Skip to content
2000
Volume 31, Issue 36
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Nanoemulsions (NEs) are submicron-sized colloidal dispersions (20–500 nm) consisting of oil and aqueous phases stabilized by surfactants and cosurfactants. Despite their thermodynamic instability, NEs maintain kinetic stability, preventing separation and aggregation. This stability distinguishes them from microemulsions, which are thermodynamically stable and formed spontaneously. The emulsification process involves a reduction in Gibbs surface free energy facilitated by emulsifiers that lower interfacial tension, crucial for compensating for the high surface area associated with small droplet sizes. The Gibbs free energy reduction is vital as it helps in stabilizing nanoemulsions, while Laplace pressure, resulting from the curvature of the droplets, affects the stability and uniformity of the system. High Laplace pressures in smaller droplets can lead to coalescence, but the proper formulation with suitable surfactants can help mitigate this effect. This review investigates the hypothesis that NEs can significantly enhance the solubility and bioavailability of hydrophobic drugs by optimizing their formulation and stability. We focus on the role of emulsification techniques in creating stable nanoemulsions, with particular attention to the impact of hydrophilic-lipophilic balance (HLB) and critical packing parameters (CPP) on droplet size and stability. Furthermore, we provide a detailed comparison of various preparation methods, including ultrasonication and high-pressure homogenization, emphasizing their influence on droplet size, stability, and scalability. Experimental data from and studies illustrate the advantages of NEs for oral drug delivery, with findings showing significant improvements in bioavailability for poorly soluble drugs, such as paclitaxel and curcumin, under optimized formulation conditions. This review highlights the potential of NEs to overcome the limitations of traditional drug delivery systems and provides a roadmap for future research to improve their commercial viability and therapeutic outcomes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128370159250401012611
2025-04-24
2025-09-13
Loading full text...

Full text loading...

References

  1. JacobS. KatherF.S. BodduS.H.S. ShahJ. NairA.B. Innovations in nanoemulsion technology: Enhancing drug delivery for oral, parenteral, and ophthalmic applications.Pharmaceutics20241610133310.3390/pharmaceutics16101333 39458662
    [Google Scholar]
  2. ShakerD.S. IshakR.A.H. GhoneimA. ElhuoniM.A. Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs.Sci. Pharm.20198731710.3390/scipharm87030017
    [Google Scholar]
  3. RehmanM. TahirN. SohailM.F. Lipid-based nanoformulations for drug delivery: An ongoing perspective.Pharmaceutics20241611137610.3390/pharmaceutics16111376 39598500
    [Google Scholar]
  4. KosmellaS. KoetzJ. Polymer-modified w/o microemulsions - with tunable droplet-droplet interactions.Curr. Opin. Colloid Interface Sci.201217526126510.1016/j.cocis.2012.06.004
    [Google Scholar]
  5. LengK. GuanB. LiuW. Advance of microemulsion and application for enhanced oil recovery.Nanomaterials20241412100410.3390/nano14121004 38921880
    [Google Scholar]
  6. SchroënK. de RuiterJ. Berton-CarabinC. The importance of interfacial tension in emulsification: Connecting scaling relations used in large scale preparation with microfluidic measurement methods.Chem. Engineering20204463
    [Google Scholar]
  7. RashidiS. KarimiN. LiG. SundenB. Progress in phase change nano-emulsions for energy applications- A concise review.J. Mol. Liq.202338712254710.1016/j.molliq.2023.122547
    [Google Scholar]
  8. MalikM.A. WaniM.Y. HashimM.A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials.Arab. J. Chem.20125439741710.1016/j.arabjc.2010.09.027
