Skip to content
2000
image of Bear Bile Powder Alleviates Corticosterone-induced Depression-like Behavior in Female Mice by Protecting Hippocampal Neurons via the BDNF/TrkB/ CREB Pathway

Abstract

Introduction

Bear bile powder (BBP) has been traditionally used in Chinese medicine for calming the liver, pacifying the mind, and relieving convulsions, as recorded in and . Although the antidepressant effects of BBP have been previously reported, the underlying neurological mechanisms have yet to be fully elucidated. This study aimed to investigate the antidepressant effects of BBP on corticosterone (CORT)-induced depression-like behaviors in female mice and to explore the involvement of the BDNF/TrkB/CREB signaling pathway.

Methods

Female mice received subcutaneous CORT injections to induce depression-like behaviors, followed by oral administration of BBP at doses of 50, 100, and 200 mg/kg. Behavioral assessments, biochemical analyses, UPLC-MS/MS, immunohistochemistry, and Western blotting were conducted to evaluate antidepressant effects. Additionally, a CORT-induced HT22 cell injury model was established to assess the neuroprotective mechanisms of BBP, with or without the TrkB antagonist K252a, focusing on the BDNF/TrkB/CREB pathway.

Results

BBP significantly alleviated depression-like behaviors in CORT-treated female mice. It restored neurotransmitter levels, reduced neuronal necrosis in the hippocampal CA3 region, increased DCX-positive cells in the dentate gyrus, and activated hippocampal BDNF/TrkB/CREB signaling. , BBP attenuated CORT-induced apoptosis and promoted proliferation in HT22 cells. Applying K252a confirmed that BBP’s neuroprotective and antidepressant effects were mediated the BDNF/TrkB/CREB pathway.

Discussion

These findings suggest that BBP exerts notable antidepressant and neuroprotective effects in female depression models by modulating neurotransmitters and enhancing neurogenesis through the BDNF/TrkB/CREB pathway. Using both and models strengthens the evidence for BBP’s mechanism of action. However, further studies involving additional brain regions and upstream regulatory mechanisms are warranted.

Conclusion

BBP effectively alleviates CORT-induced depressive-like behaviors in female mice by restoring neurotransmitter balance, protecting hippocampal neurons, and promoting neurogenesis the BDNF/TrkB/CREB pathway. These results provide a theoretical basis for the potential application of BBP in managing female depression.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128369486250519021344
2025-07-07
2025-09-10
Loading full text...

Full text loading...

