249‑020‑01897‑5 33404935
    [Google Scholar]
  124. ShenF. FengL. ZhuY. Oxaliplatin-/NLG919 prodrugs-constructed liposomes for effective chemo-immunotherapy of colorectal cancer.Biomaterials202025512019010.1016/j.biomaterials.2020.120190 32563943
    [Google Scholar]
  125. AlrumaihiF. KhanM.A. BabikerA.Y. The effect of liposomal diallyl disulfide and oxaliplatin on proliferation of colorectal cancer cells: In vitro and in silico analysis.Pharmaceutics202214223610.3390/pharmaceutics14020236 35213970
    [Google Scholar]
  126. BanerjeeK. BanerjeeS. MandalM. Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions.J. Colloid Interface Sci.20174919811010.1016/j.jcis.2016.12.025 28012918
    [Google Scholar]
  127. Abu LilaA.S. OkadaT. DoiY. IchiharaM. IshidaT. KiwadaH. Combination therapy with metronomic S-1 dosing and oxaliplatin-containing PEG-coated cationic liposomes in a murine colorectal tumor model: Synergy or antagonism?Int. J. Pharm.20124261-226327010.1016/j.ijpharm.2012.01.046 22310465
    [Google Scholar]
  128. HuY. WuC. ZhuC. Enhanced uptake and improved anti-tumor efficacy of doxorubicin loaded fibrin gel with liposomal apatinib in colorectal cancer.Int. J. Pharm.20185521-231932710.1016/j.ijpharm.2018.10.013 30308269
    [Google Scholar]
  129. DiaoW. YangB. SunS. PNA-modified liposomes improve the delivery efficacy of CAPIRI for the synergistic treatment of colorectal cancer.Front. Pharmacol.20221389315110.3389/fphar.2022.893151 35784721
    [Google Scholar]
  130. SesarmanA. TefasL. SylvesterB. Co-delivery of curcumin and doxorubicin in PEGylated liposomes favored the antineoplastic C26 murine colon carcinoma microenvironment.Drug Deliv. Transl. Res.20199126027210.1007/s13346‑018‑00598‑8 30421392
    [Google Scholar]
  131. ChowT.H. LinY.Y. HwangJ.J. Diagnostic and therapeutic evaluation of 111In-vinorelbine-liposomes in a human colorectal carcinoma HT-29/luc-bearing animal model.Nucl. Med. Biol.200835562363410.1016/j.nucmedbio.2008.04.001 18589307
    [Google Scholar]
  132. RastgooM. HosseinzadehH. AlavizadehH. AbbasiA. AyatiZ. JaafariM. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma.Planta Med.201379644745110.1055/s‑0032‑1328363 23539350
    [Google Scholar]
  133. LuputL. SesarmanA. PorfireA. Liposomal simvastatin sensitizes C26 murine colon carcinoma to the antitumor effects of liposomal 5‐fluorouracil in vivo.Cancer Sci.202011141344135610.1111/cas.14312 31960547
    [Google Scholar]
  134. MoghtaderiM. SedaghatniaK. BourbourM. Niosomes: A novel targeted drug delivery system for cancer.Med. Oncol.2022391224010.1007/s12032‑022‑01836‑3 36175809
    [Google Scholar]
  135. KhanamN. SachanA.K. AlamM.I. GangwarS.S. SharmaR. Recent trends in drug delivery by niosomes: A review.J. Appl. Pharm. Sci.2013262032
    [Google Scholar]
  136. MoammeriA. ChegeniM.M. SahrayiH. Current advances in niosomes applications for drug delivery and cancer treatment.Mater. Today Bio20232310083710.1016/j.mtbio.2023.100837 37953758
    [Google Scholar]
  137. BarteldsR. NematollahiM.H. PolsT. Niosomes, an alternative for liposomal delivery.PLoS One2018134e019417910.1371/journal.pone.0194179 29649223
    [Google Scholar]
  138. LigaS. PaulC. MoacăE.A. PéterF. Niosomes: Composition, formulation techniques, and recent progress as delivery systems in cancer therapy.Pharmaceutics202416222310.3390/pharmaceutics16020223 38399277
    [Google Scholar]
  139. El-FarS.W. Abo El-EninH.A. AbdouE.M. NafeaO.E. AbdelmonemR. Targeting colorectal cancer cells with niosomes systems loaded with two anticancer drugs models; comparative in vitro and anticancer studies.Pharmaceuticals202215781610.3390/ph15070816 35890115
    [Google Scholar]
