Skip to content
2000
Volume 32, Issue 5
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Bear bile powder (BBP) has been traditionally used in Chinese medicine for calming the liver, pacifying the mind, and relieving convulsions, as recorded in and . Although the antidepressant effects of BBP have been previously reported, the underlying neurological mechanisms have yet to be fully elucidated. This study aimed to investigate the antidepressant effects of BBP on corticosterone (CORT)-induced depression-like behaviors in female mice and to explore the involvement of the BDNF/TrkB/CREB signaling pathway.

Methods

Female mice received subcutaneous CORT injections to induce depression-like behaviors, followed by oral administration of BBP at doses of 50, 100, and 200 mg/kg. Behavioral assessments, biochemical analyses, UPLC-MS/MS, immunohistochemistry, and Western blotting were conducted to evaluate antidepressant effects. Additionally, a CORT-induced HT22 cell injury model was established to assess the neuroprotective mechanisms of BBP, with or without the TrkB antagonist K252a, focusing on the BDNF/TrkB/CREB pathway.

Results

BBP significantly alleviated depression-like behaviors in CORT-treated female mice. It restored neurotransmitter levels, reduced neuronal necrosis in the hippocampal CA3 region, increased DCX-positive cells in the dentate gyrus, and activated hippocampal BDNF/TrkB/CREB signaling. , BBP attenuated CORT-induced apoptosis and promoted proliferation in HT22 cells. Applying K252a confirmed that BBP’s neuroprotective and antidepressant effects were mediated the BDNF/TrkB/CREB pathway.

Discussion

These findings suggest that BBP exerts notable antidepressant and neuroprotective effects in female depression models by modulating neurotransmitters and enhancing neurogenesis through the BDNF/TrkB/CREB pathway. Using both and models strengthens the evidence for BBP’s mechanism of action. However, further studies involving additional brain regions and upstream regulatory mechanisms are warranted.

Conclusion

BBP effectively alleviates CORT-induced depressive-like behaviors in female mice by restoring neurotransmitter balance, protecting hippocampal neurons, and promoting neurogenesis the BDNF/TrkB/CREB pathway. These results provide a theoretical basis for the potential application of BBP in managing female depression.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128369486250519021344
2025-07-07
2026-01-31
Loading full text...

Full text loading...

