Skip to content
2000
image of Single-Cell Transcriptome and Microbiome Profiling Uncover Ileal Immune Impairment in Intrauterine Growth-Retarded Piglets

Abstract

Introduction

Impaired intestinal immune function is commonly observed in neonates with intrauterine growth retardation (IUGR), yet its underlying mechanisms and regulatory pathways remain poorly understood. Therefore, we aimed to investigate gene regulatory patterns and microbiota alterations in IUGR piglets.

Methods

Three newborn IUGR piglets and three normal littermates were selected from the same sow and sacrificed at seven days of age. Ileal digesta was collected for 16S rRNA amplicon sequencing (16S-seq), and ileum segments were dissociated for single-cell RNA sequencing (scRNA-seq).

Results

The scRNA-seq results revealed a reduced proportion of plasma B cells in IUGR piglets, along with alterations in the distribution of various T cell subsets. KEGG pathway analysis further indicated a downregulation of the B cell receptor signaling pathway in B cells from IUGR piglets. In contrast, both the T cell receptor signaling pathway and antigen processing and presentation were attenuated in T cells. Pseudotime trajectory analysis suggested that the differentiation of B cells was impaired in IUGR piglets. SCENIC analysis revealed that GATA3, IRF2, and BCL11A were downregulated in T cells of IUGR piglets. The 16S-seq results revealed that α-diversity was lower in IUGR piglets. At the genus level, the relative abundance of was significantly lower in IUGR piglets.

Discussion

Significant changes were identified in the proportions of B and T cells, their associated signaling pathways, and intestinal microbiota composition in IUGR piglets, suggesting underlying immune dysfunction and dysbiosis.

Conclusion

We identified novel immune-related transcription factors and key microbes as potential therapeutic targets, shedding light on strategies for preventing and treating IUGR.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128411269250707073647
2025-07-17
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128411269250707073647/BMS-CPD-2025-535.html?itemId=/content/journals/cpd/10.2174/0113816128411269250707073647&mimeType=html&fmt=ahah