  140. AnbarasanB. RekhaS. ElangoK. ShriyaB. RamaprabhuS. Optimization of the formulation and in vitro evaluation of capecitabine niosomes for the treatment of colon cancer.Int. J. Pharm. Sci. Res.2013441504
    [Google Scholar]
  141. JadidM.F.S. Jafari-GharabaghlouD. BahramiM.K. BonabiE. ZarghamiN. Enhanced anti-cancer effect of curcumin loaded-niosomal nanoparticles in combination with heat-killed Saccharomyces cerevisiae against human colon cancer cells.J. Drug Deliv. Sci. Technol.20238010416710.1016/j.jddst.2023.104167
    [Google Scholar]
  142. KassemM.A. El-SawyH.S. Abd-AllahF.I. AbdelghanyT.M. El-SayK.M. Maximizing the therapeutic efficacy of imatinib mesylate–loaded niosomes on human colon adenocarcinoma using Box-Behnken design.J. Pharm. Sci.2017106111112210.1016/j.xphs.2016.07.007 27544432
    [Google Scholar]
  143. UgorjiO.L. UmehO.N.C. AgubataC.O. AdahD. ObitteN.C. ChukwuA. The effect of niosome preparation methods in encapsulating 5-fluorouracil and real time cell assay against HCT-116 colon cancer cell line.Heliyon2022812e1236910.1016/j.heliyon.2022.e12369 36582708
    [Google Scholar]
  144. AbdulzehraS. Jafari-GharabaghlouD. ZarghamiN. Targeted delivery of oxaliplatin via folate-decorated niosomal nanoparticles potentiates resistance reversion of colon cancer cells.Heliyon2023911e2140010.1016/j.heliyon.2023.e21400 37954331
    [Google Scholar]
  145. ShafieiG. Jafari-GharabaghlouD. Farhoudi-Sefidan-JadidM. AlizadehE. FathiM. ZarghamiN. Targeted delivery of silibinin via magnetic niosomal nanoparticles: Potential application in treatment of colon cancer cells.Front. Pharmacol.202314117412010.3389/fphar.2023.1174120 37441534
    [Google Scholar]
  146. BakandA. MoghaddamS.V. NaseroleslamiM. AndréH. Mousavi-NiriN. AlizadehE. Efficient targeting of HIF-1α mediated by YC-1 and PX-12 encapsulated niosomes: Potential application in colon cancer therapy.J. Biol. Eng.20231715810.1186/s13036‑023‑00375‑3 37749603
    [Google Scholar]
  147. Varela-MoreiraA. ShiY. FensM.H.A.M. LammersT. HenninkW.E. SchiffelersR.M. Clinical application of polymeric micelles for the treatment of cancer.Mater. Chem. Front.2017181485150110.1039/C6QM00289G
    [Google Scholar]
  148. FatfatZ. FatfatM. Gali-MuhtasibH. Micelles as potential drug delivery systems for colorectal cancer treatment.World J. Gastroenterol.202228252867288010.3748/wjg.v28.i25.2867 35978871
    [Google Scholar]
  149. MovassaghianS. MerkelO.M. TorchilinV.P. Applications of polymer micelles for imaging and drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157569170710.1002/wnan.1332 25683687
    [Google Scholar]
  150. GouM. MenK. ShiH. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo.Nanoscale2011341558156710.1039/c0nr00758g 21283869
    [Google Scholar]
  151. CarieA. Rios-DoriaJ. CostichT. IT-141, a polymer micelle encapsulating SN-38, induces tumor regression in multiple colorectal cancer models.J. Drug Deliv.2011201111910.1155/2011/869027 22187652
    [Google Scholar]
  152. YangX. LiZ. WangN. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo.Sci. Rep.2015511032210.1038/srep10322 25980982
    [Google Scholar]
  153. DebeleT.A. LeeK.Y. HsuN.Y. A pH sensitive polymeric micelle for co-delivery of doxorubicin and α-TOS for colon cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20175295870588010.1039/C7TB01031A 32264220
    [Google Scholar]
  154. ShihY.H. PengC.L. ChiangP.F. ShiehM.J. Dual-functional polymeric micelles co-loaded with antineoplastic drugs and tyrosine kinase inhibitor for combination therapy in colorectal cancer.Pharmaceutics202214476810.3390/pharmaceutics14040768 35456602
    [Google Scholar]