References

  1. BelmakerR.H. AgamG. Major depressive disorder.N. Engl. J. Med.20083581556810.1056/NEJMra07309618172175
    [Google Scholar]
  2. LuJ. XuX. HuangY. LiT. MaC. XuG. YinH. XuX. MaY. WangL. HuangZ. YanY. WangB. XiaoS. ZhouL. LiL. ZhangY. ChenH. ZhangT. YanJ. DingH. YuY. KouC. ShenZ. JiangL. WangZ. SunX. XuY. HeY. GuoW. JiangL. LiS. PanW. WuY. LiG. JiaF. ShiJ. ShenZ. ZhangN. Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study.Lancet Psychiatry202181198199010.1016/S2215‑0366(21)00251‑034559991
    [Google Scholar]
  3. BrodyD.J. PrattL.A. HughesJ.P. Prevalence of depression among adults aged 20 and over: United states, 2013-2016.NCHS Data Brief20183031829638213
    [Google Scholar]
  4. SugliaS.F. DemmerR.T. WahiR. KeyesK.M. KoenenK.C. Depressive symptoms during adolescence and young adulthood and the development of type 2 diabetes mellitus.Am. J. Epidemiol.2016183426927610.1093/aje/kwv14926838597
    [Google Scholar]
  5. KesslerR.C. McGonagleK.A. ZhaoS. NelsonC.B. HughesM. EshlemanS. WittchenH.U. KendlerK.S. Lifetime and 12- month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey.Arch. Gen. Psychiatry199451181910.1001/archpsyc.1994.039500100080028279933
    [Google Scholar]
  6. BangasserD.A. ValentinoR.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives.Front. Neuroendocrinol.201435330331910.1016/j.yfrne.2014.03.00824726661
    [Google Scholar]
  7. BooijS.H. BosE.H. BouwmansM.E.J. van FaassenM. KemaI.P. OldehinkelA.J. de JongeP. Cortisol and α-amylase secretion patterns between and within depressed and non-depressed individuals.PLoS One2015107013100210.1371/journal.pone.013100226148294
    [Google Scholar]
  8. NandamL.S. BrazelM. ZhouM. JhaveriD.J. Cortisol and major depressive disorder—translating findings from humans to animal models and back.Front. Psychiatry20201097410.3389/fpsyt.2019.0097432038323
    [Google Scholar]
  9. MarsheV.S. MaciukiewiczM. RejS. TiwariA.K. SibilleE. BlumbergerD.M. KarpJ.F. LenzeE.J. ReynoldsC.F.III KennedyJ.L. MulsantB.H. MüllerD.J. Norepinephrine transporter gene variants and remission from depression with venlafaxine treatment in older adults.Am. J. Psychiatry2017174546847510.1176/appi.ajp.2016.1605061728068779
    [Google Scholar]
  10. HamonM. BlierP. Monoamine neurocircuitry in depression and strategies for new treatments.Prog. Neuropsychopharmacol. Biol. Psychiatry201345546310.1016/j.pnpbp.2013.04.00923602950
    [Google Scholar]
  11. MaharI. BambicoF.R. MechawarN. NobregaJ.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects.Neurosci. Biobehav. Rev.20143817319210.1016/j.neubiorev.2013.11.00924300695
    [Google Scholar]
  12. Dell’OssoL. CarmassiC. MucciF. MarazzitiD. Depression, serotonin and tryptophan.Curr. Pharm. Des.201622894995410.2174/138161282266615121410482626654774
    [Google Scholar]
  13. SchmidtH.D. DumanR.S. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior.Behav. Pharmacol.2007185-639141810.1097/FBP.0b013e3282ee2aa817762509
    [Google Scholar]
  14. FarrellC. O’KeaneV. Epigenetics and the glucocorticoid receptor: A review of the implications in depression.Psychiatry Res.201624234935610.1016/j.psychres.2016.06.02227344028
    [Google Scholar]
  15. SongL. WuX. WangJ. GuanY. ZhangY. GongM. WangY. LiB. Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-κB and Nrf2.Brain Res. Bull.2021177819110.1016/j.brainresbull.2021.09.00234500039
    [Google Scholar]
  16. LimD.W. HanD. LeeC. Pedicularis resupinata extract prevents depressive-like behavior in repeated corticosterone-induced depression in mice: A preliminary study.Molecules20222711343410.3390/molecules2711343435684372