    [Google Scholar]
  9. Russo KraussI. EspositoR. PaduanoL. D’ErricoG. From composite molecular structures to a multiplicity of supramolecular aggregates: The role of intermolecular interactions in biosurfactant self-assembly.Curr. Opin. Colloid Interface Sci.20247010179210.1016/j.cocis.2024.101792
    [Google Scholar]
  10. SharmaN. AntilV. Microemulsion: A review.Asian J Pharm Res Dev2013122336
    [Google Scholar]
  11. ShahR. EldridgeD. PalomboE. HardingI. Lipid nanoparticles: Production, characterization and stability.Springer201510.1007/978‑3‑319‑10711‑0
    [Google Scholar]
  12. ChoiS.J. McClementsD.J. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability.Food Sci. Biotechnol.202029214916810.1007/s10068‑019‑00731‑4 32064124
    [Google Scholar]
  13. MauryaR. VikalA. PatelP. NarangR.K. KurmiB.D. Enhancing oral drug absorption: Overcoming physiological and pharmaceutical barriers for improved bioavailability.AAPS PharmSciTech202425722810.1208/s12249‑024‑02940‑5 39354282
    [Google Scholar]
  14. VikalA. MauryaR. BhowmikS. PatelP. GuptaG.D. KurmiB.D. From conventional to cutting-edge: A comprehensive review on drug delivery systems.Drug Deliv. Lett.202414322624310.2174/0122103031304556240430161553
    [Google Scholar]
  15. RossoA. LolloG. ChevalierY. Development and structural characterization of a novel nanoemulsion for oral drug delivery.Colloids Surf. A Physicochem. Eng. Asp.202059312461410.1016/j.colsurfa.2020.124614
    [Google Scholar]
  16. SeoE.B. du PlessisL.H. ViljoenJ.M. Solidification of self-emulsifying drug delivery systems as a novel approach to the management of uncomplicated malaria.Pharmaceuticals202215212010.3390/ph15020120 35215233
    [Google Scholar]
  17. PavoniL. PerinelliD.R. BonacucinaG. CespiM. PalmieriG.F. An overview of micro- and nanoemulsions as vehicles for essential oils: Formulation, preparation and stability.Nanomaterials202010113510.3390/nano10010135 31940900
    [Google Scholar]
  18. McClementsD. DeckerE. Interfacial antioxidants: A review of natural and synthetic emulsifiers and coemulsifiers that can inhibit lipid oxidation.J. Agric. Food Chem.20176612035 29227097
    [Google Scholar]
  19. Morais DianeJ.M. BurgessJ. Vitamin E nanoemulsions characterization and analysis.Int. J. Pharm.20144651-245546310.1016/j.ijpharm.2014.02.034 24560639
    [Google Scholar]
  20. SinghP. KaurG. SinghA. KaurP. Starch based bio-nanocomposite films reinforced with montmorillonite and lemongrass oil nanoemulsion: Development, characterization. and biodegradability.J. Food Meas. Charact.202317152754510.1007/s11694‑022‑01635‑4
    [Google Scholar]
  21. DasT. ChatterjeeN. ChakrabortyA. BanerjeeA. HaitiS.B. DattaS. Fabrication of rice bran oil nanoemulsion and conventional emulsion with mustard protein isolate as a novel excipient: Focus on shelf-life stability, lipid digestibility and cellular bioavailability.Food Hydrocoll.20234100143
    [Google Scholar]
  22. HansenH.H. KijankaG. OuyangL. NguyenN-T. Surfactant-free oil-in-water nanoemulsions with nanopore membrane and ultrasound.J. Molecular Liq.2024399124323
    [Google Scholar]
  23. SarkarR. PalA. RakshitA. Properties and applications of amphoteric surfactant: A concise review.J. Surfactants Deterg.2021245709730
    [Google Scholar]
  24. WuN. YeZ. ZhouK. WangF. LianC. ShangY.J.L. Construction and properties of o/w liquid crystal nanoemulsion.Langmuir202440147723773210.1021/acs.langmuir.4c00424 38554094
    [Google Scholar]
  25. MustafaG. AlotaibiF.O. AldhafiriF.K. ArshadM.F. Ingredients and composition of food grade nanoemulsions.Nanoemulsions in Food Technology.CRC Press20212764
    [Google Scholar]
  26. SchultzS. WagnerG. UrbanK. UlrichJ. High‐pressure homogenization as a process for emulsion formation.Chem. Eng. Technol.200427436136810.1002/ceat.200406111