  155. CamposF.L. de Alcântara LemosJ. OdaC.M.R. Irinotecan-loaded polymeric micelles as a promising alternative to enhance antitumor efficacy in colorectal cancer therapy.Polymers20221422490510.3390/polym14224905 36433032
    [Google Scholar]
  156. HuY. HeY. JiJ. ZhengS. ChengY. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy.Int. J. Nanomedicine2020151239125210.2147/IJN.S232777 32110020
    [Google Scholar]
  157. WangK. ZhangT. LiuL. Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells.Int. J. Nanomedicine2012744874497 22927762
    [Google Scholar]
  158. ChenY. WuQ. SongL. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer.ACS Appl. Mater. Interfaces20157153454210.1021/am5066893 25495760
    [Google Scholar]
  159. NaH.S. LimY.K. JeongY.I. Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model.Int. J. Pharm.20103831-219220010.1016/j.ijpharm.2009.08.041 19732817
    [Google Scholar]
  160. MaZ.G. MaR. XiaoX.L. Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy.Acta Biomater.20164432333110.1016/j.actbio.2016.08.021 27544813
    [Google Scholar]
  161. EmamiJ. MaghziP. HasanzadehF. SadeghiH. MirianM. RostamiM. PLGA-PEG-RA-based polymeric micelles for tumor targeted delivery of irinotecan.Pharm. Dev. Technol.2018231415410.1080/10837450.2017.1340950 28608760
    [Google Scholar]
  162. VarshosazJ. HassanzadehF. Sadeghi-AliabadiH. FirozianF. Uptake of etoposide in CT-26 cells of colorectal cancer using folate targeted dextran stearate polymeric micelles.BioMed Res. Int.20142014111110.1155/2014/708593 24689050
    [Google Scholar]
  163. AlmeidaA. CastroF. ResendeC. LúcioM. SchwartzS. SarmentoB. Oral delivery of camptothecin-loaded multifunctional chitosan-based micelles is effective in reduce colorectal cancer.J. Control. Release202234973174310.1016/j.jconrel.2022.07.029 35905784
    [Google Scholar]
  164. GuanS.S. ChangJ. ChengC.C. Afatinib and its encapsulated polymeric micelles inhibits HER2-overexpressed colorectal tumor cell growth in vitro and in vivo.Oncotarget20145134868488010.18632/oncotarget.2050 24947902
    [Google Scholar]
  165. TansathienK. WoraphatphadungT. SajomsangW. RojanarataT. NgawhirunpatT. OpanasopitP. Development of folic-BSCS polymeric micelles containing curcumin for targeted delivery to colorectal cancer.TJPS2018201842
    [Google Scholar]
  166. WoraphatphadungT. SajomsangW. RojanarataT. NgawhirunpatT. TonglairoumP. OpanasopitP. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery.AAPS PharmSciTech2018193991100010.1208/s12249‑017‑0906‑y 29110292
    [Google Scholar]
  167. GaoX Gou HuangMJ Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer.Int. J. Nanomedicine2013897198210.2147/IJN.S39532 23493403
    [Google Scholar]
  168. GaoX. ZhengF. GuoG. Improving the anti-colon cancer activity of curcumin with biodegradable nano-micelles.J. Mater. Chem. B Mater. Biol. Med.20131425778579010.1039/c3tb21091j 32261235
    [Google Scholar]
  169. GaoX. WangB. WuQ. Combined delivery and anti-cancer activity of paclitaxel and curcumin using polymeric micelles.J. Biomed. Nanotechnol.201511457858910.1166/jbn.2015.1964 26310065
    [Google Scholar]
  170. SadatS.M.A. VakiliM.R. PaivaI.M. WeinfeldM. LavasanifarA. Development of self-associating SN-38-conjugated Poly (ethylene oxide)-Poly (ester) micelles for colorectal cancer therapy.Pharmaceutics20201211103310.3390/pharmaceutics12111033 33138058
    [Google Scholar]
  171. XuG. ShiH. RenL. Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles.Int. J. Nanomedicine20151020512063 25844036
    [Google Scholar]
  172. RaveendranR. BhuvaneshwarG.S. SharmaC.P. In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells.J. Biomater. Appl.201327781182710.1177/0885328211427473 22274881
    [Google Scholar]
