Skip to content
2000
Volume 31, Issue 33
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The detection of cancer remains a significant challenge due to limitations of current screening approaches, where usually several procedures and imprecise information are required. Liquid biopsy has emerged as an appealing method that makes it unnecessary to use invasive procedures. It depicts the biology of tumors at first sight based on circulating tumor cells (CTCs), cell-free DNA (cfDNA), and exosomes in the blood of the patient. This paper provides a review of the likelihood of the integration of liquid biopsy with medical imaging methods, such as MRI, CT, PET, and ultrasound, to enhance the accuracy of tumor identification. We expand on how liquid biopsy might improve healthcare imaging by defining tumor characterization more accurately and precisely, avoiding false positive and negative values, and providing genetic integration information that is often useful when interpreting imaging scans. Case examples are employed to demonstrate the seamless combination of liquid biopsy data with imaging outcomes, which can help expand the understanding of cancer pathophysiology and treatment sensitivity. However, artificial intelligence and machine learning should be used to support the execution of this supposed synergistically integrated strategy. The article also explains the problems concerning the integration of these two diagnostic methods and stresses the importance of standardizing the procedures and cooperation between the disciplines. This aggregation could result in earlier detection, improved monitoring, as well as individual approaches to cancer patients, hence leading to a significant increase in positive clinical outcomes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128371883250310174153
2025-03-28
2025-08-18
Loading full text...

Full text loading...

References

  1. GuptaG. HussainM.S. PantK. AliH. ThapaR. BhattA.A. Antibody-drug conjugates (ADCs): A novel therapy for triple-negative breast cancer (TNBC).Curr. Cancer Drug Targets202439248064
    [Google Scholar]
  2. HussainM.S. AltamimiA.S.A. AfzalM. AlmalkiW.H. KazmiI. AlzareaS.I. GuptaG. ShahwanM. KukretiN. WongL.S. KumarasamyV. SubramaniyanV. Kaempferol: Paving the path for advanced treatments in aging-related diseases.Exp. Gerontol.202418811238910.1016/j.exger.2024.11238938432575
    [Google Scholar]
  3. SharmaP. KapoorB. HussainM.S. SinghG. RaniP. SainiB. WadhwaP. KumarR. Development and validation of reverse-phase high-performance liquid chromatography method for simultaneous estimation of doxorubicin and clotrimazole.Assay Drug Dev. Technol.2024222869610.1089/adt.2023.05738150558
    [Google Scholar]
  4. KleinC.A. Cancer progression and the invisible phase of metastatic colonization.Nat. Rev. Cancer2020201168169410.1038/s41568‑020‑00300‑633024261
    [Google Scholar]
  5. MirR.H. MaqboolM. MirP.A. HussainM.S. din WaniS. PottooF.H. Mohi-ud-dinR. Green synthesis of silver nanoparticles and their potential applications in mitigating cancer.Curr. Pharm. Des.202430312445246710.2174/011381612829170524042806045638726783
    [Google Scholar]
  6. IslamM.R. RaufA. AlashS. FakirM.N.H. ThufaG.K. SowaM.S. MukherjeeD. KumarH. HussainM.S. AljohaniA.S.M. ImranM. Al AbdulmonemW. ThiruvengadamR. ThiruvengadamM. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: Targeting insights into molecular signaling pathways.Med. Oncol.202441613410.1007/s12032‑024‑02333‑538703282
    [Google Scholar]
  7. BrutovskýB. Scales of cancer evolution: Selfish genome or cooperating cells?Cancers20221413325310.3390/cancers1413325335805025
    [Google Scholar]
  8. SunD LiX NieS LiuJ WangS Disorders of cancer metabolism: The therapeutic potential of cannabinoids.Biomed. Pharmacother.2023157113993
    [Google Scholar]
  9. GerlingerM. RowanA.J. HorswellS. LarkinJ. EndesfelderD. GronroosE. MartinezP. MatthewsN. StewartA. TarpeyP. VarelaI. PhillimoreB. BegumS. McDonaldN.Q. ButlerA. JonesD. RaineK. LatimerC. SantosC.R. NohadaniM. EklundA.C. Spencer-DeneB. ClarkG. PickeringL. StampG. GoreM. SzallasiZ. DownwardJ. FutrealP.A. SwantonC. SwantonC. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing.N. Engl. J. Med.20123661088389210.1056/NEJMoa111320522397650
    [Google Scholar]
  10. LvJ. XuY. XuL. NieL. Quantitative functional evaluation of liver fibrosis in mice with dynamic contrast-enhanced photoacoustic imaging.Radiology20213001899710.1148/radiol.202120413433904773
    [Google Scholar]
  11. LanZ. ZhangJ. MaX. HeR. ZhaoQ. YangF. Transbronchial brushing cytology and paired biopsy in endobronchial tuberculosis: A report of 72 cases focusing on the morphological features.Cytojournal2023204510.25259/Cytojournal_35_202338213510
    [Google Scholar]
  12. DuanX. XieD. ZhangR. A novel robotic bronchoscope system for navigation and biopsy of pulmonary lesions.Cyborg Bionic Syst.20234001310.34133/cbsystems.0013
    [Google Scholar]
  13. CrosbyD. Delivering on the promise of early detection with liquid biopsies.Br. J. Cancer2022126331331510.1038/s41416‑021‑01646‑w35013576
    [Google Scholar]
  14. Hussain MS, Gupta G, Ghaboura N, et al. Exosomal ncRNAs in liquid biopsies for lung cancer. Clin Chim Acta 2025; 565: 119983.10.1016/j.cca.2024.119983
  15. AdashekJ.J. JankuF. KurzrockR. Signed in blood: Circulating tumor DNA in cancer diagnosis, treatment and screening.Cancers 20211314360010.3390/cancers1314360034298813
    [Google Scholar]
  16. WangY.H. SongZ. HuX.Y. WangH.S. Circulating tumor DNA analysis for tumor diagnosis.Talanta202122812222010.1016/j.talanta.2021.12222033773726
    [Google Scholar]