    [Google Scholar]
  27. ZhouH. QinD. VuG. McClementsD.J. Impact of operating parameters on the production of nanoemulsions using a high-pressure homogenizer with flow pattern and back pressure control.Colloid Interfaces2023712110.3390/colloids7010021
    [Google Scholar]
  28. TahaA. AhmedE. IsmaielA. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions.Trends Food Sci. Technol.202010536337710.1016/j.tifs.2020.09.024
    [Google Scholar]
  29. CarltonJ.S. Cavitation.In: Marine Propellers and Propulsion. (Fourth Edition). Carlton JS, EdButterworth-Heinemann201921726010.1016/B978‑0‑08‑100366‑4.00009‑2
    [Google Scholar]
  30. KolosovA.E. KolosovaE.P. VaninV.V. KhanA. Ultrasonic treatment in the production of classical composites and carbon nanocomposites.Nanocarbon and its Composites.Woodhead Publishing2019
    [Google Scholar]
  31. SantosJ. Trujillo-CayadoL.A. AlcaideM.Á. AlfaroM.C. Impact of microfluidization on the emulsifying properties of zein-based emulsions: Influence of diutan gum concentration.Materials20211413369510.3390/ma14133695 34279265
    [Google Scholar]
  32. ZarembaD. BlonskiS. KorczykP.M. Concentration on demand: A microfluidic system for precise adjustment of the content of single droplets.Chem. Eng. J.202243013293510.1016/j.cej.2021.132935
    [Google Scholar]
  33. VladisavljevićG.T. Preparation of microemulsions and nanoemulsions by membrane emulsification.Colloids Surf. A Physicochem. Eng. Asp.201957912370910.1016/j.colsurfa.2019.123709
    [Google Scholar]
  34. AlliodO. ValourJ.P. UrbaniakS. FessiH. DupinD. CharcossetC. Preparation of oil-in-water nanoemulsions at large-scale using premix membrane emulsification and Shirasu Porous Glass (SPG) membranes.Colloids Surf. A Physicochem. Eng. Asp.2018557768410.1016/j.colsurfa.2018.04.045
    [Google Scholar]
  35. Gómez-EstacaJ. BalaguerM.P. GavaraR. Hernandez-MunozP. Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin.Food Hydrocoll.2012281829110.1016/j.foodhyd.2011.11.013
    [Google Scholar]
  36. SongF. ChenR. WangG. FanJ. NiuH. Coalescence and break-up behaviors of nanodroplets under AC electric field.Molecules2023287306410.3390/molecules28073064 37049826
    [Google Scholar]
  37. HåkanssonA. Emulsion formation by homogenization: Current understanding and future perspectives.Annu. Rev. Food Sci. Technol.201910123925810.1146/annurev‑food‑032818‑121501 30908953
    [Google Scholar]
  38. KaltsaO. GatsiI. YanniotisS. MandalaI. Influence of ultrasonication parameters on physical characteristics of olive oil model emulsions containing xanthan.Food Bioprocess Technol.2014772038204910.1007/s11947‑014‑1266‑1
    [Google Scholar]
  39. SarheedO. DibiM. RameshK.V.R.N.S. Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template.Pharmaceutics20201212122310.3390/pharmaceutics12121223 33348692
    [Google Scholar]
  40. AlgahtaniM.S. AhmadM.Z. AhmadJ. Investigation of factors influencing formation of nanoemulsion by spontaneous emulsification: Impact on droplet size, polydispersity index, and stability.Bioengineering20229838410.3390/bioengineering9080384 36004909
    [Google Scholar]
  41. ChuacharoenT. PrasongsukS. SabliovC.M. Effect of surfactant concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial utilization.Molecules20192415274410.3390/molecules24152744 31362362
    [Google Scholar]
  42. HechtL.L. WagnerC. LandfesterK. SchuchmannH.P. Surfactant concentration regime in miniemulsion polymerization for the formation of MMA nanodroplets by high-pressure homogenization.Langmuir20112762279228510.1021/la104480s 21314152
    [Google Scholar]
  43. YangJ. GuZ. ChengL. LiZ. LiC. HongY. Effect of temperature, pH, and ionic strength on the structure and physical stability of double emulsions prepared with starch.Lebensm. Wiss. Technol.202114111108610.1016/j.lwt.2021.111086