References

  1. Belmaker R.H. Agam G. Major depressive disorder. N. Engl. J. Med. 2008 358 1 55 68 10.1056/NEJMra073096 18172175
    [Google Scholar]
  2. Lu J. Xu X. Huang Y. Li T. Ma C. Xu G. Yin H. Xu X. Ma Y. Wang L. Huang Z. Yan Y. Wang B. Xiao S. Zhou L. Li L. Zhang Y. Chen H. Zhang T. Yan J. Ding H. Yu Y. Kou C. Shen Z. Jiang L. Wang Z. Sun X. Xu Y. He Y. Guo W. Jiang L. Li S. Pan W. Wu Y. Li G. Jia F. Shi J. Shen Z. Zhang N. Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study. Lancet Psychiatry 2021 8 11 981 990 10.1016/S2215‑0366(21)00251‑0 34559991
    [Google Scholar]
  3. Brody D.J. Pratt L.A. Hughes J.P. Prevalence of depression among adults aged 20 and over: United states, 2013-2016. NCHS Data Brief 2018 303 1 8 29638213
    [Google Scholar]
  4. Suglia S.F. Demmer R.T. Wahi R. Keyes K.M. Koenen K.C. Depressive symptoms during adolescence and young adulthood and the development of type 2 diabetes mellitus. Am. J. Epidemiol. 2016 183 4 269 276 10.1093/aje/kwv149 26838597
    [Google Scholar]
  5. Kessler R.C. McGonagle K.A. Zhao S. Nelson C.B. Hughes M. Eshleman S. Wittchen H.U. Kendler K.S. Lifetime and 12- month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch. Gen. Psychiatry 1994 51 1 8 19 10.1001/archpsyc.1994.03950010008002 8279933
    [Google Scholar]
  6. Bangasser D.A. Valentino R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol. 2014 35 3 303 319 10.1016/j.yfrne.2014.03.008 24726661
    [Google Scholar]
  7. Booij S.H. Bos E.H. Bouwmans M.E.J. van Faassen M. Kema I.P. Oldehinkel A.J. de Jonge P. Cortisol and α-amylase secretion patterns between and within depressed and non-depressed individuals. PLoS One 2015 10 7 0131002 10.1371/journal.pone.0131002 26148294
    [Google Scholar]
  8. Nandam L.S. Brazel M. Zhou M. Jhaveri D.J. Cortisol and major depressive disorder—translating findings from humans to animal models and back. Front. Psychiatry 2020 10 974 10.3389/fpsyt.2019.00974 32038323
    [Google Scholar]
  9. Marshe V.S. Maciukiewicz M. Rej S. Tiwari A.K. Sibille E. Blumberger D.M. Karp J.F. Lenze E.J. Reynolds C.F. III Kennedy J.L. Mulsant B.H. Müller D.J. Norepinephrine transporter gene variants and remission from depression with venlafaxine treatment in older adults. Am. J. Psychiatry 2017 174 5 468 475 10.1176/appi.ajp.2016.16050617 28068779
    [Google Scholar]
  10. Hamon M. Blier P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013 45 54 63 10.1016/j.pnpbp.2013.04.009 23602950
    [Google Scholar]
  11. Mahar I. Bambico F.R. Mechawar N. Nobrega J.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev. 2014 38 173 192 10.1016/j.neubiorev.2013.11.009 24300695
    [Google Scholar]
  12. Dell’Osso L. Carmassi C. Mucci F. Marazziti D. Depression, serotonin and tryptophan. Curr. Pharm. Des. 2016 22 8 949 954 10.2174/1381612822666151214104826 26654774
    [Google Scholar]
  13. Schmidt H.D. Duman R.S. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav. Pharmacol. 2007 18 5-6 391 418 10.1097/FBP.0b013e3282ee2aa8 17762509
    [Google Scholar]
  14. Farrell C. O’Keane V. Epigenetics and the glucocorticoid receptor: A review of the implications in depression. Psychiatry Res. 2016 242 349 356 10.1016/j.psychres.2016.06.022 27344028
    [Google Scholar]
  15. Song L. Wu X. Wang J. Guan Y. Zhang Y. Gong M. Wang Y. Li B. Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-κB and Nrf2. Brain Res. Bull. 2021 177 81 91 10.1016/j.brainresbull.2021.09.002 34500039
    [Google Scholar]
  16. Lim D.W. Han D. Lee C. Pedicularis resupinata extract prevents depressive-like behavior in repeated corticosterone-induced depression in mice: A preliminary study. Molecules 2022 27 11 3434 10.3390/molecules27113434 35684372