    [Google Scholar]
  17. LeeB. SurB. ShimI. LeeH. HahmD.H. Angelica gigas ameliorate depression-like symptoms in rats following chronic corticosterone injection.BMC Complement. Altern. Med.201515121010.1186/s12906‑015‑0746‑926138544
    [Google Scholar]
  18. YangC. AliT. LiA. GaoR. YuX. LiS. LiT. Ketamine reverses chronic corticosterone-induced behavioral deficits and hippocampal synaptic dysfunction by regulating eIF4E/BDNF signaling.Neuropharmacology202426111015610.1016/j.neuropharm.2024.11015639326783
    [Google Scholar]
  19. GongM. HanB. WangS. LiangS. ZouZ. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.J. Pharm. Biomed. Anal.2016123637310.1016/j.jpba.2016.02.00126874256
    [Google Scholar]
  20. TaoY. ShenW. ZhouH. LiZ. PiT. WuH. ShiH. HuangF. WuX. Sex differences in a corticosterone-induced depression model in mice: Behavioral, neurochemical, and molecular insights.Brain Res.2024182314867810.1016/j.brainres.2023.14867837979605
    [Google Scholar]
  21. ZengJ. JiY. LuanF. HuJ. RuiY. LiuY. RaoZ. LiuR. ZengN. Xiaoyaosan ethyl acetate fraction alleviates depression-like behaviors in CUMS mice by promoting hippocampal neurogenesis via modulating the IGF-1Rβ/PI3K/Akt signaling pathway.J. Ethnopharmacol.202228811500510.1016/j.jep.2022.11500535051601
    [Google Scholar]
  22. WangC.S. KavalaliE.T. MonteggiaL.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders.Cell20221851627610.1016/j.cell.2021.12.00334963057
    [Google Scholar]
  23. PooM. Neurotrophins as synaptic modulators.Nat. Rev. Neurosci.200121243210.1038/3504900411253356
    [Google Scholar]
  24. XingJ. HanD. XuD. LiX. SunL. CREB protects against temporal lobe epilepsy associated with cognitive impairment by controlling oxidative neuronal damage.Neurodegener. Dis.2019195-622523710.1159/00050702332417838
    [Google Scholar]
  25. SharmaV.K. SinghT.G. CREB: A multifaceted target for Alzheimer’s disease.Curr. Alzheimer Res.202117141280129310.2174/156720501866621021815225333602089
    [Google Scholar]
  26. AmidfarM. de OliveiraJ. KucharskaE. BudniJ. KimY.K. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease.Life Sci.202025711802010.1016/j.lfs.2020.11802032603820
    [Google Scholar]
  27. ZhouC.F. GaoG.J. LiuY. Advances in studies on bear bile powder.Zhongguo Zhongyao Zazhi20154071252125826281541
    [Google Scholar]
  28. WangJ. XiongA-Z. ChengR-R. YangL. WangZ-T. LiuS-Y. Systematical analysis of multiple components in drainage bear bile powder from different sources.Zhongguo Zhongyao Zazhi201843112326233210.19540/j.cnki.cjcmm.20180125.00129945386
    [Google Scholar]
  29. LiX-Y. SuF-F. JiangC. ZhangW. WangF. ZhuQ. YangG. Efficacy evolution of bear bile and related research on components.Zhongguo Zhongyao Zazhi202247184846485310.19540/j.cnki.cjcmm.20220527.60136164894
    [Google Scholar]
  30. WangD.Q.H. CareyM.C. Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review.World J. Gastroenterol.201420299952997510.3748/wjg.v20.i29.995225110425
    [Google Scholar]
  31. HuangF. ParianteC.M. BorsiniA. From dried bear bile to molecular investigation: A systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain, across pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders.Brain Behav. Immun.20229913214610.1016/j.bbi.2021.09.02134601012
    [Google Scholar]
  32. WangL. BaiY. TaoY. ShenW. ZhouH. HeY. WuH. HuangF. ShiH. WuX. Bear bile powder alleviates Parkinson’s disease-like behavior in mice by inhibiting astrocyte-mediated neuroinflammation.Chin. J. Nat. Med.202321971072010.1016/S1875‑5364(23)60449‑237777320