References

  1. Huang S. Li N. Liu C. Characteristics of the gut microbiota colonization, inflammatory profile, and plasma metabolome in intrauterine growth restricted piglets during the first 12 hours after birth. J. Microbiol. 2019 57 9 748 758 10.1007/s12275‑019‑8690‑x 31187413
    [Google Scholar]
  2. Chen Y. Zhang H. Chen Y. Resveratrol and its derivative pterostilbene ameliorate intestine injury in intrauterine growth-retarded weanling piglets by modulating redox status and gut microbiota. J. Anim. Sci. Biotechnol. 2021 12 1 70 10.1186/s40104‑021‑00589‑9 34108035
    [Google Scholar]
  3. He Y. Liu Y. Guan P. He L. Zhou X. Serine administration improves selenium status, oxidative stress, and mitochondrial function in longissimus dorsi muscle of piglets with intrauterine growth retardation. Biol. Trace Elem. Res. 2023 201 4 1740 1747 10.1007/s12011‑022‑03304‑5 35661959
    [Google Scholar]
  4. Ferenc K. Pietrzak P. Godlewski M.M. Intrauterine growth retarded piglet as a model for humans - Studies on the perinatal development of the gut structure and function. Reprod. Biol. 2014 14 1 51 60 10.1016/j.repbio.2014.01.005 24607255
    [Google Scholar]
  5. Wu G. Bazer F.W. Wallace J.M. Spencer T.E. Board-invited review: Intrauterine growth retardation: Implications for the animal sciences1. J. Anim. Sci. 2006 84 9 2316 2337 10.2527/jas.2006‑156 16908634
    [Google Scholar]
  6. Wang J. Chen L. Li D. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J. Nutr. 2008 138 1 60 66 10.1093/jn/138.1.60 18156405
    [Google Scholar]
  7. Wang T. Huo Y.J. Shi F. Xu R.J. Hutz R.J. Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. Neonatology 2005 88 1 66 72 10.1159/000084645 15785017
    [Google Scholar]
  8. Wang W. Degroote J. Van Ginneken C. Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox‐sensitive genes. FASEB J. 2016 30 2 863 873 10.1096/fj.15‑274779 26514167
    [Google Scholar]
  9. Désir-Vigné A. Haure-Mirande V. de Coppet P. Darmaun D. Le Dréan G. Segain J.P. Perinatal supplementation of 4-phenylbutyrate and glutamine attenuates endoplasmic reticulum stress and improves colonic epithelial barrier function in rats born with intrauterine growth restriction. J. Nutr. Biochem. 2018 55 104 112 10.1016/j.jnutbio.2017.12.007 29413485
    [Google Scholar]
  10. Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009 9 11 799 809 10.1038/nri2653 19855405
    [Google Scholar]
  11. Huang S. Wu Z. Yuan X. Transcriptome differences suggest novel mechanisms for intrauterine growth restriction mediated dysfunction in small intestine of neonatal piglets. Front. Physiol. 2020 11 561 10.3389/fphys.2020.00561 32655399
    [Google Scholar]
  12. Olszewski J. Zabielski R. Skrzypek T. Differences in intestinal barrier development between intrauterine growth restricted and normal birth weight piglets. Animals 2021 11 4 990 10.3390/ani11040990 33916133
    [Google Scholar]
  13. Liu S Trapnell C. Single-cell transcriptome sequencing: Recent advances and remaining challenges. F1000Res 2016 5 F1000 Faculty Rev 182 10.12688/f1000research.7223.1 26949524
    [Google Scholar]
  14. Tang F Lao K Surani MA Development and applications
    [Google Scholar]
  15. of single-cell transcriptome analysis. Nat. Methods 2011 8 S4 S6 S11 10.1038/nmeth.1557 21451510
    [Google Scholar]
  16. Rao L. Cai L. Huang L. Single-cell dynamics of liver development in postnatal pigs. Sci. Bull. 2023 68 21 2583 2597 10.1016/j.scib.2023.09.021 37783617
    [Google Scholar]
  17. Xiao Y.Y. Zhang Q. Huang F. Single-cell profiling of the pig cecum at various developmental stages. Zool. Res. 2024 45 1 55 68 10.24272/j.issn.2095‑8137.2023.007 38114433
    [Google Scholar]
  18. Elmentaite R. Ross A.D.B. Roberts K. Single-cell sequencing of developing human gut reveals transcriptional links to childhood crohn’s disease. Dev. Cell 2020 55 6 771 83.e5 10.1016/j.devcel.2020.11.010 33290721
    [Google Scholar]
  19. Tang W. Zhong Y. Wei Y. Ileum tissue single-cell mRNA sequencing elucidates the cellular architecture of pathophysiological changes associated with weaning in piglets. BMC Biol. 2022 20 1 123 10.1186/s12915‑022‑01321‑3 35637473
    [Google Scholar]
  20. Meng Q. Chen L. Xiong B. Single-cell transcriptome sequencing and proteomics reveal neonatal ileum dynamic developmental potentials. mSystems 2021 6 5 e0072521 10.1128/msystems.00725‑21 34546071