    [Google Scholar]
  44. ZapolskiR. MusiałW. The response surface methodology for assessment of HLB values of mixtures of non-ionic surfactants using parameters from their π-A isotherms.Molecules20242910235110.3390/molecules29102351 38792213
    [Google Scholar]
  45. YamashitaY. SakamotoK. OhshimaH. Hydrophilic–Lipophilic Balance (HLB): Classical indexation and novel indexation of surfactant.Encyclopedia of Biocolloid and Biointerface Science 2V Set.Wiley2016570574
    [Google Scholar]
  46. KumarG.P. RajeshwarraoP. Nonionic surfactant vesicular systems for effective drug delivery: An overview.Acta Pharm. Sin. B20111420821910.1016/j.apsb.2011.09.002
    [Google Scholar]
  47. TosiM.M. RamosA.P. EspostoB.S. JafariS.M. Dynamic light scattering (DLS) of nanoencapsulated food ingredients.Characterization of Nanoencapsulated Food Ingredients.Academic Press202019121110.1016/B978‑0‑12‑815667‑4.00006‑7
    [Google Scholar]
  48. Martínez-MoroM. Di SilvioD. MoyaS.E. Fluorescence correlation spectroscopy as a tool for the study of the intracellular dynamics and biological fate of protein corona.Biophys. Chem.201925310621810.1016/j.bpc.2019.106218 31325709
    [Google Scholar]
  49. SandriG. BonferoniM.C. FerrariF. RossiS. CaramellaC. The role of particle size in drug release and absorption.Particulate Product.Springer201432334110.1007/978‑3‑319‑00714‑4_11
    [Google Scholar]
  50. RadhaG.V. SastriK.T. BuradaS. RajkumarJ. A systematic review on self-micro emulsifying drug delivery systems: A potential strategy for drugs with poor oral bioavailability.Int J Appl Pharm2019111233310.22159/ijap.2019v11i1.29978
    [Google Scholar]
  51. TayebH.H. FelimbanR. AlmaghrabiS. HasaballahN. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks.Colloid Interface Sci. Commun.20214510053310.1016/j.colcom.2021.100533 34692429
    [Google Scholar]
  52. ZhangJ. FanY. SmithE. Experimental design for the optimization of lipid nanoparticles.J. Pharm. Sci.20099851813181910.1002/jps.21549 18781636
    [Google Scholar]
  53. Takechi-HarayaY. OhgitaT. DemizuY. SaitoH. IzutsuK-i. Sakai-KatoK. Current status and challenges of analytical methods for evaluation of size and surface modification of nanoparticle-based drug formulations.AAPS PharmSciTech202223515010.1208/s12249‑022‑02303‑y 35596094
    [Google Scholar]
  54. NémethZ. CsókaI. JazaniR.S. Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives.Pharmaceutics2022149179810.3390/pharmaceutics14091798 36145546
    [Google Scholar]
  55. ClogstonJ.D. PatriA.K. Zeta potential measurement.Methods Mol. Biol.2011697637010.1007/978‑1‑60327‑198‑1_6 21116954
    [Google Scholar]
  56. FriedlJ.D. JörgensenA.M. Le-VinhB. BraunD.E. TribusM. Bernkop-SchnürchA. Solidification of self-emulsifying drug delivery systems (SEDDS): Impact on storage stability of a therapeutic protein.J. Colloid Interface Sci.202158468469710.1016/j.jcis.2020.11.051 33234314
    [Google Scholar]
  57. UjilestariT. MartienR. AriyadiB. DonoN. ZuprizalZ. Self-nanoemulsifying drug delivery system (SNEDDS) of Amomum compactum essential oil: Design, formulation, and characterization.J. Appl. Pharm. Sci.201886142110.7324/JAPS.2018.8603
    [Google Scholar]
  58. InksonB.J. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for materials characterization.Materials Characterization Using Nondestructive Evaluation (NDE) Methods.Woodhead Publishing20161743
    [Google Scholar]
  59. BuhrE. SenftlebenN. KleinT. Characterization of nanoparticles by scanning electron microscopy in transmission mode.Meas. Sci. Technol.200920808402510.1088/0957‑0233/20/8/084025
    [Google Scholar]
  60. SchmiedF.P. BernhardtA. KleinS. Preparation of solid self-nanoemulsifying drug delivery systems (S-SNEDDS) by co-extrusion of liquid SNEDDS and polymeric carriers: A new and promising formulation approach to improve the solubility of poorly water-soluble drugs.Pharmaceuticals2022159113510.3390/ph15091135 36145356