    [Google Scholar]
  17. Lee B. Sur B. Shim I. Lee H. Hahm D.H. Angelica gigas ameliorate depression-like symptoms in rats following chronic corticosterone injection. BMC Complement. Altern. Med. 2015 15 1 210 10.1186/s12906‑015‑0746‑9 26138544
    [Google Scholar]
  18. Yang C. Ali T. Li A. Gao R. Yu X. Li S. Li T. Ketamine reverses chronic corticosterone-induced behavioral deficits and hippocampal synaptic dysfunction by regulating eIF4E/BDNF signaling. Neuropharmacology 2024 261 110156 10.1016/j.neuropharm.2024.110156 39326783
    [Google Scholar]
  19. Gong M. Han B. Wang S. Liang S. Zou Z. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats. J. Pharm. Biomed. Anal. 2016 123 63 73 10.1016/j.jpba.2016.02.001 26874256
    [Google Scholar]
  20. Tao Y. Shen W. Zhou H. Li Z. Pi T. Wu H. Shi H. Huang F. Wu X. Sex differences in a corticosterone-induced depression model in mice: Behavioral, neurochemical, and molecular insights. Brain Res. 2024 1823 148678 10.1016/j.brainres.2023.148678 37979605
    [Google Scholar]
  21. Zeng J. Ji Y. Luan F. Hu J. Rui Y. Liu Y. Rao Z. Liu R. Zeng N. Xiaoyaosan ethyl acetate fraction alleviates depression-like behaviors in CUMS mice by promoting hippocampal neurogenesis via modulating the IGF-1Rβ/PI3K/Akt signaling pathway. J. Ethnopharmacol. 2022 288 115005 10.1016/j.jep.2022.115005 35051601
    [Google Scholar]
  22. Wang C.S. Kavalali E.T. Monteggia L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022 185 1 62 76 10.1016/j.cell.2021.12.003 34963057
    [Google Scholar]
  23. Poo M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2001 2 1 24 32 10.1038/35049004 11253356
    [Google Scholar]
  24. Xing J. Han D. Xu D. Li X. Sun L. CREB protects against temporal lobe epilepsy associated with cognitive impairment by controlling oxidative neuronal damage. Neurodegener. Dis. 2019 19 5-6 225 237 10.1159/000507023 32417838
    [Google Scholar]
  25. Sharma V.K. Singh T.G. CREB: A multifaceted target for Alzheimer’s disease. Curr. Alzheimer Res. 2021 17 14 1280 1293 10.2174/1567205018666210218152253 33602089
    [Google Scholar]
  26. Amidfar M. de Oliveira J. Kucharska E. Budni J. Kim Y.K. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci. 2020 257 118020 10.1016/j.lfs.2020.118020 32603820
    [Google Scholar]
  27. Zhou C.F. Gao G.J. Liu Y. Advances in studies on bear bile powder. Zhongguo Zhongyao Zazhi 2015 40 7 1252 1258 26281541
    [Google Scholar]
  28. Wang J. Xiong A-Z. Cheng R-R. Yang L. Wang Z-T. Liu S-Y. Systematical analysis of multiple components in drainage bear bile powder from different sources. Zhongguo Zhongyao Zazhi 2018 43 11 2326 2332 10.19540/j.cnki.cjcmm.20180125.001 29945386
    [Google Scholar]
  29. Li X-Y. Su F-F. Jiang C. Zhang W. Wang F. Zhu Q. Yang G. Efficacy evolution of bear bile and related research on components. Zhongguo Zhongyao Zazhi 2022 47 18 4846 4853 10.19540/j.cnki.cjcmm.20220527.601 36164894
    [Google Scholar]
  30. Wang D.Q.H. Carey M.C. Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review. World J. Gastroenterol. 2014 20 29 9952 9975 10.3748/wjg.v20.i29.9952 25110425
    [Google Scholar]
  31. Huang F. Pariante C.M. Borsini A. From dried bear bile to molecular investigation: A systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain, across pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Brain Behav. Immun. 2022 99 132 146 10.1016/j.bbi.2021.09.021 34601012
    [Google Scholar]
  32. Wang L. Bai Y. Tao Y. Shen W. Zhou H. He Y. Wu H. Huang F. Shi H. Wu X. Bear bile powder alleviates Parkinson’s disease-like behavior in mice by inhibiting astrocyte-mediated neuroinflammation. Chin. J. Nat. Med. 2023 21 9 710 720 10.1016/S1875‑5364(23)60449‑2 37777320