  173. RazzaqS. RaufA. RazaA. A multifunctional polymeric micelle for targeted delivery of paclitaxel by the inhibition of the P-glycoprotein transporters.Nanomaterials20211111285810.3390/nano11112858 34835622
    [Google Scholar]
  174. ChangT. TrenchD. PutnamJ. StenzelM.H. LordM.S. Curcumin-loading-dependent stability of PEGMEMA-based micelles affects endocytosis and exocytosis in colon carcinoma cells.Mol. Pharm.201613392493210.1021/acs.molpharmaceut.5b00820 26755445
    [Google Scholar]
  175. TanM. LuoJ. TianY. Delivering curcumin and gemcitabine in one nanoparticle platform for colon cancer therapy.RSC Advances20144106619486195910.1039/C4RA10431E
    [Google Scholar]
  176. WangK. LiuL. ZhangT. Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer.Int. J. Nanomedicine2011632073218 22238509
    [Google Scholar]
  177. AlmoshariY. Development, therapeutic evaluation and theranostic applications of cubosomes on cancers: An updated review.Pharmaceutics202214360010.3390/pharmaceutics14030600 35335975
    [Google Scholar]
  178. SivadasanD. SultanM.H. AlqahtaniS.S. JavedS. Cubosomes in drug delivery-A comprehensive review on its structural components, preparation techniques and therapeutic applications.Biomedicines2023114111410.3390/biomedicines11041114 37189732
    [Google Scholar]
  179. AbourehabM.A.S. AnsariM.J. SinghA. Cubosomes as an emerging platform for drug delivery: A review of the state of the art.J. Mater. Chem. B Mater. Biol. Med.202210152781281910.1039/D2TB00031H 35315858
    [Google Scholar]
  180. UmarH. WahabH.A. GazzaliA.M. TahirH. AhmadW. Cubosomes: Design, development, and tumor-targeted drug delivery applications.Polymers20221415311810.3390/polym14153118 35956633
    [Google Scholar]
  181. VargheseR. SalviS. SoodP. KulkarniB. KumarD. Cubosomes in cancer drug delivery: A review.Colloid Interface Sci. Commun.20224610056110.1016/j.colcom.2021.100561
    [Google Scholar]
  182. GowdaB.H.J. AhmedM.G. AlshehriS.A. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.116894 37586450
    [Google Scholar]
  183. GaballaS.A. El GarhyO.H. AbdelkaderH. Cubosomes: Composition, preparation, and drug delivery applications.J Adv Biomed Pharm Sci2020311910.21608/jabps.2019.16887.1057
    [Google Scholar]
  184. GuptaS. VyasS.P. Development and characterization of amphotericin B bearing emulsomes for passive and active macrophage targeting.J. Drug Target.200715320621710.1080/10611860701195395 17454358
    [Google Scholar]
  185. SinghS. KhuranaK. ChauhanS.B. SinghI. Emulsomes: New lipidic carriers for drug delivery with special mention to brain drug transport.Future J. Pharm. Sci.2023917810.1186/s43094‑023‑00530‑z
    [Google Scholar]
  186. AfreenU. ShailajaA.K. Pharmacosomes and emulsomes: An emerging novel vesicular drug delivery system.Glob J Anesth Pain Med202034287297
    [Google Scholar]
  187. UcisikM. SleytrU. SchusterB. Emulsomes meet S-layer proteins: An emerging targeted drug delivery system.Curr. Pharm. Biotechnol.201516439240510.2174/138920101604150218112656 25697368
    [Google Scholar]
  188. EitaA.S. MakkyA.M.A. AnterA. KhalilI.A. Atorvastatin-loaded emulsomes foam as a topical antifungal formulation.Int. J. Pharm. X2022410014010.1016/j.ijpx.2022.100140 36465276
    [Google Scholar]
  189. AsfourM.H. SalamaA.A.A. Coating with tripolyphosphate-crosslinked chitosan as a novel approach for enhanced stability of emulsomes following oral administration: Rutin as a model drug with improved anti-hyperlipidemic effect in rats.Int. J. Pharm.202364412331410.1016/j.ijpharm.2023.123314 37579826
    [Google Scholar]
  190. KumarM.S. VigneshwaranL.V. Novel biomimetic polymersomes as polymer therapeutics for drug delivery.Smart Polymeric Nano-Constructs in Drug Delivery.Elsevier202343746310.1016/B978‑0‑323‑91248‑8.00018‑0