    [Google Scholar]
  61. GrimmeS. HuenerbeinR. EhrlichS. On the importance of the dispersion energy for the thermodynamic stability of molecules.ChemPhysChem20111271258126110.1002/cphc.201100127 21445954
    [Google Scholar]
  62. WongA.W. DatlaA. Assay and stability testing.Sep. Sci. Technol.2005633535810.1016/S0149‑6395(05)80057‑1
    [Google Scholar]
  63. AggarwalG. HarikumarS.L. JaiswalP. SinghK. Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan.Int. J. Pharm. Investig.20144419520610.4103/2230‑973X.143123 25426441
    [Google Scholar]
  64. KaziM. Al-SwairiM. AhmadA. Evaluation of Self-Nanoemulsifying Drug Delivery Systems (SNEDDS) for poorly water-soluble talinolol: Preparation, In vitro and In vivo assessment.Front. Pharmacol.20191045910.3389/fphar.2019.00459 31118895
    [Google Scholar]
  65. PreetiS.S. SambhakarS. SaharanR. Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review.Saudi Pharm. J.2023311210187010.1016/j.jsps.2023.101870 38053738
    [Google Scholar]
  66. BerthelsenR. KlitgaardM. RadesT. MüllertzA. In vitro digestion models to evaluate lipid based drug delivery systems: Present status and current trends.Adv. Drug Deliv. Rev.2019142354910.1016/j.addr.2019.06.010 31265861
    [Google Scholar]
  67. MasungiC. MenschJ. Van DijckA. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates.Pharmazie2008633194199 18444507
    [Google Scholar]
  68. NekkantiV. WangZ. BetageriG.V. Pharmacokinetic evaluation of improved oral bioavailability of valsartan: Proliposomes versus self-nanoemulsifying drug delivery system.AAPS PharmSciTech201617485186210.1208/s12249‑015‑0388‑8 26381913
    [Google Scholar]
  69. IncecayirT. DemirM.E. In vivo relevance of a biphasic in vitro dissolution test for the immediate release tablet formulations of lamotrigine.Pharmaceutics20231510247410.3390/pharmaceutics15102474 37896234
    [Google Scholar]
  70. MudieD.M. SamieiN. MarshallD.J. AmidonG.E. BergströmC.A.S. Selection of in vivo predictive dissolution media using drug substance and physiological properties.AAPS J.20202223410.1208/s12248‑020‑0417‑8 31989343
    [Google Scholar]
  71. RathoreC. HemrajaniC. SharmaA.K. GuptaP.K. JhaN.K. AljabaliA.A.A. Self-nanoemulsifying drug delivery system (SNEDDS) mediated improved oral bioavailability of thymoquinone: Optimization, characterization, pharmacokinetic, and hepatotoxicity studies.Drug Deliv. Transl. Res.202313129230710.1007/s13346‑022‑01193‑8 35831776
    [Google Scholar]
  72. DressmanJ.B. ReppasC. In vitro– in vivo correlations for lipophilic, poorly water-soluble drugs.Eur. J. Pharm. Sci.200011S73S8010.1016/S0928‑0987(00)00181‑0 11033429
    [Google Scholar]
  73. AliH.H. HusseinA.A. Oral nanoemulsions of candesartan cilexetil: Formulation, characterization and in vitro drug release studies.AAPS Open201731410.1186/s41120‑017‑0016‑7
    [Google Scholar]
  74. ThomasN. HolmR. RadesT. MüllertzA. Characterising lipid lipolysis and its implication in lipid-based formulation development.AAPS J.201214486087110.1208/s12248‑012‑9398‑6 22956477
    [Google Scholar]
  75. TarverC.L. Molecular role of angiopoietin-like 4's carboxyterminal domain in pancreatic ductal adenocarcinoma progression. PhD Thesis, The University of Alabama in Huntsville2019
    [Google Scholar]
  76. AlskärL.C. KeeminkJ. JohannessonJ. PorterC.J.H. BergströmC.A.S. Impact of drug physicochemical properties on lipolysis-triggered drug supersaturation and precipitation from lipid-based formulations.Mol. Pharm.201815104733474410.1021/acs.molpharmaceut.8b00699 30142268
    [Google Scholar]
  77. KhanJ. HawleyA. RadesT. BoydB.J. In situ lipolysis and synchrotron small-angle X-ray scattering for the direct determination of the precipitation and solid-state form of a poorly water-soluble drug during digestion of a lipid-based formulation.J. Pharm. Sci.201610592631263910.1002/jps.24634 26359590