    [Google Scholar]
  33. ZhuH. WangG. BaiY. TaoY. WangL. YangL. WuH. HuangF. ShiH. WuX. Natural bear bile powder suppresses neuroinflammation in lipopolysaccharide-treated mice via regulating TGR5/AKT/NF-κB signaling pathway.J. Ethnopharmacol.202228911506310.1016/j.jep.2022.11506335149130
    [Google Scholar]
  34. WuX. LiuC. ChenL. DuY.F. HuM. ReedM.N. LongY. SuppiramaniamV. HongH. TangS.S. Protective effects of tauroursodeoxycholic acid on lipopolysaccharide-induced cognitive impairment and neurotoxicity in mice.Int. Immunopharmacol.20197216617510.1016/j.intimp.2019.03.06530986644
    [Google Scholar]
  35. ShenW. LiZ. TaoY. ZhouH. WuH. ShiH. HuangF. WuX. Tauroursodeoxycholic acid mitigates depression-like behavior and hippocampal neuronal damage in a corticosterone model of female mice.Naunyn Schmiedebergs Arch. Pharmacol.202539855785579610.1007/s00210‑024‑03637‑z39611999
    [Google Scholar]
  36. ZhangK. YangJ. WangF. PanX. LiuJ. WangL. SuG. MaJ. DongY. XiongZ. WuC. Antidepressant-like effects of Xiaochaihutang in a neuroendocrine mouse model of anxiety/depression.J. Ethnopharmacol.201619467468310.1016/j.jep.2016.10.02827746334
    [Google Scholar]
  37. WuT.C. ChenH.T. ChangH.Y. YangC.Y. HsiaoM.C. ChengM.L. ChenJ.C. Mineralocorticoid receptor antagonist spironolactone prevents chronic corticosterone induced depression-like behavior.Psychoneuroendocrinology201338687188310.1016/j.psyneuen.2012.09.01123044404
    [Google Scholar]
  38. BrummelteS. GaleaL.A.M. Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats.Neuroscience2010168368069010.1016/j.neuroscience.2010.04.02320406669
    [Google Scholar]
  39. HaoY. GeH. SunM. GaoY. Selecting an appropriate animal model of depression.Int. J. Mol. Sci.20192019482710.3390/ijms2019482731569393
    [Google Scholar]
  40. TaoY. YuanJ. ZhouH. LiZ. YaoX. WuH. ShiH. HuangF. WuX. Antidepressant potential of total flavonoids from Astragalus in a chronic stress mouse model: Implications for myelination and Wnt/β-catenin/Olig2/Sox10 signaling axis modulation.J. Ethnopharmacol.202432511784610.1016/j.jep.2024.11784638301982
    [Google Scholar]
  41. LiuW. YuanD. HanM. HuangJ. XieY. Development and validation of a sensitive LC-MS/MS method for simultaneous quantification of thirteen steroid hormones in human serum and its application to the study of type 2 diabetes mellitus.J. Pharm. Biomed. Anal.202119911405910.1016/j.jpba.2021.11405933848916
    [Google Scholar]
  42. YuanJ. XuN. TaoY. HanX. YangL. LiangJ. JinH. ZhangX. WuH. ShiH. HuangF. WuX. Total astragalosides promote oligodendrocyte precursor cell differentiation and enhance remyelination in cuprizone-induced mice through suppression of Wnt/β-catenin signaling pathway.J. Ethnopharmacol.202229811562210.1016/j.jep.2022.11562235964820
    [Google Scholar]
  43. CryanJ.F. MombereauC. VassoutA. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice.Neurosci. Biobehav. Rev.2005294-557162510.1016/j.neubiorev.2005.03.00915890404
    [Google Scholar]
  44. BarnesP.J. Glucocorticosteroids.Handb. Exper. Pharma.201723718
    [Google Scholar]
  45. YanT. XuM. WanS. WangM. WuB. XiaoF. BiK. JiaY. Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway.Psychiatry Res.201624313514210.1016/j.psychres.2016.06.03727387555
    [Google Scholar]
  46. ZhangK. WangF. ZhaiM. HeM. HuY. FengL. LiY. YangJ. WuC. Hyperactive neuronal autophagy depletes BDNF and impairs adult hippocampal neurogenesis in a corticosterone-induced mouse model of depression.Theranostics20231331059107510.7150/thno.8106736793868
    [Google Scholar]
