Skip to content
2000
Volume 31, Issue 33
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Long non-coding RNAs (lncRNAs) are a type of RNA with a length of more than 200 nucleotides. They do not encode proteins but are crucial in regulating gene expression and affecting the malignant biological behavior of cancer. Small Nucleolar RNA Host Gene 10 (SNHG10) is a novel lncRNA that plays a regulatory role in many malignant tumors. Several recent studies have shown that SNHG10 is aberrantly expressed in various forms of cancer. This instability is closely related to important tumorigenic processes, such as cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and chemotherapy resistance. SNHG10 has been reported to play a role through a variety of molecular mechanisms, including serving as a competing endogenous RNA (ceRNA), regulating epigenetic processes, and affecting immune responses and tumor microenvironment. Furthermore, SNHG10 is involved in metabolic reprogramming, immune evasion, and chromatin remodeling, highlighting its diverse roles in tumor biology. Due to the specificity and selectivity of its expression level, the potential of SNHG10 as a diagnostic biomarker and therapeutic target has attracted significant attention, and its correlation with the prognosis and treatment of various tumor types is of great significance. This review focuses on the biological function and molecular mechanism of SNHG10 and its relationship with various malignant tumors. In addition, this review highlights the potential of SNHG10 to improve precision oncology and develop novel cancer therapies by investigating its upstream regulators, downstream targets, and interactions with nuclear and cytoplasmic processes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128356231250212050707
2025-03-05
2025-10-23
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. TorreL.A. SiegelR.L. WardE.M. JemalA. Global cancer incidence and mortality rates and trends: An update.Cancer Epidemiol. Biomarkers Prev.2016251162710.1158/1055‑9965.EPI‑15‑057826667886
    [Google Scholar]
  3. TiwariS. SapkotaN. HanZ. Effect of fasting on cancer: A narrative review of scientific evidence.Cancer Sci.2022113103291330210.1111/cas.1549235848874
    [Google Scholar]
  4. PengW-X. KoiralaP. MoY-Y. LncRNA-mediated regulation of cell signaling in cancer.Oncogene201736415661566710.1038/onc.2017.18428604750
    [Google Scholar]
  5. BhanA. SoleimaniM. MandalS.S. Long noncoding RNA and cancer: A new paradigm.Cancer Res.201777153965398110.1158/0008‑5472.CAN‑16‑263428701486
    [Google Scholar]
  6. BridgesM.C. DaulagalaA.C. KourtidisA. LNCcation: lncRNA localization and function.J. Cell Biol.20212202e20200904510.1083/jcb.20200904533464299
    [Google Scholar]
  7. TanY.T. LinJ.F. LiT. LiJ.J. XuR.H. JuH.Q. LncRNA-mediated posttranslational modifications and reprogramming of energy metabolism in cancer.Cancer Commun. (Lond.)202141210912010.1002/cac2.1210833119215
    [Google Scholar]
  8. CaoH. WangD. SunP. ChenL. FengY. GaoR. Zhoushi Qi Ling decoction represses docetaxel resistance and glycolysis of castration-resistant prostate cancer via regulation of SNHG10/miR-1271-5p/TRIM66 axis.Aging (Albany NY)20211319230962310710.18632/aging.20360234613933
    [Google Scholar]
  9. ZhuS. LiuY. WangX. WangJ. XiG. LncRNA SNHG10 promotes the proliferation and invasion of osteosarcoma via Wnt/β- Catenin Signaling.Mol. Ther. Nucleic Acids20202295797010.1016/j.omtn.2020.10.01033251045
    [Google Scholar]