  17. JiaY. ChenG. ChiH. Retinal fundus image super-resolution based on generative adversarial network guided with vascular structure prior.Sci. Rep.20241412278610.1038/s41598‑024‑74186‑x39354105
    [Google Scholar]
  18. SiravegnaG. MarsoniS. SienaS. BardelliA. Integrating liquid biopsies into the management of cancer.Nat. Rev. Clin. Oncol.201714953154810.1038/nrclinonc.2017.1428252003
    [Google Scholar]
  19. RamalingamP.S. PremkumarT. SundararajanV. HussainM.S. ArumugamS. Design and development of dual targeting CAR protein for the development of CAR T-cell therapy against KRAS mutated pancreatic ductal adenocarcinoma using computational approaches.Discover Oncology202415159210.1007/s12672‑024‑01455‑639453574
    [Google Scholar]
  20. WangY. LiH. FanR. LvH. HuaS. XieH. TangT. LuoJ. XiaZ. The effects of ferulic acid on the pharmacokinetics of warfarin in rats after biliary drainage.Drug Des. Devel. Ther.2016102173218010.2147/DDDT.S10791727462142
    [Google Scholar]
  21. LealA.I.C. MathiosD. JakubowskiD. JohansenJ.S. LauA. WuT. CristianoS. MedinaJ.E. PhallenJ. BruhmD.C. CareyJ. DracopoliN.C. BojesenS.E. ScharpfR.B. VelculescuV.E. VachaniA. BachP.B. Cell-free DNA fragmentomes in the diagnostic evaluation of patients with symptoms suggestive of lung cancer.Chest202316441019102710.1016/j.chest.2023.04.033
    [Google Scholar]
  22. Zou Y, Zhu S, Kong Y, et al. Precision matters: The value of PET/CT and PET/MRI in the clinical management of cervical cancer. Strahlenther Onkol 2024.10.1007/s00066‑024‑02294‑839331065
  23. BatoolS.M. YekulaA. KhannaP. HsiaT. GamblinA.S. EkanayakeE. EscobedoA.K. YouD.G. CastroC.M. ImH. KilicT. GarlinM.A. SkogJ. DinulescuD.M. DudleyJ. AgrawalN. ChengJ. AbtinF. AberleD.R. ChiaD. ElashoffD. GrognanT. KrysanK. OhS.S. StromC. TuM. WeiF. XianR.R. SkatesS.J. ZhangD.Y. TrinhT. WatsonM. AftR. RawalS. AgarwalA. KesmodelS.B. YangC. ShenC. HochbergF.H. WongD.T.W. PatelA.A. PapadopoulosN. BettegowdaC. CoteR.J. SrivastavaS. LeeH. CarterB.S. BalajL. The Liquid Biopsy Consortium: Challenges and opportunities for early cancer detection and monitoring.Cell Rep. Med.202341010119810.1016/j.xcrm.2023.10119837716353
    [Google Scholar]
  24. VidlarovaM. RehulkovaA. StejskalP. ProkopovaA. SlavikH. HajduchM. SrovnalJ. Recent advances in methods for circulating tumor cell detection.Int. J. Mol. Sci.2023244390210.3390/ijms2404390236835311
    [Google Scholar]
  25. AllenT.A. The role of circulating tumor cells as a liquid biopsy for cancer: Advances, biology, technical challenges, and clinical relevance.Cancers 2024167137710.3390/cancers1607137738611055
    [Google Scholar]
  26. WangX. WangL. LinH. ZhuY. HuangD. LaiM. XiX. HuangJ. ZhangW. ZhongT. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy.Front. Oncol.202414130333510.3389/fonc.2024.130333538333685
    [Google Scholar]
  27. ChenS ZhaoJ CuiL LiuY. Urinary circulating DNA detection for dynamic tracking of EGFR mutations for NSCLC patients treated with EGFR-TKIs.Clin. Transl. Oncol.2017193332340
    [Google Scholar]
  28. AkamatsuH. KohY. OkamotoI. FujimotoD. BesshoA. AzumaK. MoritaS. YamamotoN. NakagawaK. Clinical significance of monitoring EGFR mutation in plasma using multiplexed digital PCR in EGFR mutated patients treated with afatinib (West Japan Oncology Group 8114LTR study).Lung Cancer201913112813310.1016/j.lungcan.2019.03.02131027689
    [Google Scholar]
  29. WangD.S. LiuZ.X. LuY.X. BaoH. WuX. ZengZ.L. LiuZ. ZhaoQ. HeC.Y. LuJ.H. WangZ.Q. QiuM.Z. WangF. WangF.H. LiY.H. WangX.N. XieD. JiaW.H. ShaoY.W. XuR.H. Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer.Gut20196871152116110.1136/gutjnl‑2018‑31652230269082
    [Google Scholar]
  30. MarkouA. TzanikouE. LianidouE. The potential of liquid biopsy in the management of cancer patients.Semin. Cancer Biol.202284697910.1016/j.semcancer.2022.03.01335331850
    [Google Scholar]
  31. Alix-PanabièresC. PantelK. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy.Cancer Discov.20166547949110.1158/2159‑8290.CD‑15‑148326969689
    [Google Scholar]
  32. TukachinskyH. MadisonR.W. ChungJ.H. GjoerupO.V. SeversonE.A. DennisL. FendlerB.J. MorleyS. ZhongL. GrafR.P. RossJ.S. AlexanderB.M. AbidaW. ChowdhuryS. RyanC.J. FizaziK. GolsorkhiT. WatkinsS.P. SimmonsA. LoehrA. VenstromJ.M. OxnardG.R. Genomic analysis of circulating tumor DNA in 3,334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms.Clin. Cancer Res.202127113094310510.1158/1078‑0432.CCR‑20‑480533558422
    [Google Scholar]
  33. MaX. ChengH. HouJ. JiaZ. WuG. LüX. LiH. ZhengX. ChenC. Detection of breast cancer based on novel porous silicon Bragg reflector surface-enhanced Raman spectroscopy-active structure.Chin. Opt. Lett.202018505170110.3788/COL202018.051701
    [Google Scholar]
  34. De Mattos-ArrudaL. MayorR. NgC.K.Y. WeigeltB. Martínez-RicarteF. TorrejonD. OliveiraM. AriasA. RaventosC. TangJ. Guerini-RoccoE. Martínez-SáezE. LoisS. MarínO. de la CruzX. PiscuoglioS. TowersR. VivancosA. PegV. Ramon y CajalS. CarlesJ. RodonJ. González-CaoM. TaberneroJ. FelipE. SahuquilloJ. BergerM.F. CortesJ. Reis-FilhoJ.S. SeoaneJ. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma.Nat. Commun.201561883910.1038/ncomms983926554728
    [Google Scholar]
  35. IgnatiadisM. SledgeG.W. JeffreyS.S. Liquid biopsy enters the clinic — Implementation issues and future challenges.Nat. Rev. Clin. Oncol.202118529731210.1038/s41571‑020‑00457‑x33473219
    [Google Scholar]
  36. DadamM.N. HienL.T. MakramE.M. SieuL.V. MoradA. KhalilN. TranL. MakramA.M. HuyN.T. Role of cell-free DNA levels in the diagnosis and prognosis of sepsis and bacteremia: A systematic review and meta-analysis.PLoS One2024198e030589510.1371/journal.pone.030589539208340
    [Google Scholar]
  37. BronkhorstA.J. UngererV. HoldenriederS. The emerging role of cell-free DNA as a molecular marker for cancer management.Biomol Detect. Quantif.20191710008710.1016/j.bdq.2019.10008730923679