    [Google Scholar]
  21. Hu L. Peng X. Chen H. Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period. Eur. J. Nutr. 2017 56 4 1753 1765 10.1007/s00394‑016‑1223‑z 27188336
    [Google Scholar]
  22. Xiong L. You J. Zhang W. Intrauterine growth restriction alters growth performance, plasma hormones, and small intestinal microbial communities in growing-finishing pigs. J. Anim. Sci. Biotechnol. 2020 11 1 86 10.1186/s40104‑020‑00490‑x 32832077
    [Google Scholar]
  23. Zhang W. Ma C. Xie P. Gut microbiota of newborn piglets with intrauterine growth restriction have lower diversity and different taxonomic abundances. J. Appl. Microbiol. 2019 127 2 354 369 10.1111/jam.14304 31077497
    [Google Scholar]
  24. Sadowska-Krawczenko I. Paprzycka M. Korbal P. Lactobacillus rhamnosus GG suspected infection in a newborn with intrauterine growth restriction. Benef. Microbes 2014 5 4 397 402 10.3920/BM2013.0074 25035097
    [Google Scholar]
  25. Zhang H. Li Y. Wang T. Antioxidant capacity and concentration of redox-active trace mineral in fully weaned intra-uterine growth retardation piglets. J. Anim. Sci. Biotechnol. 2015 6 1 48 10.1186/s40104‑015‑0047‑7 26587234
    [Google Scholar]
  26. Wang X. Zhu Y. Feng C. Innate differences and colostrum-induced alterations of jejunal mucosal proteins in piglets with intra-uterine growth restriction. Br. J. Nutr. 2018 119 7 734 747 10.1017/S0007114518000375 29569542
    [Google Scholar]
  27. Zhou X. He Y. Chen J. Colonic phosphocholine is correlated with Candida tropicalis and promotes diarrhea and pathogen clearance. NPJ Biofilms Microbiomes 2023 9 1 62 10.1038/s41522‑023‑00433‑0 37666845
    [Google Scholar]
  28. Butler A. Hoffman P. Smibert P. Papalexi E. Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018 36 5 411 420 10.1038/nbt.4096 29608179
    [Google Scholar]
  29. McGinnis C.S. Murrow L.M. Gartner Z.J. DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019 8 4 329 37.e4 10.1016/j.cels.2019.03.003 30954475
    [Google Scholar]
  30. Macosko E.Z. Basu A. Satija R. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015 161 5 1202 1214 10.1016/j.cell.2015.05.002 26000488
    [Google Scholar]
  31. Zhou X. Liu Y. Xiong X. Intestinal accumulation of microbiota-produced succinate caused by loss of microRNAs leads to diarrhea in weanling piglets. Gut Microbes 2022 14 1 2091369 10.1080/19490976.2022.2091369 35758253
    [Google Scholar]
  32. Fan B. Zhou J. Zhao Y. Identification of cell types and transcriptome landscapes of porcine epidemic diarrhea virus–infected porcine small intestine using single-cell RNA sequencing. J. Immunol. 2023 210 3 271 282 10.4049/jimmunol.2101216 36548460
    [Google Scholar]
  33. Atlasy N. Bujko A. Bækkevold E.S. Single cell transcriptomic analysis of the immune cell compartment in the human small intestine and in Celiac disease. Nat. Commun. 2022 13 1 4920 10.1038/s41467‑022‑32691‑5 35995787
    [Google Scholar]
  34. Trapnell C. Cacchiarelli D. Grimsby J. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014 32 4 381 386 10.1038/nbt.2859 24658644
    [Google Scholar]
  35. He L. Zhou X. Liu Y. Zhou L. Li F. Fecal miR-142a-3p from dextran sulfate sodium-challenge recovered mice prevents colitis by promoting the growth of Lactobacillus reuteri. Mol. Ther. 2022 30 1 388 399 10.1016/j.ymthe.2021.08.025 34450255
    [Google Scholar]
  36. He Y. Liang J. Liu Y. Combined supplementation with Lactobacillus sp. and Bifidobacterium thermacidophilum isolated from Tibetan pigs improves growth performance, immunity, and microbiota composition in weaned piglets. J. Anim. Sci. 2023 101 skad220 10.1093/jas/skad220 37358243
    [Google Scholar]
  37. Niu D. Yin Y. The initiative for consensus and standards in pig-to-human xenotransplantation in China. Innovation 2024 5 6 100717 10.1016/j.xinn.2024.100717 39529952
    [Google Scholar]
  38. Wang L. Jia Z. Xu K. Zhang F. Yin Y. When will dual-purpose pigs fly? Innovation 2024 5 6 100702 10.1016/j.xinn.2024.100702 39399227
    [Google Scholar]
  39. Mojgani N. Ashique S. Moradi M. Gut microbiota and postbiotic metabolites: Biotic intervention for enhancing vaccine responses and personalized medicine for disease prevention. Probiotics Antimicrob. Proteins 2025 10.1007/s12602‑025‑10477‑7 39964413