    [Google Scholar]
  33. Zhu H. Wang G. Bai Y. Tao Y. Wang L. Yang L. Wu H. Huang F. Shi H. Wu X. Natural bear bile powder suppresses neuroinflammation in lipopolysaccharide-treated mice via regulating TGR5/AKT/NF-κB signaling pathway. J. Ethnopharmacol. 2022 289 115063 10.1016/j.jep.2022.115063 35149130
    [Google Scholar]
  34. Wu X. Liu C. Chen L. Du Y.F. Hu M. Reed M.N. Long Y. Suppiramaniam V. Hong H. Tang S.S. Protective effects of tauroursodeoxycholic acid on lipopolysaccharide-induced cognitive impairment and neurotoxicity in mice. Int. Immunopharmacol. 2019 72 166 175 10.1016/j.intimp.2019.03.065 30986644
    [Google Scholar]
  35. Shen W. Li Z. Tao Y. Zhou H. Wu H. Shi H. Huang F. Wu X. Tauroursodeoxycholic acid mitigates depression-like behavior and hippocampal neuronal damage in a corticosterone model of female mice. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 5 5785 5796 10.1007/s00210‑024‑03637‑z 39611999
    [Google Scholar]
  36. Zhang K. Yang J. Wang F. Pan X. Liu J. Wang L. Su G. Ma J. Dong Y. Xiong Z. Wu C. Antidepressant-like effects of Xiaochaihutang in a neuroendocrine mouse model of anxiety/depression. J. Ethnopharmacol. 2016 194 674 683 10.1016/j.jep.2016.10.028 27746334
    [Google Scholar]
  37. Wu T.C. Chen H.T. Chang H.Y. Yang C.Y. Hsiao M.C. Cheng M.L. Chen J.C. Mineralocorticoid receptor antagonist spironolactone prevents chronic corticosterone induced depression-like behavior. Psychoneuroendocrinology 2013 38 6 871 883 10.1016/j.psyneuen.2012.09.011 23044404
    [Google Scholar]
  38. Brummelte S. Galea L.A.M. Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience 2010 168 3 680 690 10.1016/j.neuroscience.2010.04.023 20406669
    [Google Scholar]
  39. Hao Y. Ge H. Sun M. Gao Y. Selecting an appropriate animal model of depression. Int. J. Mol. Sci. 2019 20 19 4827 10.3390/ijms20194827 31569393
    [Google Scholar]
  40. Tao Y. Yuan J. Zhou H. Li Z. Yao X. Wu H. Shi H. Huang F. Wu X. Antidepressant potential of total flavonoids from Astragalus in a chronic stress mouse model: Implications for myelination and Wnt/β-catenin/Olig2/Sox10 signaling axis modulation. J. Ethnopharmacol. 2024 325 117846 10.1016/j.jep.2024.117846 38301982
    [Google Scholar]
  41. Liu W. Yuan D. Han M. Huang J. Xie Y. Development and validation of a sensitive LC-MS/MS method for simultaneous quantification of thirteen steroid hormones in human serum and its application to the study of type 2 diabetes mellitus. J. Pharm. Biomed. Anal. 2021 199 114059 10.1016/j.jpba.2021.114059 33848916
    [Google Scholar]
  42. Yuan J. Xu N. Tao Y. Han X. Yang L. Liang J. Jin H. Zhang X. Wu H. Shi H. Huang F. Wu X. Total astragalosides promote oligodendrocyte precursor cell differentiation and enhance remyelination in cuprizone-induced mice through suppression of Wnt/β-catenin signaling pathway. J. Ethnopharmacol. 2022 298 115622 10.1016/j.jep.2022.115622 35964820
    [Google Scholar]
  43. Cryan J.F. Mombereau C. Vassout A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 2005 29 4-5 571 625 10.1016/j.neubiorev.2005.03.009 15890404
    [Google Scholar]
  44. Barnes P.J. Glucocorticosteroids. Handb. Exper. Pharma. 2017 237 1 8
    [Google Scholar]
  45. Yan T. Xu M. Wan S. Wang M. Wu B. Xiao F. Bi K. Jia Y. Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway. Psychiatry Res. 2016 243 135 142 10.1016/j.psychres.2016.06.037 27387555
    [Google Scholar]
  46. Zhang K. Wang F. Zhai M. He M. Hu Y. Feng L. Li Y. Yang J. Wu C. Hyperactive neuronal autophagy depletes BDNF and impairs adult hippocampal neurogenesis in a corticosterone-induced mouse model of depression. Theranostics 2023 13 3 1059 1075 10.7150/thno.81067 36793868
    [Google Scholar]