  10. HeP. XuY. WangZ. LncRNA SNHG10 increases the methylation of miR-218 gene to promote glucose uptake and cell proliferation in osteosarcoma.J. Orthop. Surg. Res.202015135310.1186/s13018‑020‑01865‑632843060
    [Google Scholar]
  11. GeJ. LiuM. ZhangY. XieL. ShiZ. WangG. SNHG10/miR-141-3p/WTAP axis promotes osteosarcoma proliferation and migration.J. Biochem. Mol. Toxicol.2022366e2303110.1002/jbt.2303135274397
    [Google Scholar]
  12. AiniS. BolatiS. DingW. LiuS. SuP. AiliS. NamanY. XuekelaitiK. LncRNA SNHG10 suppresses the development of doxorubicin resistance by downregulating miR-302b in triple-negative breast cancer.Bioengineered2022135114301143910.1080/21655979.2022.206359235506202
    [Google Scholar]
  13. PengK. RenX. RenQ. NcRNA-mediated upregulation of CAMK2N1 is associated with poor prognosis and tumor immune infiltration of gastric cancer.Front. Genet.20221388867210.3389/fgene.2022.88867236092901
    [Google Scholar]
  14. ZhaoW. ZhaoJ. GuoX. FengY. ZhangB. TianL. LncRNA MT1JP plays a protective role in intrahepatic cholangiocarcinoma by regulating miR-18a-5p/FBP1 axis.BMC Cancer202121114210.1186/s12885‑021‑07838‑033557774
    [Google Scholar]
  15. YuanX. YangT. XuY. OuS. ShiP. CaoM. ZuoX. LiuQ. YaoJ. SNHG10 promotes cell proliferation and migration in gastric cancer by targeting miR-495-3p/CTNNB1 axis.Dig. Dis. Sci.20216682627263610.1007/s10620‑020‑06576‑w32920660
    [Google Scholar]
  16. ZhangZ. NongL. ChenM.L. GuX.L. ZhaoW.W. LiuM.H. ChengW.W. Long noncoding RNA SNHG10 sponges miR-543 to upregulate tumor suppressive SIRT1 in nonsmall cell lung cancer.Cancer Biother. Radiopharm.2020351077177510.1089/cbr.2019.333432319822
    [Google Scholar]
  17. LiD.S. AiniwaerJ.L. SheyhidingI. ZhangZ. ZhangL.W. Identification of key long non-coding RNAs as competing endogenous RNAs for miRNA-mRNA in lung adenocarcinoma.Eur. Rev. Med. Pharmacol. Sci.201620112285229527338053
    [Google Scholar]
  18. LiangM. WangL. CaoC. SongS. WuF. LncRNA SNHG10 is downregulated in non-small cell lung cancer and predicts poor survival.BMC Pulm. Med.202020127310.1186/s12890‑020‑01281‑w33081752
    [Google Scholar]
  19. JinL. HuangS. GuanC. ChangS. ETS1-activated SNHG10 exerts oncogenic functions in glioma via targeting miR-532-3p/FBXL19 axis.Cancer Cell Int.202020158910.1186/s12935‑020‑01649‑233298070
    [Google Scholar]
  20. XiaoS. ZhaY. ZhuH. MiR-621 may suppress cell proliferation via targeting lncRNA SNHG10 in acute myeloid leukemia.Cancer Manag. Res.2021132117212310.2147/CMAR.S26952833688254
    [Google Scholar]
  21. ZhangH. FangZ. GuoY. WangD. Long noncoding RNA SNHG10 promotes colorectal cancer cells malignant progression by targeting miR-3690.Bioengineered20211216010602010.1080/21655979.2021.197219934477483
    [Google Scholar]
  22. HuangY. LuoY. OuW. WangY. DongD. PengX. LuoY. Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC.Cancer Cell Int.202121152810.1186/s12935‑021‑02221‑234641864
    [Google Scholar]
  23. LanT. YuanK. YanX. XuL. LiaoH. HaoX. WangJ. LiuH. ChenX. XieK. LiJ. LiaoM. HuangJ. ZengY. WuH. LncRNA SNHG10 facilitates hepatocarcinogenesis and metastasis by modulating its homolog SCARNA13 via a positive feedback loop.Cancer Res.201979133220323410.1158/0008‑5472.CAN‑18‑404431101763
    [Google Scholar]
  24. HouJ. WangZ. LiH. ZhangH. LuoL. Immune-Related lncRNAs with WGCNA identified the function of SNHG10 in HBV-related hepatocellular carcinoma.J. Oncol.202211710.1155/2022/933284435847362
    [Google Scholar]