    [Google Scholar]
  78. ZöllerK. LaffleurF. ClausV. KnollP. ToD. Bernkop-SchnürchA. Development and in vivo evaluation of nanoemulsions for oral delivery of low molecular weight heparin.J. Drug Deliv. Sci. Technol.20238610468610.1016/j.jddst.2023.104686
    [Google Scholar]
  79. MustherH. Olivares-MoralesA. HatleyO.J. LiuB. Rostami HodjeganA. Animal versus human oral drug bioavailability: Do they correlate?Eur. J. Pharm. Sci.20145710028029110.1016/j.ejps.2013.08.018 23988844
    [Google Scholar]
  80. SunD. KimS. KareliaD. DengY. JiangC. LüJ. 2-Deoxyglucose and hydroxychloroquine HPLC-MS-MS analytical methods and pharmacokinetic interactions after oral co-administration in male rats.Research square202310.21203/rs.3.rs‑2675386/v1
    [Google Scholar]
  81. PerlmanM. MurdandeS. GumkowskiM. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib.Int. J. Pharm.20083511-2152210.1016/j.ijpharm.2007.09.015 18024021
    [Google Scholar]
  82. LaxmiM. BhardwajA. MehtaS. MehtaA. Development and characterization of nanoemulsion as carrier for the enhancement of bioavailability of artemether.Artif. Cells Nanomed. Biotechnol.201543533434410.3109/21691401.2014.887018 24641773
    [Google Scholar]
  83. YenC.C. ChenY.C. WuM.T. WangC.C. WuY.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide.Int. J. Nanomedicine20181366968010.2147/IJN.S154824 29440893
    [Google Scholar]
  84. WangC. WangM. ChenP. WangJ. LeY. Dasatinib nanoemulsion and nanocrystal for enhanced oral drug delivery.Pharmaceutics202214119710.3390/pharmaceutics14010197 35057093
    [Google Scholar]
  85. LinP.Y. ChenK.H. MiaoY.B. Phase‐changeable nanoemulsions for oral delivery of a therapeutic peptide: Toward targeting the pancreas for antidiabetic treatments using lymphatic transport.Adv. Funct. Mater.20192913180901510.1002/adfm.201809015
    [Google Scholar]
  86. YeJ.Y. ChenZ.Y. HuangC.L. A non-lipolysis nanoemulsion improved oral bioavailability by reducing the first-pass metabolism of raloxifene, and related absorption mechanisms being studied.Int. J. Nanomedicine2020156503651810.2147/IJN.S259993 32922013
    [Google Scholar]
  87. PiJ. WangJ. FengX. The flavonoid components of Scutellaria baicalensis: Biopharmaceutical properties and their improvement using nanoformulation techniques.Curr. Top. Med. Chem.2023231172910.2174/1568026623666221128144258 36443977
    [Google Scholar]
  88. HuaS. Advances in oral drug delivery for regional targeting in the gastrointestinal tract: Influence of physiological, pathophysiological and pharmaceutical factors.Front. Pharmacol.20201152410.3389/fphar.2020.00524
    [Google Scholar]
  89. ThilakarathnaS. RupasingheH. Flavonoid bioavailability and attempts for bioavailability enhancement.Nutrients2013593367338710.3390/nu5093367 23989753
    [Google Scholar]
  90. DongD. QuanE. YuanX. XieQ. LiZ. Sodium oleate-based nanoemulsion enhances oral absorption of chrysin through inhibition of UGT-mediated metabolism.Mol. Pharm.201614910.1021/acs.molpharmaceut.6b00851
    [Google Scholar]
  91. XiaF. ChenZ. ZhuQ. Gastrointestinal lipolysis and trans-epithelial transport of SMEDDS via oral route.Acta Pharm. Sin. B20211141010102010.1016/j.apsb.2021.03.006 33996413
    [Google Scholar]
  92. ZhengB. McClementsD.J. Formulation of more efficacious curcumin delivery systems using colloid science: Enhanced solubility, stability, and bioavailability.Molecules20202512279110.3390/molecules25122791 32560351
    [Google Scholar]
  93. MetryM. PolliJ.E. Evaluation of excipient risk in BCS class I and III biowaivers.AAPS J.20222412010.1208/s12248‑021‑00670‑1 34988701
    [Google Scholar]