    [Google Scholar]
  191. LeeJ.S. FeijenJ. Polymersomes for drug delivery: Design, formation and characterization.J. Control. Release2012161247348310.1016/j.jconrel.2011.10.005 22020381
    [Google Scholar]
  192. AnajafiT. MallikS. Polymersome-based drug-delivery strategies for cancer therapeutics.Ther. Deliv.20156452153410.4155/tde.14.125 25996048
    [Google Scholar]
  193. FonsecaM. JarakI. VictorF. DominguesC. VeigaF. FigueirasA. Polymersomes as the next attractive generation of drug delivery systems: Definition, synthesis and applications.Materials202417231910.3390/ma17020319 38255485
    [Google Scholar]
  194. GuanL. RizzelloL. BattagliaG. Polymersomes and their applications in cancer delivery and therapy.Nanomedicine201510172757278010.2217/nnm.15.110 26328898
    [Google Scholar]
  195. NegutI. BitaB. Polymersomes as innovative, stimuli-responsive platforms for cancer therapy.Pharmaceutics202416446310.3390/pharmaceutics16040463 38675124
    [Google Scholar]
  196. SaberM.M. Al-mahallawiA.M. NassarN.N. StorkB. ShoumanS.A. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes.BMC Cancer201818182210.1186/s12885‑018‑4727‑5 30111296
    [Google Scholar]
  197. El-ShenawyA.A. ElsayedM.M.A. AtwaG.M.K. Anti-tumor activity of orally administered gefitinib-loaded nanosized cubosomes against colon cancer.Pharmaceutics202315268010.3390/pharmaceutics15020680 36840004
    [Google Scholar]
  198. AlmoshariY. AlamM.I. BakkariM.A. Formulation, characterization, and evaluation of doxorubicin-loaded cubosome as a cytotoxic potentiator against HCT-116 colorectal cancer cells.Indian J Pharm Educ Res202256372373110.5530/ijper.56.3.121
    [Google Scholar]
  199. AlmoshariY. IqbalH. RazzaqA. Development of nanocubosomes co-loaded with dual anticancer agents curcumin and temozolomide for effective colon cancer therapy.Drug Deliv.20222912633264310.1080/10717544.2022.2108938 35942514
    [Google Scholar]
  200. PramanikA. XuZ. IngramN. Hyaluronic-acid-tagged cubosomes deliver cytotoxics specifically to CD44-positive cancer cells.Mol. Pharm.202219124601461110.1021/acs.molpharmaceut.2c00439 35938983
    [Google Scholar]
  201. FahmyU.A. AldawsariH.M. Badr-EldinS.M. The encapsulation of febuxostat into emulsomes strongly enhances the cytotoxic potential of the drug on HCT 116 colon cancer cells.Pharmaceutics2020121095610.3390/pharmaceutics12100956 33050567
    [Google Scholar]
  202. BolatZ.B. IslekZ. DemirB.N. YilmazE.N. SahinF. UcisikM.H. Curcumin-and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model.Front. Bioeng. Biotechnol.202085010.3389/fbioe.2020.00050 32117930
    [Google Scholar]
  203. AlhakamyN.A. Badr-EldinS.M. AhmedO.A.A. Piceatannol-loaded emulsomes exhibit enhanced cytostatic and apoptotic activities in colon cancer cells.Antioxidants20209541910.3390/antiox9050419 32414040
    [Google Scholar]
  204. GiriT.K. DeyB. MaityS. Preparation and characterization of nanoemulsome entrapped in enteric coated hydrogel beads for the controlled delivery of capsaicin to the colon.Curr. Drug Ther.20181319810510.2174/1574885512666171107151526
    [Google Scholar]
  205. Goñi-de-CerioF. ThevenotJ. OliveiraH. Cellular uptake and cytotoxic effect of epidermal growth factor receptor targeted and plitidepsin loaded co-polymeric polymersomes on colorectal cancer cell lines.J. Biomed. Nanotechnol.201511112034204910.1166/jbn.2015.2148 26554161
    [Google Scholar]
  206. RamezaniP. AbnousK. TaghdisiS.M. ZahiriM. RamezaniM. AlibolandiM. Targeted MMP-2 responsive chimeric polymersomes for therapy against colorectal cancer.Colloids Surf. B Biointerfaces202019311113510.1016/j.colsurfb.2020.111135 32447200
    [Google Scholar]