    [Google Scholar]
  38. PanagopoulouM. EstellerM. ChatzakiE. Circulating cell-free DNA in breast cancer: Searching for hidden information towards precision medicine.Cancers 202113472810.3390/cancers1304072833578793
    [Google Scholar]
  39. StoverD.G. ParsonsH.A. HaG. FreemanS.S. BarryW.T. GuoH. ChoudhuryA.D. GydushG. ReedS.C. RhoadesJ. RotemD. HughesM.E. DillonD.A. PartridgeA.H. WagleN. KropI.E. GetzG. GolubT.R. LoveJ.C. WinerE.P. TolaneyS.M. LinN.U. AdalsteinssonV.A. Association of cell-free DNA tumor fraction and somatic copy number alterations with survival in metastatic triple-negative breast cancer.J. Clin. Oncol.201836654355310.1200/JCO.2017.76.003329298117
    [Google Scholar]
  40. XuX. YuY. ShenM. LiuM. WuS. LiangL. HuangF. ZhangC. GuoW. LiuT. Role of circulating free DNA in evaluating clinical tumor burden and predicting survival in Chinese metastatic colorectal cancer patients.BMC Cancer2020201100610.1186/s12885‑020‑07516‑733066758
    [Google Scholar]
  41. FittsC.A. JiN. LiY. TanC. Exploiting exosomes in cancer liquid biopsies and drug delivery.Adv. Healthc. Mater.201986180126810.1002/adhm.20180126830663276
    [Google Scholar]
  42. MaY.S. YangX.L. XinR. LiuJ.B. FuD. Power and promise of exosomes as clinical biomarkers and therapeutic vectors for liquid biopsy and cancer control.Biochim. Biophys. Acta Rev. Cancer20211875118849710.1016/j.bbcan.2020.18849733370570
    [Google Scholar]
  43. WangX. JiangX. LiJ. WangJ. BinangH. ShiS. DuanW. ZhaoY. ZhangY. Serum exosomal miR-1269a serves as a diagnostic marker and plays an oncogenic role in non-small cell lung cancer.Thorac. Cancer202011123436344710.1111/1759‑7714.1364433107700
    [Google Scholar]
  44. SuY.Y. SunL. GuoZ.R. LiJ.C. BaiT.T. CaiX.X. LiW.H. ZhuY.F. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer.J. Ovarian Res.2019121610.1186/s13048‑018‑0477‑x30670062
    [Google Scholar]
  45. LiM. ZouX. XiaT. WangT. LiuP. ZhouX. WangS. ZhuW. A five-miRNA panel in plasma was identified for breast cancer diagnosis.Cancer Med.20198167006701710.1002/cam4.257231568692
    [Google Scholar]
  46. ForoniC. ZarovniN. BianciardiL. BernardiS. TriggianiL. ZoccoD. VenturellaM. ChiesiA. ValcamonicoF. BerrutiA. When less is more: Specific capture and analysis of tumor exosomes in plasma increases the sensitivity of liquid biopsy for comprehensive detection of multiple androgen receptor phenotypes in advanced prostate cancer patients.Biomedicines20208513110.3390/biomedicines805013132455948
    [Google Scholar]
  47. HerrmannS. ZhanT. BetgeJ. RauscherB. BelleS. GuttingT. SchulteN. JesenofskyR. HärtelN. GaiserT. HofheinzR.D. EbertM.P. BoutrosM. Detection of mutational patterns in cell-free DNA of colorectal cancer by custom amplicon sequencing.Mol. Oncol.20191381669168310.1002/1878‑0261.1253931254442
    [Google Scholar]
  48. GaoZ. PangB. LiJ. GaoN. FanT. LiY. Emerging role of exosomes in liquid biopsy for monitoring prostate cancer invasion and metastasis.Front. Cell Dev. Biol.2021967952710.3389/fcell.2021.67952734017837
    [Google Scholar]
  49. SheferA. YalovayaA. TamkovichS. Exosomes in breast cancer: Involvement in tumor dissemination and prospects for liquid biopsy.Int. J. Mol. Sci.20222316884510.3390/ijms2316884536012109
    [Google Scholar]
  50. HuangH. HuangF. LiangX. FuY. ChengZ. HuangY. ChenZ. DuanY. ChenY. Afatinib reverses EMT via inhibiting CD44-Stat3 Axis to promote radiosensitivity in nasopharyngeal carcinoma.Pharmaceuticals 20221613710.3390/ph1601003736678534
    [Google Scholar]
  51. HalvaeiS. DaryaniS. Eslami-SZ. SamadiT. Jafarbeik-IravaniN. BakhshayeshT.O. Majidzadeh-AK. EsmaeiliR. Exosomes in cancer liquid biopsy: A focus on breast cancer.Mol. Ther. Nucleic Acids20181013114110.1016/j.omtn.2017.11.01429499928
    [Google Scholar]
  52. ShbeerA.M. RobadiI.A. Liquid biopsy holds a promising approach for the early detection of cancer: Current information and future perspectives.Pathol. Res. Pract.202425415508210.1016/j.prp.2023.15508238246032
    [Google Scholar]
  53. AssiT. KhouryR. IbrahimR. BazM. IbrahimT. LE CesneA. Overview of the role of liquid biopsy in cancer management.Transl. Oncol.20233410170210.1016/j.tranon.2023.10170237267803
    [Google Scholar]
  54. JinN. KanC.M. PeiX.M. CheungW.L. NgS.S.M. WongH.T. ChengH.Y.L. LeungW.W. WongY.N. TsangH.F. ChanA.K.C. WongY.K.E. ChoW.C.S. ChanJ.K.C. TaiW.C.S. ChanT.F. WongS.C.C. YimA.K.Y. YuA.C.S. Cell-free circulating tumor RNAs in plasma as the potential prognostic biomarkers in colorectal cancer.Front. Oncol.202313113444510.3389/fonc.2023.113444537091184
    [Google Scholar]
  55. SahaS. ArafY. PromonS.K. Circulating tumor DNA in cancer diagnosis, monitoring, and prognosis.J. Egypt. Natl. Canc. Inst.2022341810.1186/s43046‑022‑00109‑435187602
    [Google Scholar]
  56. WenX. PuH. LiuQ. GuoZ. LuoD. Circulating tumor DNA—A novel biomarker of tumor progression and its favorable detection techniques.Cancers 20221424602510.3390/cancers1424602536551512
    [Google Scholar]
  57. LoneS.N. NisarS. MasoodiT. SinghM. RizwanA. HashemS. El-RifaiW. BedognettiD. BatraS.K. HarisM. BhatA.A. MachaM.A. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments.Mol. Cancer20222117910.1186/s12943‑022‑01543‑735303879
    [Google Scholar]
  58. XuX. LuoQ. WangJ. SongY. YeH. ZhangX. HeY. SunM. ZhangR. ShiG. Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution.Opto-Electronic Advances20247623021210.29026/oea.2024.230212
    [Google Scholar]
  59. BittlaP. KaurS. SojitraV. ZahraA. HutchinsonJ. FolawemiO. KhanS. Exploring circulating tumor DNA (CtDNA) and its role in early detection of cancer: A systematic review.Cureus2023159e4578410.7759/cureus.4578437745752