  94. AnnisaR. MutiahR. YuwonoM. HendradiE. Nanotechnology approach-self nanoemulsifying drug delivery system (SNEDDS).Int J Appl Pharm2023154121910.22159/ijap.2023v15i4.47644
    [Google Scholar]
  95. MahajanN. MujtabaM.A. FuleR. ThakreS. AkhtarM.S. AlavudeenS.S. Self-emulsifying drug delivery system for enhanced oral delivery of tenofovir: Formulation, physicochemical characterization, and bioavailability assessment.ACS Omega2024978139815010.1021/acsomega.3c08565 38405505
    [Google Scholar]
  96. AnuarN. SabriA.H. EffendiT.J.B. HamidK.A.J.H. Development and characterisation of ibuprofen-loaded nanoemulsion with enhanced oral bioavailability.Heliyon202067e0457010.1016/j.heliyon.2020.e04570 32775730
    [Google Scholar]
  97. SantosD.S. MoraisJ.A.V. VanderleiÍ.A. Oral delivery of fish oil in oil-in-water nanoemulsion: Development, colloidal stability and modulatory effect on in vivo inflammatory induction in mice.Biomed. Pharmacother.202113311098010.1016/j.biopha.2020.110980 33249282
    [Google Scholar]
  98. LiuW. WangJ. ZhangC. BaoZ. WuL.J.O.D. Curcumin nanoemulsions inhibit oral squamous cell carcinoma cell proliferation by PI3K/Akt/mTOR suppression and miR‐199a upregulation: A preliminary study.Oral Dis.20232983183319210.1111/odi.14271 35689522
    [Google Scholar]
  99. MaruS. VermaJ. WilenC-E. RosenholmJ.M. Attenuation of celecoxib cardiac toxicity using Poly(δ-decalactone) based nanoemulsion via oral route.Eur. J. Pharm. Sci.202319010658510.1016/j.ejps.2023.106585 37717666
    [Google Scholar]
  100. ZengF. WangD. TianY. Nanoemulsion for improving the oral bioavailability of hesperetin: Formulation optimization and absorption mechanism.J. Pharm. Sci.202111062555256110.1016/j.xphs.2021.02.030 33652015
    [Google Scholar]
  101. ChenY. WangJ. XuJ. Fabrication of a polysaccharide-protein/protein complex stabilized oral nanoemulsion to facilitate the therapeutic effects of 1, 8-cineole on atherosclerosis.ACS Nano202317109090910910.1021/acsnano.2c12230 37172004
    [Google Scholar]
  102. ZewailM.B. El-GizawyS.A. AsaadG.F. ShabanaM.E. Chitosan coated clove oil-based nanoemulsion: An attractive option for oral delivery of leflunomide in rheumatoid arthritis.Int. J. Pharm.202364312322410.1016/j.ijpharm.2023.123224 37451327
    [Google Scholar]
  103. WilsonR.J. LiY. YangG. ZhaoC.X. Nanoemulsions for drug delivery.Particuology202264859710.1016/j.partic.2021.05.009
    [Google Scholar]
  104. Gawin-MikołajewiczA. NartowskiK.P. DybaA.J. GołkowskaA.M. MalecK. KarolewiczB. Ophthalmic nanoemulsions: From composition to technological processes and quality control.Mol. Pharm.202118103719374010.1021/acs.molpharmaceut.1c00650 34533317
    [Google Scholar]
  105. MushtaqA. WaniS.M. MalikA.R. Recent insights into nanoemulsions: Their preparation, properties and applications.Food Chem. X20231810068410.1016/j.fochx.2023.100684 37131847
    [Google Scholar]
  106. LindforsL. SkantzeP. SkantzeU. RasmussonM. ZackrissonA. OlssonU. Amorphous drug nanosuspensions. 1. Inhibition of Ostwald ripening.Langmuir200622390691010.1021/la0523661 16430247
    [Google Scholar]
  107. HelmyS.A. El-MorsiR.M. HelmyS.A.M. El-MasryS.M. Towards novel nano-based vaccine platforms for SARS-CoV-2 and its variants of concern: Advances, challenges and limitations.J. Drug Deliv. Sci. Technol.20227610376210.1016/j.jddst.2022.103762 36097606
    [Google Scholar]
  108. KarnwalA. ShrivastavaS. Al-TawahaA.R.M.S. Microbial biosurfactant as an alternate to chemical surfactants for application in cosmetics industries in personal and skin care products: A critical review.BioMed Res. Int.202320231237522310.1155/2023/2375223 37090190
    [Google Scholar]
  109. PreetiS.S. SambhakarS. MalikR. Nanoemulsion: An emerging novel technology for improving the bioavailability of drugs.Scientifica (Cairo)2023202312510.1155/2023/6640103 37928749
    [Google Scholar]