    [Google Scholar]
  40. Zhou C.B. Zhou Y.L. Fang J.Y. Gut microbiota in cancer immune response and immunotherapy. Trends Cancer 2021 7 7 647 660 10.1016/j.trecan.2021.01.010 33674230
    [Google Scholar]
  41. Takeuchi T. Nakanishi Y. Ohno H. Microbial metabolites and gut immunology. Annu. Rev. Immunol. 2024 42 1 153 178 10.1146/annurev‑immunol‑090222‑102035 38941602
    [Google Scholar]
  42. Wesemann D.R. Portuguese A.J. Meyers R.M. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 2013 501 7465 112 115 10.1038/nature12496 23965619
    [Google Scholar]
  43. Manerikar S.S. Malaviya A.N. Singh M.B. Rajgopalan P. Kumar R. Immune status and BCG vaccination in newborns with intra-uterine growth retardation. Clin. Exp. Immunol. 1976 26 1 173 175 1087212
    [Google Scholar]
  44. Revy P. Busslinger M. Tashiro K. A syndrome involving intrauterine growth retardation, microcephaly, cerebellar hypoplasia, B lymphocyte deficiency, and progressive pancytopenia. Pediatrics 2000 105 3 e39 10.1542/peds.105.3.e39 10699141
    [Google Scholar]
  45. Ceglia S. Berthelette A. Howley K. An epithelial cell-derived metabolite tunes immunoglobulin A secretion by gut-resident plasma cells. Nat. Immunol. 2023 24 3 531 544 10.1038/s41590‑022‑01413‑w 36658240
    [Google Scholar]
  46. Kawanishi H. Saltzman L.E. Strober W. Mechanisms regulating IgA class-specific immunoglobulin production in murine gut-associated lymphoid tissues. I. T cells derived from Peyer’s patches that switch sIgM B Cells to sIgA B cells in vitro. J. Exp. Med. 1983 157 2 433 450 10.1084/jem.157.2.433 6185611
    [Google Scholar]
  47. Abu-Raya B. Esser M.J. Nakabembe E. Antibody and B-cell immune responses against bordetella pertussis following infection and immunization. J. Mol. Biol. 2023 435 24 168344 10.1016/j.jmb.2023.168344 37926426
    [Google Scholar]
  48. Mu Q. Swartwout B.K. Edwards M. Regulation of neonatal IgA production by the maternal microbiota. Proc. Natl. Acad. Sci. USA 2021 118 9 e2015691118 10.1073/pnas.2015691118 33619092
    [Google Scholar]
  49. Adamczak A.M. Werblińska A. Jamka M. Walkowiak J. Maternal-foetal/infant interactions—gut microbiota and immune health. Biomedicines 2024 12 3 490 10.3390/biomedicines12030490 38540103
    [Google Scholar]
  50. Spencer J. Bemark M. Human intestinal B cells in inflammatory diseases. Nat. Rev. Gastroenterol. Hepatol. 2023 20 4 254 265 10.1038/s41575‑023‑00755‑6 36849542
    [Google Scholar]
  51. Ebner F. Rausch S. Scharek-Tedin L. A novel lineage transcription factor based analysis reveals differences in T helper cell subpopulation development in infected and intrauterine growth restricted (IUGR) piglets. Dev. Comp. Immunol. 2014 46 2 333 340 10.1016/j.dci.2014.05.005 24858028
    [Google Scholar]
  52. Ito Y. Bae S.C. Chuang L.S.H. The RUNX family: Developmental regulators in cancer. Nat. Rev. Cancer 2015 15 2 81 95 10.1038/nrc3877 25592647
    [Google Scholar]
  53. Patzelt T. Keppler S.J. Gorka O. Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells. Proc. Natl. Acad. Sci. USA 2018 115 12 3120 3125 10.1073/pnas.1711335115 29507226
    [Google Scholar]
  54. Ramdzan Z.M. Nepveu A. CUX1, a haploinsufficient tumour suppressor gene overexpressed in advanced cancers. Nat. Rev. Cancer 2014 14 10 673 682 10.1038/nrc3805 25190083
    [Google Scholar]
  55. Zhang S. Zhao Y. Lalsiamthara J. Current research progress on Prevotella intermedia and associated diseases. Crit. Rev. Microbiol. 2024 1 18 10.1080/1040841X.2024.2390594 39140115
    [Google Scholar]
  56. Amat S. Lantz H. Munyaka P.M. Willing B.P. Prevotellain pigs: The positive and negative associations with production and health. Microorganisms 2020 8 10 1584 10.3390/microorganisms8101584 33066697
    [Google Scholar]
  57. Larsen J.M. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology 2017 151 4 363 374 10.1111/imm.12760 28542929
    [Google Scholar]
  58. Jin C. Wu S. Liang Z. Multi-omics reveal mechanisms of high enteral starch diet mediated colonic dysbiosis via microbiome-host interactions in young ruminant. Microbiome 2024 12 1 38 10.1186/s40168‑024‑01760‑w 38395946
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128411269250707073647
Loading
/content/journals/cpd/10.2174/0113816128411269250707073647
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test