    [Google Scholar]
  60. ThompsonJ.C. ScholesD.G. CarpenterE.L. AggarwalC. Molecular response assessment using circulating tumor DNA (ctDNA) in advanced solid tumors.Br. J. Cancer2023129121893190210.1038/s41416‑023‑02445‑137789101
    [Google Scholar]
  61. RodríguezJ. AvilaJ. RolfoC. Ruíz-PatiñoA. RussoA. RicaurteL. Ordóñez-ReyesC. ArrietaO. Zatarain-BarrónZ.L. RecondoG. CardonaA.F. When tissue is an issue the liquid biopsy is nonissue: A review.Oncol. Ther.2021918911010.1007/s40487‑021‑00144‑633689160
    [Google Scholar]
  62. HoH.Y. ChungK.S.K. KanC.M. WongS.C.C. Liquid biopsy in the clinical management of cancers.Int. J. Mol. Sci.20242516859410.3390/ijms2516859439201281
    [Google Scholar]
  63. GuoH. LiJ. LuX. Diagnostic value analysis of multi-slice helical computed tomography reconstruction parameters combined with 3.0 T magnetic resonance in clear cell renal cell carcinoma.Arch. Esp. Urol.202376857057810.56434/j.arch.esp.urol.20237608.7137960956
    [Google Scholar]
  64. WanJ.C.M. MassieC. Garcia-CorbachoJ. MouliereF. BrentonJ.D. CaldasC. PaceyS. BairdR. RosenfeldN. Liquid biopsies come of age: Towards implementation of circulating tumour DNA.Nat. Rev. Cancer201717422323810.1038/nrc.2017.728233803
    [Google Scholar]
  65. TanL. BrownC. MersiadesA. LeeC.K. JohnT. KaoS. NewnhamG. O’ByrneK. ParakhS. BrayV. JasasK. YipS. WongS.Q. FtouniS. GuintoJ. ChandrashekarS. ClarkeS. PavlakisN. StocklerM.R. DawsonS.J. SolomonB.J. A phase II trial of alternating osimertinib and gefitinib therapy in advanced EGFR-T790M positive non-small cell lung cancer: OSCILLATE.Nat. Commun.2024151182310.1038/s41467‑024‑46008‑138418463
    [Google Scholar]
  66. SivapalanL. MurrayJ.C. CanzonieroJ.V. LandonB. JacksonJ. ScottS. LamV. LevyB.P. SausenM. AnagnostouV. Liquid biopsy approaches to capture tumor evolution and clinical outcomes during cancer immunotherapy.J. Immunother. Cancer2023111e00592410.1136/jitc‑2022‑00592436657818
    [Google Scholar]
  67. ThierryA.R. PastorB. JiangZ.Q. KatsiampouraA.D. ParseghianC. LoreeJ.M. OvermanM.J. SanchezC. MessaoudiS.E. YchouM. KopetzS. Circulating DNA demonstrates convergent evolution and common resistance mechanisms during treatment of colorectal cancer.Clin. Cancer Res.201723164578459110.1158/1078‑0432.CCR‑17‑023228400427
    [Google Scholar]
  68. PathakP.S. ChanG. DemingD.A. CheeC.E. State-of-the-art management of colorectal cancer: Treatment advances and innovation.Am. Soc. Clin. Oncol. Educ. Book2024443e43846610.1200/EDBK_43846638768405
    [Google Scholar]
  69. ZhuJ PanS ChaiH Microfluidic impedance cytometry enabled one-step sample preparation for efficient single-cell mass spectrometry.Small20242026e231070010.1002/smll.202310700
    [Google Scholar]
  70. LaalM. Innovation process in medical imaging.Procedia Soc. Behav. Sci.201381606410.1016/j.sbspro.2013.06.388
    [Google Scholar]
  71. Islam SMS, Nasim MAA, Hossain I, Ullah DMA, Gupta DKD, Bhuiyan MMH. Introduction of medical imaging modalities. In: Data driven approaches on medical imaging. Zheng B, Andrei S, Sarker MK, Gupta KD, Eds.; Springer 2023; pp. 1-25.
  72. YaoX. ZhuY. HuangZ. WangY. CongS. WanL. WuR. ChenL. HuZ. Fusion of shallow and deep features from 18F-FDG PET/CT for predicting EGFR-sensitizing mutations in non-small cell lung cancer.Quant. Imaging Med. Surg.20241485460547210.21037/qims‑23‑102839144023
    [Google Scholar]
  73. ScialpiM. ScialpiP. MartoranaE. TorreR. MancioliF.A. D’AndreaA. Di BlasiA. Biparametric MRI with simplified PI-RADS (S-PI-RADS) for prostate cancer detection and management: What do radiologist need to know.Radiol. Med.2021126121660166110.1007/s11547‑021‑01343‑x34919192
    [Google Scholar]
  74. ZhangY YuJ. The role of MRI in the diagnosis and treatment of gastric cancer.Diagn. Interv. Radiol.202026317618210.5152/dir.2019.19375
    [Google Scholar]
  75. ZhuL. BaiM. XiaoS. LiuY. ZhuQ. WangZ. ZhaoJ. ZhangW. ChenD. In situ monitoring of cellular H2O2 within 3D cell clusters using conductive scaffolds.Talanta202427912655910.1016/j.talanta.2024.12655939018950
    [Google Scholar]
  76. ChristensenJ.D. ChilesC. Low-dose computed tomographic screening for lung cancer.Clin. Chest Med.201536214716010.1016/j.ccm.2015.02.00226024597
    [Google Scholar]
  77. KöseG. DarguzyteM. KiesslingF. Molecular ultrasound imaging.Nanomaterials 20201010193510.3390/nano1010193532998422
    [Google Scholar]
  78. ChenL. JiangZ. YangL. FangY. LuS. AkakuruO.U. HuangS. LiJ. MaS. WuA. HPDA/Zn as a CREB inhibitor for ultrasound imaging and stabilization of atherosclerosis plaque.Chin. J. Chem.202341219920610.1002/cjoc.202200406
    [Google Scholar]
  79. VijenthiraA. ChanK. CheungM.C. PricaA. Cost-effectiveness of first-line treatment options for patients with advanced-stage Hodgkin lymphoma: A modelling study.Lancet Haematol.202072e146e15610.1016/S2352‑3026(19)30218‑231948928
    [Google Scholar]
  80. AbrantesA.M. PiresA.S. MonteiroL. TeixoR. NevesA.R. TavaresN.T. MarquesI.A. BotelhoM.F. Tumour functional imaging by PET.Biochim. Biophys. Acta Mol. Basis Dis.20201866616571710.1016/j.bbadis.2020.16571732035103
    [Google Scholar]
  81. DerlinT. GrünwaldV. SteinbachJ. WesterH.J. RossT.L. Molecular imaging in oncology using positron emission tomography.Dtsch. Arztebl. Int.20181151117518110.3238/arztebl.2018.017529607803
    [Google Scholar]
  82. SchmollH.J. Van CutsemE. SteinA. ValentiniV. GlimeliusB. HaustermansK. NordlingerB. van de VeldeC.J. BalmanaJ. RegulaJ. NagtegaalI.D. Beets-TanR.G. ArnoldD. CiardielloF. HoffP. KerrD. KöhneC.H. LabiancaR. PriceT. ScheithauerW. SobreroA. TaberneroJ. AderkaD. BarrosoS. BodokyG. DouillardJ.Y. El GhazalyH. GallardoJ. GarinA. Glynne-JonesR. JordanK. MeshcheryakovA. PapamichailD. PfeifferP. SouglakosI. TurhalS. CervantesA. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making.Ann. Oncol.201223102479251610.1093/annonc/mds23623012255