  207. PakizehkarS. RanjiN. SohiA.N. SadeghizadehM. Polymersome‐assisted delivery of curcumin: A suitable approach to decrease cancer stemness markers and regulate miRNAs expression in HT29 colorectal cancer cells.Polym. Adv. Technol.202031116017710.1002/pat.4759
    [Google Scholar]
  208. LimS. De HoogH.P. ParikhA. NallaniM. LiedbergB. Hybrid, nanoscale phospholipid/block copolymer vesicles.Polymers2013531102111410.3390/polym5031102
    [Google Scholar]
  209. ZahiriM. TaghdisiS.M. AbnousK. RamezaniM. AlibolandiM. Fabrication of versatile targeted lipopolymersomes for improved camptothecin efficacy against colon adenocarcinoma in vitro and in vivo.Expert Opin. Drug Deliv.20211891309132210.1080/17425247.2021.1928631 33970721
    [Google Scholar]
  210. ZangabadP.S. MirkianiS. ShahsavariS. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications.Nanotechnol. Rev.2018719512210.1515/ntrev‑2017‑0154 29404233
    [Google Scholar]
  211. NunesS.S. MirandaS.E.M. de Oliveira SilvaJ. pH-responsive and folate-coated liposomes encapsulating irinotecan as an alternative to improve efficacy of colorectal cancer treatment.Biomed. Pharmacother.202114411231710.1016/j.biopha.2021.112317 34634556
    [Google Scholar]
  212. UdofotO. AfframK. IsraelB. AgyareE. Cytotoxicity of 5-fluorouracil-loaded pH-sensitive liposomal nanoparticles in colorectal cancer cell lines.Integr. Cancer Sci. Ther.20152524525210.15761/ICST.1000150 26691592
    [Google Scholar]
  213. FengS.T. LiJ. LuoY. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells.PLoS One201496e10073210.1371/journal.pone.0100732 24964012
    [Google Scholar]
  214. HardiansyahA. HuangL.Y. YangM.C. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment.Nanoscale Res. Lett.20149149710.1186/1556‑276X‑9‑497 25246875
    [Google Scholar]
  215. AnjumS. IshaqueS. FatimaH. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives.Pharmaceuticals202114870710.3390/ph14080707 34451803
    [Google Scholar]
  216. WickiA. WitzigmannD. BalasubramanianV. HuwylerJ. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications.J. Control. Release201520013815710.1016/j.jconrel.2014.12.030 25545217
    [Google Scholar]
  217. WadhwaS. GargV. GulatiM. KapoorB. SinghS.K. MittalN. Nanovesicles for nanomedicine: Theory and practices.Methods Mol. Biol.2019200011710.1007/978‑1‑4939‑9516‑5_1 31148004
    [Google Scholar]
  218. KuotsuK. KarimK.M. MandalA.S. Niosome: A future of targeted drug delivery systems.J. Adv. Pharm. Technol. Res.20101437438010.4103/0110‑5558.76435 22247876
    [Google Scholar]
  219. NadimiA.E. EbrahimipourS.Y. AfsharE.G. Nano-scale drug delivery systems for antiarrhythmic agents.Eur. J. Med. Chem.20181571153116310.1016/j.ejmech.2018.08.080 30189397
    [Google Scholar]
  220. KanwarJ.R. SunX. PunjV. Nanoparticles in the treatment and diagnosis of neurological disorders: Untamed dragon with fire power to heal.Nanomedicine20128439941410.1016/j.nano.2011.08.006 21889479
    [Google Scholar]
  221. JamkhandeP.G. GhuleN.W. BamerA.H. KalaskarM.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J. Drug Deliv. Sci. Technol.20195310117410.1016/j.jddst.2019.101174
    [Google Scholar]
  222. FatfatZ. KaramM. MaatoukB. FahsD. Gali-MuhtasibH. Nanoliposomes as safe and efficient drug delivery nanovesicles.In: Advanced and Modern Approaches for Drug Delivery.Cambridge, MassachusettsAcademic Press202315919710.1016/B978‑0‑323‑91668‑4.00002‑2
    [Google Scholar]
  223. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  224. Pérez-HerreroE. Fernández-MedardeA. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.Eur. J. Pharm. Biopharm.201593527910.1016/j.ejpb.2015.03.018 25813885
    [Google Scholar]
  225. ZhangC. YanL. WangX. Progress, challenges, and future of nanomedicine.Nano Today20203510100810.1016/j.nantod.2020.101008