  47. ZengJ XieZ ChenL PengX LuanF HuJ XieH LiuR ZengN. Rosmarinic acid alleviate CORT-induced depressive-like behavior by promoting neurogenesis and regulating BDNF/TrkB/PI3K signaling axis.Biomed. Pharmacother.202417011599410.1016/j.biopha.2023.115994
    [Google Scholar]
  48. BaiG. QiaoY. LoP.C. SongL. YangY. DuanL. WeiS. LiM. HuangS. ZhangB. WangQ. YangC. Anti-depressive effects of Jiao- Tai-Wan on CORT-induced depression in mice by inhibiting inflammation and microglia activation.J. Ethnopharmacol.202228311471710.1016/j.jep.2021.11471734627986
    [Google Scholar]
  49. WangY. HuangY. ZhaoM. YangL. SuK. WuH. WangY. ChangQ. LiuW. Zuojin pill improves chronic unpredictable stress-induced depression-like behavior and gastrointestinal dysfunction in mice via the theTPH2/5-HT pathway.Phytomedicine202312015506710.1016/j.phymed.2023.15506737716030
    [Google Scholar]
  50. BergerS. GurecznyS. ReisingerS.N. HorvathO. PollakD.D. Effect of chronic corticosterone treatment on depression-like behavior and sociability in female and male C57BL/6N Mice.Cells201989101810.3390/cells809101831480600
    [Google Scholar]
  51. LeonardB.E. Stress, norepinephrine and depression.J. Psychiatry Neurosci.200126SupplS11S1611590964
    [Google Scholar]
  52. TakeuchiA. The transmitter role of glutamate in nervous systems.Jpn. J. Physiol.198737455957210.2170/jjphysiol.37.5592892957
    [Google Scholar]
  53. OkuboY. SekiyaH. NamikiS. SakamotoH. IinumaS. YamasakiM. WatanabeM. HiroseK. IinoM. Imaging extrasynaptic glutamate dynamics in the brain.Proc. Natl. Acad. Sci. USA2010107146526653110.1073/pnas.091315410720308566
    [Google Scholar]
  54. MurroughJ.W. AbdallahC.G. MathewS.J. Targeting glutamate signalling in depression: Progress and prospects.Nat. Rev. Drug Discov.201716747248610.1038/nrd.2017.1628303025
    [Google Scholar]
  55. MolteniR. CalabreseF. CattaneoA. ManciniM. GennarelliM. RacagniG. RivaM.A. Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine.Neuropsychopharmacology20093461523153210.1038/npp.2008.20819020498
    [Google Scholar]
  56. PariharV.K. HattiangadyB. KurubaR. ShuaiB. ShettyA.K. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory.Mol. Psychiatry201116217118310.1038/mp.2009.13020010892
    [Google Scholar]
  57. SapolskyR.M. Depression, antidepressants, and the shrinking hippocampus.Proc. Natl. Acad. Sci. USA20019822123201232210.1073/pnas.23147599811675480
    [Google Scholar]
  58. BoldriniM. SantiagoA.N. HenR. DworkA.J. RosoklijaG.B. TamirH. ArangoV. John MannJ. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression.Neuropsychopharmacology20133861068107710.1038/npp.2013.523303074
    [Google Scholar]
  59. CampbellS. MacqueenG. The role of the hippocampus in the pathophysiology of major depression.J. Psychiatry Neurosci.200429641742615644983
    [Google Scholar]
  60. YauS.Y. LeeT.H.Y. FormoloD.A. LeeW.L. LiL.C.K. SiuP.M. ChanC.C.H. Effects of maternal voluntary wheel running during pregnancy on adult hippocampal neurogenesis, temporal order memory, and depression-like behavior in adult female and male offspring.Front. Neurosci.20191347010.3389/fnins.2019.0047031164801
    [Google Scholar]
  61. RoddyD.W. FarrellC. DoolinK. RomanE. TozziL. FrodlT. O’KeaneV. O’HanlonE. The hippocampus in depression: More than the sum of its parts? Advanced hippocampal substructure segmentation in depression.Biol. Psychiatry201985648749710.1016/j.biopsych.2018.08.02130528746
    [Google Scholar]
  62. MaK. XuA. CuiS. SunM-R. XueY-C. WangJ-H. Impaired GABA synthesis, uptake and release are associated with depression- like behaviors induced by chronic mild stress.Transl. Psychiatry201661091010.1038/tp.2016.18127701406