    [Google Scholar]
  83. TandilavaI. UrushadzeO. TsetskhladzeD. TsetskhladzeG. PhutkaradzeM. The role and place of virtual CT colonoscopy in complex radiological diagnosis of colon diseases.Georgian Med. News2020306192333130639
    [Google Scholar]
  84. SuY. TianX. GaoR. GuoW. ChenC. ChenC. JiaD. LiH. LvX. Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis.Comput. Biol. Med.202214510540910.1016/j.compbiomed.2022.10540935339846
    [Google Scholar]
  85. Iranmakani S, Mortezazadeh T, Sajadian F, et al. A review of various modalities in breast imaging: Technical aspects and clinical outcomes. Egypt J Radiol Nucl Med 2020; 51: 1-22.10.1186/s43055‑020‑00175‑5
  86. FarrK.P. MosesD. HaghighiK.S. PhillipsP.A. HillenbrandC.M. ChuaB.H. Imaging modalities for early detection of pancreatic cancer: Current state and future research opportunities.Cancers20221410253910.3390/cancers1410253935626142
    [Google Scholar]
  87. MathieuK.B. BediD.G. ThrowerS.L. QayyumA. BastR.C.Jr Screening for ovarian cancer: Imaging challenges and opportunities for improvement.Ultrasound Obstet. Gynecol.201851329330310.1002/uog.1755728639753
    [Google Scholar]
  88. VishwanathV. JafariehS. RembielakA. The role of imaging in head and neck cancer: An overview of different imaging modalities in primary diagnosis and staging of the disease.J. Contemp. Brachytherapy202012551251810.5114/jcb.2020.10038633299442
    [Google Scholar]
  89. BeatonL. BandulaS. GazeM.N. SharmaR.A. How rapid advances in imaging are defining the future of precision radiation oncology.Br. J. Cancer2019120877979010.1038/s41416‑019‑0412‑y30911090
    [Google Scholar]
  90. NigatuA.M. YilmaT.M. GezieL.D. GebrewoldY. GullslettM.K. MengisteS.A. TilahunB. Medical imaging consultation practices and challenges at public hospitals in the Amhara regional state, Northwest Ethiopia: a descriptive phenomenological study.BMC Health Serv. Res.202323178710.1186/s12913‑023‑09652‑937488569
    [Google Scholar]
  91. TirkesT. HollarM.A. TannM. KohliM.D. AkisikF. SandrasegaranK. Response criteria in oncologic imaging: Review of traditional and new criteria.Radiographics20133351323134110.1148/rg.33512521424025927
    [Google Scholar]
  92. HussainS. MubeenI. UllahN. ShahS.S.U.D. KhanB.A. ZahoorM. UllahR. KhanF.A. SultanM.A. Modern diagnostic imaging technique applications and risk factors in the medical field: A review.BioMed Res. Int.202220221516497010.1155/2022/516497035707373
    [Google Scholar]
  93. ConnalS. CameronJ.M. SalaA. BrennanP.M. PalmerD.S. PalmerJ.D. PerlowH. BakerM.J. Liquid biopsies: The future of cancer early detection.J. Transl. Med.202321111810.1186/s12967‑023‑03960‑836774504
    [Google Scholar]
  94. HuffDT WeismanAJ JerajR Interpretation and visualization techniques for deep learning models in medical imaging.Phys. Med. Biol.202166404TR0110.1088/1361‑6560/abcd17
    [Google Scholar]
  95. Alix-PanabièresC. PantelK. Liquid biopsy: From discovery to clinical application.Cancer Discov.202111485887310.1158/2159‑8290.CD‑20‑131133811121
    [Google Scholar]
  96. FoserS. MaieseK. DigumarthyS.R. Puig-ButilleJ.A. RebhanC. Looking to the future of early detection in cancer: Liquid biopsies, imaging, and Artificial Intelligence.Clin. Chem.2024701273210.1093/clinchem/hvad19638175601
    [Google Scholar]
  97. QiuJ. XuJ. ZhangK. GuW. NieL. WangG. LuoY. Refining cancer management using integrated liquid biopsy.Theranostics20201052374238410.7150/thno.4067732089746
    [Google Scholar]
  98. BoukovalaM. WestphalenC.B. ProbstV. Liquid biopsy into the clinics: Current evidence and future perspectives.J. Liquid Biopsy.2024410014610.1016/j.jlb.2024.100146
    [Google Scholar]
  99. BagleyS.J. NabavizadehS.A. MaysJ.J. TillJ.E. WareJ.B. LevyS. SarchiaponeW. HussainJ. PriorT. GuiryS. ChristensenT. YeeS.S. NasrallahM.P. MorrissetteJ.J.D. BinderZ.A. O’RourkeD.M. CucchiaraA.J. BremS. DesaiA.S. CarpenterE.L. Clinical utility of plasma cell-free DNA in adult patients with newly diagnosed glioblastoma: A pilot prospective study.Clin. Cancer Res.202026239740710.1158/1078‑0432.CCR‑19‑253331666247
    [Google Scholar]
  100. FranceschiAM FranceschiD Hybrid PET/MR Neuroimaging: A comprehensive approach.Springer Nature2021
    [Google Scholar]
  101. ConteducaV. ScarpiE. CaroliP. LolliC. GurioliG. BrighiN. PotiG. FarolfiA. AltavillaA. SchepisiG. MatteucciF. PaganelliG. De GiorgiU. Combining liquid biopsy and functional imaging analysis in metastatic castration-resistant prostate cancer helps predict treatment outcome.Mol. Oncol.202216253854810.1002/1878‑0261.1312034657387
    [Google Scholar]
  102. Jiménez-UbietoA. PozaM. Martin-MuñozA. Ruiz-HerediaY. DoradoS. FigaredoG. Rosa-RosaJ.M. RodriguezA. BarcenaC. NavamuelL.P. CarrilloJ. SanchezR. RufianL. JuárezA. RodriguezM. WangC. de ToledoP. GrandeC. MollejoM. CasadoL.F. CalbachoM. BaumannT. RapadoI. GallardoM. SarandesesP. AyalaR. Martínez-LópezJ. BarrioS. Real-life disease monitoring in follicular lymphoma patients using liquid biopsy ultra-deep sequencing and PET/CT.Leukemia202337365966910.1038/s41375‑022‑01803‑x36596983
    [Google Scholar]
  103. CameraS. Akin TelliT. WoffE. VandeputteC. KehagiasP. GuiotT. CritchiG. WissamY. BregniG. TrevisiE. PrettaA. SentiC. LeducS. GkolfakisP. HoernerF. RothéF. SclafaniF. FlamenP. DeleporteA. HendliszA. Prognostic value of the pace of tumor progression as assessed by serial 18F-FDG PET/CT Scan and liquid biopsy in refractory colorectal cancer: The CORIOLAN trial.Cancers 20201210275210.3390/cancers1210275232987838
    [Google Scholar]