  25. LvW. JiaY. WangJ. DuanY. WangX. LiuT. HaoS. LiuL. Long non-coding RNA SNHG10 upregulates BIN1 to suppress the tumorigenesis and epithelial–mesenchymal transition of epithelial ovarian cancer via sponging miR-200a-3p.Cell Death Discov.2022816010.1038/s41420‑022‑00825‑935149697
    [Google Scholar]
  26. YanH. BuP. Non-coding RNA in cancer.Essays Biochem.202165462563910.1042/EBC2020003233860799
    [Google Scholar]
  27. AshrafizadehM. PaskehM.D.A. MirzaeiS. GholamiM.H. ZarrabiA. HashemiF. HushmandiK. HashemiM. NabaviN. CreaF. RenJ. KlionskyD.J. KumarA.P. WangY. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response.J. Exp. Clin. Cancer Res.202241110510.1186/s13046‑022‑02293‑635317831
    [Google Scholar]
  28. SekhoachaM. RietK. MotloungP. GumenkuL. AdegokeA. MasheleS. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches.Molecules20222717573010.3390/molecules2717573036080493
    [Google Scholar]
  29. ChenQ. YangX. GongB. XieW. MaM. FuS. WangS. LiuY. ZhangZ. SunT. LiZ. SNHG10 is a prognostic biomarker correlated with immune infiltrates in prostate cancer.Front. Cell Dev. Biol.2021973104210.3389/fcell.2021.73104234676212
    [Google Scholar]
  30. RojasG.A. HubbardA.K. DiessnerB.J. RibeiroK.B. SpectorL.G. International trends in incidence of osteosarcoma (1988-2012).Int. J. Cancer202114951044105310.1002/ijc.3367333963769
    [Google Scholar]
  31. FagioliF. BiasinE. MereutaO.M. MuraroM. LukschR. FerrariS. AgliettaM. MadonE. Poor prognosis osteosarcoma: New therapeutic approach.Bone Marrow Transplant.200841Suppl. 2S131S13410.1038/bmt.2008.7118545234
    [Google Scholar]
  32. LiS. ZhangH. LiuJ. ShangG. Targeted therapy for osteosarcoma: A review.J. Cancer Res. Clin. Oncol.202314996785679710.1007/s00432‑023‑04614‑436807762
    [Google Scholar]
  33. HowardF.M. OlopadeO.I. Epidemiology of triple-negative breast cancer.Cancer J.202127181610.1097/PPO.000000000000050033475288
    [Google Scholar]
  34. WonK.A. SpruckC. Triple-negative breast cancer therapy: Current and future perspectives (Review).Int. J. Oncol.20205761245126110.3892/ijo.2020.513533174058
    [Google Scholar]
  35. LiH. ZhangH. ZhangH. WangY. WangX. HouH. Global Health Epidemiology Reference Group Survival of gastric cancer in China from 2000 to 2022: A nationwide systematic review of hospital-based studies.J. Glob. Health2022121101410.7189/jogh.12.1101436527356
    [Google Scholar]
  36. YangW.J. ZhaoH.P. YuY. WangJ.H. GuoL. LiuJ.Y. PuJ. LvJ. Updates on global epidemiology, risk and prognostic factors of gastric cancer.World J. Gastroenterol.202329162452246810.3748/wjg.v29.i16.245237179585
    [Google Scholar]
  37. WangF.H. ZhangX.T. LiY.F. TangL. QuX.J. YingJ.E. ZhangJ. SunL.Y. LinR.B. QiuH. WangC. QiuM.Z. CaiM.Y. WuQ. LiuH. GuanW.L. ZhouA.P. ZhangY.J. LiuT.S. BiF. YuanX.L. RaoS.X. XinY. ShengW.Q. XuH.M. LiG.X. JiJ.F. ZhouZ.W. LiangH. ZhangY.Q. JinJ. ShenL. LiJ. XuR.H. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2021.Cancer Commun. (Lond.)202141874779510.1002/cac2.1219334197702
    [Google Scholar]
  38. SrivastavaS. MohantyA. NamA. SinghalS. SalgiaR. Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics.Semin. Cancer Biol.202286Pt 223324610.1016/j.semcancer.2022.06.01035787939
    [Google Scholar]
  39. DumaN. Santana-DavilaR. MolinaJ.R. Non–small cell lung cancer: Epidemiology, screening, diagnosis, and treatment.Mayo Clin. Proc.20199481623164010.1016/j.mayocp.2019.01.01331378236
    [Google Scholar]
  40. WangL.M. EnglanderZ.K. MillerM.L. BruceJ.N. Malignant glioma.Adv. Exp. Med. Biol.2023140513010.1007/978‑3‑031‑23705‑8_137452933
    [Google Scholar]