  47. Zeng J Xie Z Chen L Peng X Luan F Hu J Xie H Liu R Zeng N. Rosmarinic acid alleviate CORT-induced depressive-like behavior by promoting neurogenesis and regulating BDNF/TrkB/PI3K signaling axis. Biomed. Pharmacother. 2024 170 115994 10.1016/j.biopha.2023.115994
    [Google Scholar]
  48. Bai G. Qiao Y. Lo P.C. Song L. Yang Y. Duan L. Wei S. Li M. Huang S. Zhang B. Wang Q. Yang C. Anti-depressive effects of Jiao- Tai-Wan on CORT-induced depression in mice by inhibiting inflammation and microglia activation. J. Ethnopharmacol. 2022 283 114717 10.1016/j.jep.2021.114717 34627986
    [Google Scholar]
  49. Wang Y. Huang Y. Zhao M. Yang L. Su K. Wu H. Wang Y. Chang Q. Liu W. Zuojin pill improves chronic unpredictable stress-induced depression-like behavior and gastrointestinal dysfunction in mice via the theTPH2/5-HT pathway. Phytomedicine 2023 120 155067 10.1016/j.phymed.2023.155067 37716030
    [Google Scholar]
  50. Berger S. Gureczny S. Reisinger S.N. Horvath O. Pollak D.D. Effect of chronic corticosterone treatment on depression-like behavior and sociability in female and male C57BL/6N Mice. Cells 2019 8 9 1018 10.3390/cells8091018 31480600
    [Google Scholar]
  51. Leonard B.E. Stress, norepinephrine and depression. J. Psychiatry Neurosci. 2001 26 Suppl S11 S16 11590964
    [Google Scholar]
  52. Takeuchi A. The transmitter role of glutamate in nervous systems. Jpn. J. Physiol. 1987 37 4 559 572 10.2170/jjphysiol.37.559 2892957
    [Google Scholar]
  53. Okubo Y. Sekiya H. Namiki S. Sakamoto H. Iinuma S. Yamasaki M. Watanabe M. Hirose K. Iino M. Imaging extrasynaptic glutamate dynamics in the brain. Proc. Natl. Acad. Sci. USA 2010 107 14 6526 6531 10.1073/pnas.0913154107 20308566
    [Google Scholar]
  54. Murrough J.W. Abdallah C.G. Mathew S.J. Targeting glutamate signalling in depression: Progress and prospects. Nat. Rev. Drug Discov. 2017 16 7 472 486 10.1038/nrd.2017.16 28303025
    [Google Scholar]
  55. Molteni R. Calabrese F. Cattaneo A. Mancini M. Gennarelli M. Racagni G. Riva M.A. Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine. Neuropsychopharmacology 2009 34 6 1523 1532 10.1038/npp.2008.208 19020498
    [Google Scholar]
  56. Parihar V.K. Hattiangady B. Kuruba R. Shuai B. Shetty A.K. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Mol. Psychiatry 2011 16 2 171 183 10.1038/mp.2009.130 20010892
    [Google Scholar]
  57. Sapolsky R.M. Depression, antidepressants, and the shrinking hippocampus. Proc. Natl. Acad. Sci. USA 2001 98 22 12320 12322 10.1073/pnas.231475998 11675480
    [Google Scholar]
  58. Boldrini M. Santiago A.N. Hen R. Dwork A.J. Rosoklija G.B. Tamir H. Arango V. John Mann J. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 2013 38 6 1068 1077 10.1038/npp.2013.5 23303074
    [Google Scholar]
  59. Campbell S. Macqueen G. The role of the hippocampus in the pathophysiology of major depression. J. Psychiatry Neurosci. 2004 29 6 417 426 15644983
    [Google Scholar]
  60. Yau S.Y. Lee T.H.Y. Formolo D.A. Lee W.L. Li L.C.K. Siu P.M. Chan C.C.H. Effects of maternal voluntary wheel running during pregnancy on adult hippocampal neurogenesis, temporal order memory, and depression-like behavior in adult female and male offspring. Front. Neurosci. 2019 13 470 10.3389/fnins.2019.00470 31164801
    [Google Scholar]
  61. Roddy D.W. Farrell C. Doolin K. Roman E. Tozzi L. Frodl T. O’Keane V. O’Hanlon E. The hippocampus in depression: More than the sum of its parts? advanced hippocampal substructure segmentation in depression. Biol. Psychiatry 2019 85 6 487 497 10.1016/j.biopsych.2018.08.021 30528746
    [Google Scholar]
  62. Ma K. Xu A. Cui S. Sun M-R. Xue Y-C. Wang J-H. Impaired GABA synthesis, uptake and release are associated with depression- like behaviors induced by chronic mild stress. Transl. Psychiatry 2016 6 10 910 10.1038/tp.2016.181 27701406