  104. KassamZ. BurgersK. WalshJ.C. LeeT.Y. LeongH.S. FisherB. A prospective feasibility study evaluating the role of multimodality imaging and liquid biopsy for response assessment in locally advanced rectal carcinoma.Abdom. Radiol.201944113641365110.1007/s00261‑019‑02135‑831327041
    [Google Scholar]
  105. AlcocebaM. StewartJ.P. García-ÁlvarezM. DíazL.G. JiménezC. MedinaA. ChillónM.C. GazdovaJ. BlancoO. DíazF.J. PeñarrubiaM.J. FernándezS. MontesC. CaberoA. CaballeroM.D. García-SanzR. GonzálezM. GonzálezD. TamayoP. GutiérrezN.C. García-SanchoA.M. SarasqueteM.E. Liquid biopsy for molecular characterization of diffuse large B-cell lymphoma and early assessment of minimal residual disease.Br. J. Haematol.2024205110912110.1111/bjh.1945838811363
    [Google Scholar]
  106. SchroederC. GatidisS. KelemenO. SchützL. BonzheimI. MuyasF. MartusP. AdmardJ. Armeanu-EbingerS. GückelB. KüstnerT. GarbeC. FlatzL. PfannenbergC. OssowskiS. ForschnerA. Tumour-informed liquid biopsies to monitor advanced melanoma patients under immune checkpoint inhibition.Nat. Commun.2024151875010.1038/s41467‑024‑52923‑039384805
    [Google Scholar]
  107. JanssenL.M. JanseM.H.A. Penning de VriesB.B.L. van der VeldenB.H.M. Wolters-van der BenE.J.M. van den BoschS.M. SartoriA. JoveletC. AgterofM.J. Ten Bokkel HuininkD. Bouman-WammesE.W. van DiestP.J. van der WallE. EliasS.G. GilhuijsK.G.A. Predicting response to neoadjuvant chemotherapy with liquid biopsies and multiparametric MRI in patients with breast cancer.NPJ Breast Cancer20241011010.1038/s41523‑024‑00611‑z38245552
    [Google Scholar]
  108. KubeczkoM. TudrejP. TyszkiewiczT. KrzywonA. Oczko-WojciechowskaM. JarząbM. Liquid biopsy utilizing miRNA in patients with advanced breast cancer treated with cyclin-dependent kinase 4/6 inhibitors.Oncol. Lett.202427418110.3892/ol.2024.1431438464342
    [Google Scholar]
  109. RenJ. LiuR. The implication of liquid biopsy in the non-small cell lung cancer: Potential and expectation.Methods Mol. Biol.2023269514516310.1007/978‑1‑0716‑3346‑5_1037450117
    [Google Scholar]
  110. JiangC. XieN. SunT. MaW. ZhangB. LiW. Xanthohumol inhibits TGF-β1-induced cardiac fibroblasts activation via mediating PTEN/Akt/mTOR signaling pathway.Drug Des. Devel. Ther.2020145431543910.2147/DDDT.S28220633324040
    [Google Scholar]
  111. HongX. SullivanR.J. KalinichM. KwanT.T. Giobbie-HurderA. PanS. LiCausiJ.A. MilnerJ.D. NiemanL.T. WittnerB.S. HoU. ChenT. KapurR. LawrenceD.P. FlahertyK.T. SequistL.V. RamaswamyS. MiyamotoD.T. LawrenceM. TonerM. IsselbacherK.J. MaheswaranS. HaberD.A. Molecular signatures of circulating melanoma cells for monitoring early response to immune checkpoint therapy.Proc. Natl. Acad. Sci. USA2018115102467247210.1073/pnas.171926411529453278
    [Google Scholar]
  112. BandiniS. UliviP. RossiT. Extracellular vesicles, circulating tumor cells, and immune checkpoint inhibitors: Hints and promises.Cells202413433710.3390/cells1304033738391950
    [Google Scholar]
  113. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  114. ToriiharaA. BarattoL. NobashiT. ParkS. HatamiN. DavidzonG. KunzP.L. IagaruA. Prognostic value of somatostatin receptor expressing tumor volume calculated from 68Ga- DOTATATE PET/CT in patients with well-differentiated neuroendocrine tumors.Eur. J. Nucl. Med. Mol. Imaging201946112244225110.1007/s00259‑019‑04455‑931350603
    [Google Scholar]
  115. WangC. LiuC. ChangY. LafataK. CuiY. ZhangJ. ShengY. MoweryY. BrizelD. YinF.F. Dose-distribution-driven PET image-based outcome prediction (DDD-PIOP): A deep learning study for oropharyngeal cancer IMRT application.Front. Oncol.202010159210.3389/fonc.2020.0159233014811
    [Google Scholar]
  116. BelueM.J. HarmonS.A. ChappidiS. ZhugeY. TasciE. JagasiaS. JoyceT. CamphausenK. TurkbeyB. KrauzeA.V. Diagnosing progression in glioblastoma—Tackling a neuro-oncology problem using artificial-intelligence-derived volumetric change over time on magnetic resonance imaging to examine progression-free survival in glioblastoma.Diagnostics 20241413137410.3390/diagnostics1413137439001264
    [Google Scholar]
  117. ErdimC. YardimciA.H. BektasC.T. KocakB. KocaS.B. DemirH. KilickesmezO. Prediction of benign and malignant solid renal masses: Machine learning-based CT texture analysis.Acad. Radiol.202027101422142910.1016/j.acra.2019.12.01532014404
    [Google Scholar]
  118. YeM. TongL. ZhengX. WangH. ZhouH. ZhuX. ZhouC. ZhaoP. WangY. WangQ. BaiL. CaiZ. KongF.M.S. WangY. LiY. FengM. YeX. YangD. LiuZ. ZhangQ. WangZ. HanS. SunL. ZhaoN. YuZ. ZhangJ. ZhangX. KatzR.L. SunJ. BaiC. A classifier for improving early lung cancer diagnosis incorporating artificial intelligence and liquid biopsy.Front. Oncol.20221285380110.3389/fonc.2022.85380135311112
    [Google Scholar]
  119. XiaY. YuQ. ChuL. The felix project: Deep networks to detect pancreatic neoplasms.medRxiv20222022.0910.1101/2022.09.24.22280071
    [Google Scholar]
  120. Hermoso-DuránS. FraunhofferN. Millastre-BocosJ. Sanchez-GraciaO. GarridoP.F. VegaS. LanasÁ. IovannaJ. Velázquez-CampoyA. AbianO. Development of a Machine-Learning model for diagnosis of pancreatic cancer from serum samples analyzed by thermal liquid biopsy.Adv. Intell. Syst.2024240030810.1002/aisy.202400308
    [Google Scholar]
  121. HawkinsS. WangH. LiuY. GarciaA. StringfieldO. KrewerH. LiQ. CherezovD. GatenbyR.A. BalagurunathanY. GoldgofD. SchabathM.B. HallL. GilliesR.J. Predicting malignant nodules from screening CT scans.J. Thorac. Oncol.201611122120212810.1016/j.jtho.2016.07.00227422797
    [Google Scholar]
  122. DarbandiM.R. DarbandiM. DarbandiS. BadoI. HadizadehM. KhorshidHRK Artificial intelligence breakthroughs in pioneering early diagnosis and precision treatment of breast cancer: A multimethod study.Eur. J. Cancer202420911422710.1016/j.ejca.2024.11422739053289