    [Google Scholar]
  63. JungS. ChoeS. WooH. JeongH. AnH.K. MoonH. RyuH.Y. YeoB.K. LeeY.W. ChoiH. MunJ.Y. SunW. ChoeH.K. KimE.K. YuS.W. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits.Autophagy202016351253010.1080/15548627.2019.163022231234698
    [Google Scholar]
  64. ZhaoC. DengW. GageF.H. Mechanisms and functional implications of adult neurogenesis.Cell2008132464566010.1016/j.cell.2008.01.03318295581
    [Google Scholar]
  65. AnackerC. HenR. Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood.Nat. Rev. Neurosci.201718633534610.1038/nrn.2017.4528469276
    [Google Scholar]
  66. FrisénJ. Neurogenesis and gliogenesis in nervous system plasticity and repair.Annu. Rev. Cell Dev. Biol.201632112714110.1146/annurev‑cellbio‑111315‑12495327298094
    [Google Scholar]
  67. ZhongX. LiG. QiuF. HuangZ. Paeoniflorin ameliorates chronic stress-induced depression-like behaviors and neuronal damages in rats via activation of the ERK-CREB pathway.Front. Psychiatry2019977210.3389/fpsyt.2018.0077230692946
    [Google Scholar]
  68. LiY. FanC. WangL. LanT. GaoR. WangW. YuS.Y. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies.J. Clin. Invest.20211311614885310.1172/JCI14885334228643
    [Google Scholar]
  69. SunP. WangM. LiZ. WeiJ. LiuF. ZhengW. ZhuX. ChaiX. ZhaoS. Eucommiae cortex polysaccharides mitigate obesogenic diet-induced cognitive and social dysfunction via modulation of gut microbiota and tryptophan metabolism.Theranostics20221283637365510.7150/thno.7275635664075
    [Google Scholar]
  70. MirandaM. MoriciJ.F. ZanoniM.B. BekinschteinP. Brain-derived neurotrophic Factor: A key molecule for memory in the healthy and the pathological brain.Front. Cell. Neurosci.20191336310.3389/fncel.2019.0036331440144
    [Google Scholar]
  71. CaviedesA. LafourcadeC. SotoC. WynekenU. BDNF/NF-κB signaling in the neurobiology of depression.Curr. Pharm. Des.201723213154316328078988
    [Google Scholar]
  72. WangQ.S. TianJ.S. CuiY.L. GaoS. Genipin is active via modulating monoaminergic transmission and levels of brain-derived neurotrophic factor (BDNF) in rat model of depression.Neuroscience201427536537310.1016/j.neuroscience.2014.06.03224972301
    [Google Scholar]
  73. IannuccelliC. LucchinoB. GioiaC. DolciniG. RabascoJ. VendittoT. IoppoloF. SantilliV. ContiF. Di FrancoM. Gender influence on clinical manifestations, depressive symptoms and brain-derived neurotrophic factor (BDNF) serum levels in patients affected by fibromyalgia.Clin. Rheumatol.20224172171217810.1007/s10067‑022‑06133‑y35344113
    [Google Scholar]
  74. ZwolińskaW. BilskaK. TarhonskaK. ReszkaE. SkibińskaM. PytlińskaN. SłopieńA. Dmitrzak-WęglarzM. Biomarkers of depression among adolescent girls: BDNF and epigenetics.Int. J. Mol. Sci.2024256328110.3390/ijms2506328138542252
    [Google Scholar]
  75. KozisekM.E. MiddlemasD. BylundD.B. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies.Pharmacol. Ther.20081171305110.1016/j.pharmthera.2007.07.00117949819
    [Google Scholar]
  76. MinichielloL. TrkB signalling pathways in LTP and learning.Nat. Rev. Neurosci.2009101285086010.1038/nrn273819927149
    [Google Scholar]
  77. CastrénE. MonteggiaL.M. Brain-derived neurotrophic factor signaling in depression and antidepressant action.Biol. Psychiatry202190212813610.1016/j.biopsych.2021.05.00834053675
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128369486250519021344
Loading
/content/journals/cpd/10.2174/0113816128369486250519021344
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test