Skip to content
2000
Volume 31, Issue 33
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

This study explores the formulation and effectiveness of a phytosomal gel for enhancing wound healing.

Objective

The ethanolic extract of roots, rich in bioactive compounds like alkaloids and flavonoids, was optimized into a phytosomal complex to improve absorption and dermal retention.

Methods

Characterization through GC-MS revealed compounds, such as 2-Heptadecenal and Bicyclo[4.1.0]Heptane and 7-Pentyl. FTIR confirmed the successful encapsulation within the phospholipid bilayer, while SEM showed smooth, spherical particles.

Results

The Box-Behnken design optimized formulation parameters, achieving high yield (92.64%), small particle size (355 nm), and high entrapment efficiency (93.98%). release studies displayed a consistent release profile, aligning with Zero-order and Hixson-Crowell models. evaluation on Wistar rats showed that the phytosomal gel significantly enhanced wound healing, achieving 98.16% wound reduction by day 14, compared to 95.17% for extract and 97.13% for standard treatment. Histopathological analysis demonstrated complete tissue regeneration and well-organized collagen fibers in the phytosomal gel group.

Conclusion

This research highlights the potential of phytosomal gel as an effective wound healing therapy, with future studies suggested for extended stability tests and human skin permeation studies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128359150250211053431
2025-03-20
2025-09-05
Loading full text...

Full text loading...