    [Google Scholar]
  123. PantelK. Alix-PanabièresC. Liquid biopsy and minimal residual disease — Latest advances and implications for cure.Nat. Rev. Clin. Oncol.201916740942410.1038/s41571‑019‑0187‑330796368
    [Google Scholar]
  124. LimM. KimC.J. SunkaraV. KimM.H. ChoY.K. Liquid biopsy in lung cancer: Clinical applications of circulating biomarkers (CTCs and ctDNA).Micromachines 20189310010.3390/mi903010030424034
    [Google Scholar]
  125. ZhangH. LiuR. YanC. LiuL. TongZ. JiangW. YaoM. FangW. ChenZ. Advantage of next-generation sequencing in dynamic monitoring of circulating tumor DNA over droplet digital PCR in Cetuximab treated colorectal cancer patients.Transl. Oncol.201912342643110.1016/j.tranon.2018.11.01530562681
    [Google Scholar]
  126. LovibondS. GewirtzA.N. PasquiniL. KrebsS. GrahamM.S. The promise of metabolic imaging in diffuse midline glioma.Neoplasia20233910089610.1016/j.neo.2023.10089636944297
    [Google Scholar]
  127. MarinelloA. TagliamentoM. PagliaroA. ConciN. CellaE. VasseurD. RemonJ. LevyA. Dall’OlioF.G. BesseB. Circulating tumor DNA to guide diagnosis and treatment of localized and locally advanced non-small cell lung cancer.Cancer Treat. Rev.202412910279110.1016/j.ctrv.2024.10279138963991
    [Google Scholar]
  128. LiuZ. DongS. ZhangL. ShiK. Harnessing artificial intelligence for transpathology advancements. Transpathology.Elsevier202434536110.1016/B978‑0‑323‑95223‑1.00022‑9
    [Google Scholar]
  129. LiW. LiuJ.B. HouL.K. YuF. ZhangJ. WuW. TangX.M. SunF. LuH.M. DengJ. BaiJ. LiJ. WuC.Y. LinQ.L. LvZ.W. WangG.R. JiangG.X. MaY.S. FuD. Liquid biopsy in lung cancer: Significance in diagnostics, prediction, and treatment monitoring.Mol. Cancer20222112510.1186/s12943‑022‑01505‑z35057806
    [Google Scholar]
  130. BertoliE. De CarloE. BasileD. ZaraD. StanzioneB. SchiappacassiM. Del ConteA. SpinaM. BearzA. Liquid biopsy in NSCLC: An investigation with multiple clinical implications.Int. J. Mol. Sci.202324131080310.3390/ijms24131080337445976
    [Google Scholar]
  131. RijavecE. CocoS. GenovaC. RossiG. LongoL. GrossiF. Liquid biopsy in non-small cell lung cancer: Highlights and challenges.Cancers 20191211710.3390/cancers1201001731861557
    [Google Scholar]
  132. FreitasA.J.A. CausinR.L. VaruzzaM.B. CalfaS. Hidalgo FilhoC.M.T. KomotoT.T. SouzaC.P. MarquesM.M.C. Liquid biopsy as a tool for the diagnosis, treatment, and monitoring of breast cancer.Int. J. Mol. Sci.20222317995210.3390/ijms2317995236077348
    [Google Scholar]
  133. AddankiS. MeasS. SarliV.N. SinghB. LucciA. Applications of circulating tumor cells and circulating tumor DNA in precision oncology for breast cancers.Int. J. Mol. Sci.20222314784310.3390/ijms2314784335887191
    [Google Scholar]
  134. KilgourE. RothwellD.G. BradyG. DiveC. Liquid biopsy-based biomarkers of treatment response and resistance.Cancer Cell202037448549510.1016/j.ccell.2020.03.01232289272
    [Google Scholar]
  135. JiangS. LiuY. XuY. SangX. LuX. Research on liquid biopsy for cancer: A bibliometric analysis.Heliyon202393e1414510.1016/j.heliyon.2023.e1414536915518
    [Google Scholar]
  136. GasparelloJ AllegrettiM PapiC Circulating microRNAs and liquid biopsy: Murine xenograft models for technical validation of clinical protocols.J Cancer Metastasis Treat201955210.20517/2394‑4722.2019.17
    [Google Scholar]
  137. MasonMC TzengCWD CaoHST AloiaTA NewhookT.E. OvermanM.J. KopetzS.E. VautheyJ.N. ChunY.S. Preliminary analysis of liquid biopsy after hepatectomy for colorectal liver metastases.J. Am. Coll. Surg.202123318289e110.1016/j.jamcollsurg.2021.02.01133667566
    [Google Scholar]
  138. HonoréN. GalotR. van MarckeC. LimayeN. MachielsJ.P. Liquid biopsy to detect minimal residual disease: Methodology and impact.Cancers 20211321536410.3390/cancers1321536434771526
    [Google Scholar]
  139. SukG. Liquid biopsy for guiding treatment decisions in advanced non-small cell lung cancer.J. Adv. Pract. Oncol.202213879079510.6004/jadpro.2022.13.8.536727019
    [Google Scholar]
  140. HirahataT. ul QuraishR. QuraishA. ul QuraishS. NazM. RazzaqM.A. Liquid biopsy: A distinctive approach to the diagnosis and prognosis of cancer.Cancer Inform.2022211176935122107606210.1177/1176935122107606235153470
    [Google Scholar]
  141. CesconDW BratmanSV ChanSM SiuLL Circulating tumor DNA and liquid biopsy in oncology.Nat Cancer20201327629010.1038/s43018‑020‑0043‑5
    [Google Scholar]
  142. ShoukryM. BroccardS. KaplanJ. GabrielE. The emerging role of circulating tumor DNA in the management of breast cancer.Cancers 20211315381310.3390/cancers1315381334359713
    [Google Scholar]
  143. ChengZ. LiH. ChenC. LvX. ZuoE. XieX. LiZ. LiuP. LiH. ChenC. Application of serum SERS technology based on thermally annealed silver nanoparticle composite substrate in breast cancer.Photodiagn. Photodyn. Ther.20234110328410.1016/j.pdpdt.2023.10328436646366
    [Google Scholar]
  144. VacanteM. CiuniR. BasileF. BiondiA. The liquid biopsy in the management of colorectal cancer: An overview.Biomedicines20208930810.3390/biomedicines809030832858879
    [Google Scholar]
  145. Palacín-AlianaI. García-RomeroN. Asensi-PuigA. Carrión-NavarroJ. González-RumayorV. Ayuso-SacidoÁ. Clinical utility of liquid biopsy-based actionable mutations detected via ddPCR.Biomedicines20219890610.3390/biomedicines908090634440110
    [Google Scholar]
  146. GaoX.H. TangJ.J. LiuH.R. LiuL.B. LiuY.Z. Structure–activity study of fluorine or chlorine-substituted cinnamic acid derivatives with tertiary amine side chain in acetylcholinesterase and butyrylcholinesterase inhibition.Drug Dev. Res.201980443844510.1002/ddr.2151530680760
    [Google Scholar]