    [Google Scholar]
  226. ShanX. GongX. LiJ. WenJ. LiY. ZhangZ. Current approaches of nanomedicines in the market and various stage of clinical translation.Acta Pharm. Sin. B20221273028304810.1016/j.apsb.2022.02.025 35865096
    [Google Scholar]
  227. ClinicalTrials.gov is a place to learn about clinical studies from around the world.Available from:https://clinicaltrials.gov/
  228. MetselaarJ.M. LammersT. Challenges in nanomedicine clinical translation.Drug Deliv. Transl. Res.202010372172510.1007/s13346‑020‑00740‑5 32166632
    [Google Scholar]
  229. WuL.P. WangD. LiZ. Grand challenges in nanomedicine.Mater. Sci. Eng. C202010611030210.1016/j.msec.2019.110302 31753337
    [Google Scholar]
  230. Gonzalez-ValdiviesoJ. GirottiA. SchneiderJ. AriasF.J. Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation.Int. J. Pharm.202159912043810.1016/j.ijpharm.2021.120438 33662472
    [Google Scholar]
  231. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  232. SindhwaniS. ChanW.C.W. Nanotechnology for modern medicine: Next step towards clinical translation.J. Intern. Med.2021290348649810.1111/joim.13254 33480120
    [Google Scholar]
  233. LiuY. ZhangY. LiH. HuT.Y. Recent advances in the bench-to-bedside translation of cancer nanomedicines.Acta Pharm. Sin. B2024
    [Google Scholar]
  234. KimE. YangJ. ParkS. ShinK. Factors affecting success of new drug clinical trials.Ther. Innov. Regul. Sci.202357473775010.1007/s43441‑023‑00509‑1 37166743
    [Google Scholar]
  235. DiMasiJ.A. HermannJ.C. TwymanK. A tool for predicting regulatory approval after phase II testing of new oncology compounds.Clin. Pharmacol. Ther.201598550651310.1002/cpt.194 26239772
    [Google Scholar]
  236. KimH.K. LeeH. LeeS.W. Does firm’s alliances increase new drug development time? A multiple regression analysis of clinical development time.J. Pharm. Innov.20231842066207410.1007/s12247‑023‑09773‑y
    [Google Scholar]
  237. SunD. GaoW. HuH. ZhouS. Why 90% of clinical drug development fails and how to improve it?Acta Pharm. Sin. B20221273049306210.1016/j.apsb.2022.02.002 35865092
    [Google Scholar]
  238. KumarV. SharmaN. MaitraS.S. In vitro and in vivo toxicity assessment of nanoparticles.Int. Nano Lett.20177424325610.1007/s40089‑017‑0221‑3
    [Google Scholar]
  239. DhawanA. SharmaV. Toxicity assessment of nanomaterials: Methods and challenges.Anal. Bioanal. Chem.2010398258960510.1007/s00216‑010‑3996‑x 20652549
    [Google Scholar]
  240. SeyfertU.T. BiehlV. SchenkJ. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4.Biomol. Eng.2002192-6919610.1016/S1389‑0344(02)00015‑1 12202168
    [Google Scholar]
  241. ShakerD.S. ShakerM.A. HanafyM.S. Cellular uptake, cytotoxicity and in vivo evaluation of Tamoxifen citrate loaded niosomes.Int. J. Pharm.20154931-228529410.1016/j.ijpharm.2015.07.041 26200748
    [Google Scholar]
  242. AlshehriS. HussainA. AltamimiM.A. RamzanM. In vitro, ex vivo, and in vivo studies of binary ethosomes for transdermal delivery of acyclovir: A comparative assessment.J. Drug Deliv. Sci. Technol.20216210239010.1016/j.jddst.2021.102390
    [Google Scholar]
  243. PeruginiV. SchmidR. MørchÝ. TexierI. BroddeM. SantinM. A multistep in vitro hemocompatibility testing protocol recapitulating the foreign body reaction to nanocarriers.Drug Deliv. Transl. Res.20221292089210010.1007/s13346‑022‑01141‑6 35318565
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128362419250523061958
Loading
/content/journals/cpd/10.2174/0113816128362419250523061958
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-body; Colorectal cancer; drug delivery; liposomes; nanovesicles; niosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test