  41. JiffryMZM KlossR. Ahmed-khanM. Carmona-PiresF. OkamN. WeeraddanaP. DharmaratnaD. DandwaniM. MoinK. A review of treatment options employed in relapsed/refractory AML.Hematology2023281219648210.1080/16078454.2023.219648237036019
    [Google Scholar]
  42. LiuH. Emerging agents and regimens for AML.J. Hematol. Oncol.20211414910.1186/s13045‑021‑01062‑w33757574
    [Google Scholar]
  43. MortonL.M. DoresG.M. SchonfeldS.J. LinetM.S. SigelB.S. LamC.J.K. TuckerM.A. CurtisR.E. Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era.JAMA Oncol.20195331832510.1001/jamaoncol.2018.562530570657
    [Google Scholar]
  44. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.10117434243011
    [Google Scholar]
  45. XieY.H. ChenY.X. FangJ.Y. Comprehensive review of targeted therapy for colorectal cancer.Signal Transduct. Target. Ther.2020512210.1038/s41392‑020‑0116‑z32296018
    [Google Scholar]
  46. YangJ.D. HainautP. GoresG.J. AmadouA. PlymothA. RobertsL.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management.Nat. Rev. Gastroenterol. Hepatol.2019161058960410.1038/s41575‑019‑0186‑y31439937
    [Google Scholar]
  47. Chidambaranathan-ReghupatyS. FisherP.B. SarkarD. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification.Adv. Cancer Res.202114916110.1016/bs.acr.2020.10.00133579421
    [Google Scholar]
  48. XuY. YuX. ZhangQ. HeY. GuoW. A novel classification of HCC basing on fatty-acid-associated lncRNA.Sci. Rep.20221211886310.1038/s41598‑022‑23681‑036344648
    [Google Scholar]
  49. SambasivanS. Epithelial ovarian cancer: Review article.Cancer Treat. Res. Commun.20223310062910.1016/j.ctarc.2022.10062936127285
    [Google Scholar]
  50. TerpS.K. StoicoM.P. DybkærK. PedersenI.S. Early diagnosis of ovarian cancer based on methylation profiles in peripheral blood cell-free DNA: A systematic review.Clin. Epigenetics20231512410.1186/s13148‑023‑01440‑w36788585
    [Google Scholar]
  51. StatelloL. GuoC.J. ChenL.L. HuarteM. Gene regulation by long non-coding RNAs and its biological functions.Nat. Rev. Mol. Cell Biol.20212229611810.1038/s41580‑020‑00315‑933353982
    [Google Scholar]
  52. FerrerJ. DimitrovaN. Transcription regulation by long non-coding RNAs: Mechanisms and disease relevance.Nat. Rev. Mol. Cell Biol.202425539641510.1038/s41580‑023‑00694‑938242953
    [Google Scholar]
  53. TodenS. ZumwaltT.J. GoelA. Non-coding RNAs and potential therapeutic targeting in cancer.Biochim. Biophys. Acta Rev. Cancer20211875118849110.1016/j.bbcan.2020.18849133316377
    [Google Scholar]
  54. McCabeE.M. RasmussenT.P. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions.Semin. Cancer Biol.202175384810.1016/j.semcancer.2020.12.01233346133
    [Google Scholar]
  55. TangY. CheungB.B. AtmadibrataB. MarshallG.M. DingerM.E. LiuP.Y. LiuT. The regulatory role of long noncoding RNAs in cancer.Cancer Lett.2017391121910.1016/j.canlet.2017.01.01028111137
    [Google Scholar]
  56. MarcheseF.P. RaimondiI. HuarteM. The multidimensional mechanisms of long noncoding RNA function.Genome Biol.201718120610.1186/s13059‑017‑1348‑229084573
    [Google Scholar]
  57. WangH. MengQ. QianJ. LiM. GuC. YangY. Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer.Pharmacol. Ther.202223410812310.1016/j.pharmthera.2022.10812335121000
    [Google Scholar]
  58. ZhangL. YuD. Exosomes in cancer development, metastasis, and immunity.Biochim. Biophys. Acta Rev. Cancer20191871245546810.1016/j.bbcan.2019.04.00431047959
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128356231250212050707
Loading
/content/journals/cpd/10.2174/0113816128356231250212050707
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test