  147. NtzifaA. LianidouE. Pre-analytical conditions and implementation of quality control steps in liquid biopsy analysis.Crit. Rev. Clin. Lab. Sci.202360857359410.1080/10408363.2023.223029037518938
    [Google Scholar]
  148. LiK. ZhuQ. YangJ. ZhengY. DuS. SongM. PengQ. YangR. LiuY. QiL. Imaging and liquid biopsy for distinguishing true progression from pseudoprogression in gliomas, current advances and challenges.Acad. Radiol.20243183366338310.1016/j.acra.2024.03.01938614827
    [Google Scholar]
  149. NayakS. BlumenfeldN.R. LaksanasopinT. SiaS.K. Point-of-care diagnostics: Recent developments in a connected age.Anal. Chem.201789110212310.1021/acs.analchem.6b0463027958710
    [Google Scholar]
  150. VassyJ.L. KorfB.R. GreenR.C. How to know when physicians are ready for genomic medicine.Sci. Transl. Med.20157287287fs1910.1126/scitranslmed.aaa240125971999
    [Google Scholar]
  151. BurdE.M. Validation of laboratory-developed molecular assays for infectious diseases.Clin. Microbiol. Rev.201023355057610.1128/CMR.00074‑0920610823
    [Google Scholar]
  152. MénardT. BarrosA. GanterC. Clinical quality considerations when using next-generation sequencing (NGS) in clinical drug development.Ther. Innov. Regul. Sci.20215551066107410.1007/s43441‑021‑00308‑634046876
    [Google Scholar]
  153. SubramanianH. SenguptaA. XuY. Patient health record protection beyond the health insurance portability and accountability act: Mixed methods study.J. Med. Internet Res.202426e5967410.2196/5967439504550
    [Google Scholar]
  154. Molnár-GáborF. SellnerJ. PagilS. SlokenbergaS. Tzortzatou- NanopoulouO. NyströmK. Harmonization after the GDPR? Divergences in the rules for genetic and health data sharing in four member states and ways to overcome them by EU measures: Insights from Germany, Greece, Latvia and Sweden.Semin. Cancer Biol.20228427128310.1016/j.semcancer.2021.12.00134896635
    [Google Scholar]
  155. LindsleyK.A. Improving quality of the informed consent process: Developing an easy-to-read, multimodal, patient-centered format in a real-world setting.Patient Educ. Couns.2019102594495110.1016/j.pec.2018.12.02230635222
    [Google Scholar]
  156. GreenRC BergJS GrodyWW ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing.Genet. Med.201315756557410.1038/gim.2013.73
    [Google Scholar]
  157. ChenM. ZhaoH. Next-generation sequencing in liquid biopsy: Cancer screening and early detection.Hum. Genomics20191313410.1186/s40246‑019‑0220‑831370908
    [Google Scholar]
  158. HussainM.S. AfzalO. GuptaG. GoyalA. AlmalkiW.H. KazmiI. AlzareaS.I. Alfawaz AltamimiA.S. KukretiN. ChakrabortyA. SinghS.K. DuaK. Unraveling NEAT1's complex role in lung cancer biology: A comprehensive review.EXCLI J.202423345238343745
    [Google Scholar]
  159. YingY.L. HuZ.L. ZhangS. QingY. FragassoA. MagliaG. MellerA. BayleyH. DekkerC. LongY.T. Nanopore-based technologies beyond DNA sequencing.Nat. Nanotechnol.202217111136114610.1038/s41565‑022‑01193‑236163504
    [Google Scholar]
  160. GaroliD. YamazakiH. MaccaferriN. WanunuM. Plasmonic nanopores for single-molecule detection and manipulation: Toward sequencing applications.Nano Lett.201919117553756210.1021/acs.nanolett.9b0275931587559
    [Google Scholar]
  161. LustbergM.B. StoverD.G. ChalmersJ.J. Implementing liquid biopsies in clinical trials.Cancer J.2018242616410.1097/PPO.000000000000030929601331
    [Google Scholar]
  162. SardarabadiP. KojabadA.A. JafariD. LiuC.H. Liquid biopsy-based biosensors for MRD detection and treatment monitoring in non-small cell lung cancer (NSCLC).Biosensors 2021111039410.3390/bios1110039434677350
    [Google Scholar]
  163. WangK. WangX. PanQ. ZhaoB. Liquid biopsy techniques and pancreatic cancer: Diagnosis, monitoring, and evaluation.Mol. Cancer202322116710.1186/s12943‑023‑01870‑337803304
    [Google Scholar]
  164. ArmakolasA. KotsariM. KoskinasJ. Liquid biopsies, novel approaches and future directions.Cancers 2023155157910.3390/cancers1505157936900369
    [Google Scholar]
  165. WeiL. NiraulaD. GatesE.D.H. FuJ. LuoY. NyflotM.J. BowenS.R. El NaqaI.M. CuiS. Artificial intelligence (AI) and machine learning (ML) in precision oncology: A review on enhancing discoverability through multiomics integration.Br. J. Radiol.20239611502023021110.1259/bjr.2023021137660402
    [Google Scholar]
  166. WuY. WangX. ZhangM. WuD. Molecular biomarkers and recent liquid biopsy testing progress: A review of the application of biosensors for the diagnosis of gliomas.Molecules20232815566010.3390/molecules2815566037570630
    [Google Scholar]
  167. HorganD. ČuferT. GattoF. Accelerating the development and validation of liquid biopsy for early cancer screening and treatment tailoring.Healthcare20221091714
    [Google Scholar]
  168. HussainM.S. AgrawalM. ShaikhN.K. SaraswatN. BahlG. BhatM.M. KhuranaN. BishtA.S. TufailM. KumarR. Beyond the genome: Deciphering the role of MALAT1 in breast cancer progression.Curr. Genomics202425534335710.2174/011389202930565624050304515439323624
    [Google Scholar]
  169. NikanjamM. KatoS. KurzrockR. Liquid biopsy: Current technology and clinical applications.J. Hematol. Oncol.202215113110.1186/s13045‑022‑01351‑y36096847
    [Google Scholar]
  170. YangJ.C. HuJ.J. LiY.X. LuoW. LiuJ.Z. YeD.W. Clinical applications of liquid biopsy in hepatocellular carcinoma.Front. Oncol.20221278182010.3389/fonc.2022.78182035211399
    [Google Scholar]
  171. CaputoV CiardielloF CorteCMD MartiniG TroianiT NapolitanoS Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer.Explor. Target Antitumor Ther.202341102138
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128371883250310174153
Loading
/content/journals/cpd/10.2174/0113816128371883250310174153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test