References

  1. BrownR.P. GerbargP.L. RamazanovZ. Rhodiola rosea. A phytomedicinal overview.HerbalGram2002564052
    [Google Scholar]
  2. PanossianA. WikmanG. SarrisJ. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy.Phytomedicine201017748149310.1016/j.phymed.2010.02.002 20378318
    [Google Scholar]
  3. BookerA. JalilB. FrommenwilerD. The authenticity and quality of Rhodiola rosea products.Phytomedicine201623775476210.1016/j.phymed.2015.10.006 26626192
    [Google Scholar]
  4. TaleuzzamanM. JainP. VermaR. IqbalZ. MirzaM.A. Eugenol as a potential drug candidate: A review.Curr. Top. Med. Chem.202121201804181510.2174/1568026621666210701141433 34218781
    [Google Scholar]
  5. LiX. ChenW. Al-GandaraS.J. West meets east: Open up a dialogue on phytomedicine.Chin. Med.20211615710.1186/s13020‑021‑00467‑6
    [Google Scholar]
  6. KhanumF. BawaA.S. SinghB. Rhodiola rosea: A versatile adaptogen.Compr. Rev. Food Sci. Food Saf.200543556210.1111/j.1541‑4337.2005.tb00073.x 33430554
    [Google Scholar]
  7. SanctisD.R. BellisD.R. ScesaC. ManciniU. CucchiariniL. DachàM. In vitro protective effect of Rhodiola rosea extract against hypochlorous acid‐induced oxidative damage in human erythrocytes.Biofactors200420314715910.1002/biof.5520200304 15665385
    [Google Scholar]
  8. SantanaN.H.A. LópezE.P.V. ZubeldiaJ.M. del-RioJ.M. A Rhodiola rosea root extract protects skeletal muscle cells against chemically induced oxidative stress by modulating heat shock protein 70 (HSP70) expression.Phytother. Res.201428462362810.1002/ptr.5046 23893458
    [Google Scholar]
  9. GuanS. HeJ. GuoW. WeiJ. LuJ. DengX. Adjuvant effects of salidroside from Rhodiola rosea L. on the immune responses to ovalbumin in mice.Immunopharmacol. Immunotoxicol.201133473874310.3109/08923973.2011.567988 21711135
    [Google Scholar]
  10. WójcikR. SivvickiA.K. RóżewskaS.E. WasiutyńskiA. SommerE. FurmanowaM. Rhodiola kirilovii extracts on cellular immunity.Pol. J. Vet. Sci.2009123399405 19886264
    [Google Scholar]
  11. GuptaA. KumarR. UpadhyayN. PalK. KumarR. SawhneyR. Effects of Rhodiola imbricata on dermal wound healing.Planta Med.200773877477710.1055/s‑2007‑981546 17611935
    [Google Scholar]
  12. MehmoodH. Phytosome as a novel carrier for delivery of phytochemicals: A comprehensive review.Middle East J Appl Sci Technol20230604215110.46431/MEJAST.2023.6403
    [Google Scholar]
  13. MazumderA. DwivediA. Preez dJL, Plessis dJ. In vitro wound healing and cytotoxic effects of sinigrin–phytosome complex.Int. J. Pharm.20164981-228329310.1016/j.ijpharm.2015.12.027 26706438
    [Google Scholar]
  14. MaitiK. MukherjeeK. GantaitA. AhamedH. PadaB. Enhanced therapeutic benefit of quercetin-phospholipid complex in carbon tetrachloride-induced acute liver injury in rats: A comparative study.Iranian J Pharmacol Ther200548490
    [Google Scholar]
  15. KiddP.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: The silymarin, curcumin, green tea, and grape seed extracts.Altern. Med. Rev.2009143226246 19803548
    [Google Scholar]
  16. TafishA.M. SherbinyE.M. KarmalawyA.A.A. SolimanO.A.E.A. SalehN.M. Carvacrol-loaded phytosomes for enhanced wound healing: Molecular docking, formulation, doe-aided optimization, and in vitro/in vivo evaluation.Int. J. Nanomedicine2023185749578010.2147/IJN.S421617 37849641
    [Google Scholar]
  17. VaradkarM. GadgoliC. Preparation and evaluation of wound healing activity of phytosomes of crocetin from Nyctanthes arbor-tristis in rats.J. Tradit. Complement. Med.202212435436010.1016/j.jtcme.2021.10.002 35747356
    [Google Scholar]
  18. JainP. TaleuzzamanM. KalaC. GuptaK.D. AliA. AslamM. Quality by design (Qbd) assisted development of phytosomal gel of Aloe vera extract for topical delivery.J. Liposome Res.202131438138810.1080/08982104.2020.1849279 33183121
    [Google Scholar]
  19. TaleuzzamanM. SartajA. GuptaK.D. GilaniS.J. MirzaM.A. Phytosomal gel of Manjistha extract (MJE) formulated and optimized with central composite design of Quality by Design (QbD).J. Dispers. Sci. Technol.202344223624410.1080/01932691.2021.1942036
    [Google Scholar]
  20. MohapatraS. MirzaM.A. AhmadS. Quality by design assisted optimization and risk assessment of black cohosh loaded ethosomal gel for menopause: Investigating different formulation and process variables.Pharmaceutics202315246510.3390/pharmaceutics15020465 36839787
    [Google Scholar]
  21. DhawanS. NandaS. Implementation of Quality by Design (QbD) concept for the development of emulsion based nanotailored gel for improved antiphotoageing potential of Silymarin.J. Drug Deliv. Sci. Technol.20238110420110.1016/j.jddst.2023.104201
    [Google Scholar]
  22. MoradiS.Z. MomtazS. BayramiZ. FarzaeiM.H. AbdollahiM. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders.Front. Bioeng. Biotechnol.2020823810.3389/fbioe.2020.00238 32318551
    [Google Scholar]
  23. BonifácioB.V. SilvaP.B. RamosM.A. NegriK.M. BauabT.M. ChorilliM. Nanotechnology-based drug delivery systems and herbal medicines: A review.Int. J. Nanomedicine20149115 24363556
    [Google Scholar]
  24. VermaS. SinghS. Current and future status of herbal medicines.Vet. World20082234710.5455/vetworld.2008.347‑350
    [Google Scholar]
  25. GaikwadA.R. AhireK.D. GosaviA.A. SalunkheK.S. KhalkarA. Phytosome as a novel drug delivery system for bioavailability enhancement of phytoconstituents and its applications: A review.J. Drug Deliv. Ther.202111313815210.22270/jddt.v11i3.4847
    [Google Scholar]
  26. MaryanaW. RachmawatiH. MudhakirD. Formation of phytosome containing silymarin using thin layer-hydration technique aimed for oral delivery.Mater. Today Proc.20163385586610.1016/j.matpr.2016.02.019
    [Google Scholar]
  27. WilkinsonH.N. HardmanM.J. Wound healing: Cellular mechanisms and pathological outcomes.Open Biol.202010920022310.1098/rsob.200223 32993416
    [Google Scholar]
  28. ChiangH.M. ChenH.C. WuC.S. WuP.Y. WenK.C. Rhodiola plants: Chemistry and biological activity.J Food Drug Anal2015233359369
    [Google Scholar]
  29. ZhangQ.W. LinL.G. YeW.C. Techniques for extraction and isolation of natural products: A comprehensive review.Chin. Med.20181312010.1186/s13020‑018‑0177‑x 29692864
    [Google Scholar]
  30. PurohitM. MayurY.C. Synthesis, in vitro cytotoxicity, and anti-microbial studies of 1,4-bis(4-substituted-5-mercapto-1,2,4-triazol-3-yl)butanes.Med. Chem. Res.201221217418410.1007/s00044‑010‑9517‑9
    [Google Scholar]
  31. PatilM.V. MalveS.P. Synthesis, characterization and antimicrobial activity of 1,5-bis[2-(hydroximino)-1-methyl-3-oxo-butane-1,1-diyl]thiocarbonohydrazide and 1,5-bis[2-(hydroximino)-3-oxo-1-phenyl-butane-1,1-diyl]thiocarbonohydrazide.Acta Pol. Pharm.2004612135138 15493296
    [Google Scholar]
  32. OryanA. NezhadL.K.A. TolooN. RadS.M.N. Effects of 4‐chloro‐2,6‐bis‐(2‐hydroxyl‐benzyl)‐phenol on healing of skin wounds and growth of bacteria.J. Vet. Med. A Physiol. Pathol. Clin. Med.2007541058559110.1111/j.1439‑0442.2007.00984.x 18045344
    [Google Scholar]
  33. WuX. WangJ. HuangJ. YangS. Room temperature readily self-healing polymer via rationally designing molecular chain and crosslinking bond for flexible electrical sensor.J. Colloid Interface Sci.202055915216110.1016/j.jcis.2019.10.019 31622817
    [Google Scholar]
  34. ShenH.M. ChenC. JiangJ.Y. The N-butyl alcohol extract from Hibiscus rosa-sinensis L. flowers enhances healing potential on rat excisional wounds.J. Ethnopharmacol.201719829130110.1016/j.jep.2017.01.016 28088494
    [Google Scholar]
  35. AhmadI. AkhterS. AnwarM. Supercritical anti-solvent technique assisted synthesis of thymoquinone liposomes for radioprotection: Formulation optimization, in-vitro and in-vivo studies.Int. J. Pharm.2017523139840910.1016/j.ijpharm.2017.03.052 28347846
    [Google Scholar]
  36. KhanM.U.A. RazaqS.I.A. MehboobH. RehmanS. ArjanA.W.S. AminR. Antibacterial and hemocompatible pH-responsive hydrogel for skin wound healing application: In vitro drug release.Polymers20211321370310.3390/polym13213703 34771258
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128359150250211053431
Loading
/content/journals/cpd/10.2174/0113816128359150250211053431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test