    [Google Scholar]
  63. Jung S. Choe S. Woo H. Jeong H. An H.K. Moon H. Ryu H.Y. Yeo B.K. Lee Y.W. Choi H. Mun J.Y. Sun W. Choe H.K. Kim E.K. Yu S.W. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy 2020 16 3 512 530 10.1080/15548627.2019.1630222 31234698
    [Google Scholar]
  64. Zhao C. Deng W. Gage F.H. Mechanisms and functional implications of adult neurogenesis. Cell 2008 132 4 645 660 10.1016/j.cell.2008.01.033 18295581
    [Google Scholar]
  65. Anacker C. Hen R. Adult hippocampal neurogenesis and cognitive flexibility — linking memory and mood. Nat. Rev. Neurosci. 2017 18 6 335 346 10.1038/nrn.2017.45 28469276
    [Google Scholar]
  66. Frisén J. Neurogenesis and gliogenesis in nervous system plasticity and repair. Annu. Rev. Cell Dev. Biol. 2016 32 1 127 141 10.1146/annurev‑cellbio‑111315‑124953 27298094
    [Google Scholar]
  67. Zhong X. Li G. Qiu F. Huang Z. Paeoniflorin ameliorates chronic stress-induced depression-like behaviors and neuronal damages in rats via activation of the ERK-CREB pathway. Front. Psychiatry 2019 9 772 10.3389/fpsyt.2018.00772 30692946
    [Google Scholar]
  68. Li Y. Fan C. Wang L. Lan T. Gao R. Wang W. Yu S.Y. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. J. Clin. Invest. 2021 131 16 148853 10.1172/JCI148853 34228643
    [Google Scholar]
  69. Sun P. Wang M. Li Z. Wei J. Liu F. Zheng W. Zhu X. Chai X. Zhao S. Eucommiae cortex polysaccharides mitigate obesogenic diet-induced cognitive and social dysfunction via modulation of gut microbiota and tryptophan metabolism. Theranostics 2022 12 8 3637 3655 10.7150/thno.72756 35664075
    [Google Scholar]
  70. Miranda M. Morici J.F. Zanoni M.B. Bekinschtein P. Brain-derived neurotrophic Factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 2019 13 363 10.3389/fncel.2019.00363 31440144
    [Google Scholar]
  71. Caviedes A. Lafourcade C. Soto C. Wyneken U. BDNF/NF-κB signaling in the neurobiology of depression. Curr. Pharm. Des. 2017 23 21 3154 3163 28078988
    [Google Scholar]
  72. Wang Q.S. Tian J.S. Cui Y.L. Gao S. Genipin is active via modulating monoaminergic transmission and levels of brain-derived neurotrophic factor (BDNF) in rat model of depression. Neuroscience 2014 275 365 373 10.1016/j.neuroscience.2014.06.032 24972301
    [Google Scholar]
  73. Iannuccelli C. Lucchino B. Gioia C. Dolcini G. Rabasco J. Venditto T. Ioppolo F. Santilli V. Conti F. Di Franco M. Gender influence on clinical manifestations, depressive symptoms and brain-derived neurotrophic factor (BDNF) serum levels in patients affected by fibromyalgia. Clin. Rheumatol. 2022 41 7 2171 2178 10.1007/s10067‑022‑06133‑y 35344113
    [Google Scholar]
  74. Zwolińska W. Bilska K. Tarhonska K. Reszka E. Skibińska M. Pytlińska N. Słopień A. Dmitrzak-Węglarz M. Biomarkers of depression among adolescent girls: BDNF and epigenetics. Int. J. Mol. Sci. 2024 25 6 3281 10.3390/ijms25063281 38542252
    [Google Scholar]
  75. Kozisek M.E. Middlemas D. Bylund D.B. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol. Ther. 2008 117 1 30 51 10.1016/j.pharmthera.2007.07.001 17949819
    [Google Scholar]
  76. Minichiello L. TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 2009 10 12 850 860 10.1038/nrn2738 19927149
    [Google Scholar]
  77. Castrén E. Monteggia L.M. Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biol. Psychiatry 2021 90 2 128 136 10.1016/j.biopsych.2021.05.008 34053675
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128369486250519021344
Loading
/content/journals/cpd/10.2174/0113816128369486250519021344
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test