  110. ÖzogulY. KarsliG.T. DurmuşM. Recent developments in industrial applications of nanoemulsions.Adv. Colloid Interface Sci.202230410268510.1016/j.cis.2022.102685 35504214
    [Google Scholar]
  111. KumarA. SinghA.K. ChaudharyR.P. Unraveling the multifaceted role of nanoemulsions as drug delivery system for the management of cancer.J. Drug Deliv. Sci. Technol.202410010605610.1016/j.jddst.2024.106056
    [Google Scholar]
  112. HadžiabdićJ. DžanaO. ElezovicA. VranicE. RahicO. Preparation of nanoemulsions by high-energy and lowenergy emulsification methods.CMBEBIH 2017 IFMBE Proceedings Springer.201731722
    [Google Scholar]
  113. SoniM. YadavA. MauryaA. DasS. DubeyN.K. DwivedyA.K. Advances in designing essential oil nanoformulations: An integrative approach to mathematical modeling with potential application in food preservation.Foods20231221401710.3390/foods12214017 37959136
    [Google Scholar]
  114. BegumJ.P.S. SahuP. VinodeR. Antimicrobial nanoemulsion: A futuristic approach in antibacterial drug delivery system.J. Saudi Chem. Soc.202428410189610.1016/j.jscs.2024.101896
    [Google Scholar]
  115. MallJ. NaseemN. HaiderM.F. RahmanM.A. KhanS. SiddiquiS.N. Nanostructured lipid carriers as a drug delivery system: A comprehensive review with therapeutic applications.Intell Pharmacy202410.1016/j.ipha.2024.09.005
    [Google Scholar]
  116. WaghuleT. DabholkarN. GorantlaS. RapalliV.K. SahaR.N. SinghviG. Quality by design (QbD) in the formulation and optimization of liquid crystalline nanoparticles (LCNPs): A risk based industrial approach.Biomed. Pharmacother.202114111194010.1016/j.biopha.2021.111940 34328089
    [Google Scholar]
  117. Rodriguez-LoyaJ. LermaM. Gardea-TorresdeyJ.L. Dynamic light scattering and its application to control nanoparticle aggregation in colloidal systems: A review.Micromachines20231512410.3390/mi15010024 38258143
    [Google Scholar]
  118. LiuY. LiangY. YuhongJ. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs.Drug Des. Devel. Ther.2024181469149510.2147/DDDT.S447496 38707615
    [Google Scholar]
  119. Al-HussaniyH.A. AlmajidiY.Q. OraibiA.I. AlkarawiA.H. Nanoemulsions as medicinal components in insoluble medicines.Pharmacia202370353754710.3897/pharmacia.70.e107131
    [Google Scholar]
  120. AmetaR.K. SoniK. BhattaraiA. Recent advances in improving the bioavailability of hydrophobic/lipophilic drugs and their delivery via self-emulsifying formulations.Coll Interfaces2023711610.3390/colloids7010016
    [Google Scholar]
  121. PatelR.B. PatelM.R. ThakoreS.D. PatelB.G. Nanoemulsion as a valuable nanostructure platform for pharmaceutical drug delivery.Nano- and Microscale Drug Delivery Systems.Elsevier2017321341
    [Google Scholar]
  122. ChimeS.A. KenechukwuF.C. AttamaA.A. Nanoemulsions: Advances in formulation, characterization and applications in drug delivery. In: Application of Nanotechnology in Drug Delivery. IntechOpen2014
    [Google Scholar]
  123. AzmiN.A.N. ElgharbawyA.A.M. MotlaghS.R. SamsudinN. SallehH.M. Nanoemulsions: Factory for food, pharmaceutical and cosmetics.Processes20197961710.3390/pr7090617
    [Google Scholar]
  124. LoftsA. Abu-HijlehF. RiggN. MishraR.K. HoareT. Using the intranasal route to administer drugs to treat neurological and psychiatric illnesses: Rationale, successes, and future needs.CNS Drugs202236773977010.1007/s40263‑022‑00930‑4 35759210
    [Google Scholar]
  125. HanH.S. KooS.Y. ChoiK.Y. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging.Bioact. Mater.20221418220510.1016/j.bioactmat.2021.11.027 35310344
    [Google Scholar]
  126. McClementsD.J. Nanoemulsion-based oral delivery systems for lipophilic bioactive components: Nutraceuticals and pharmaceuticals.Ther. Deliv.20134784185710.4155/tde.13.46 23883127
    [Google Scholar]
  127. DuarteJ. SharmaA. SharifiE. Topical delivery of nanoemulsions for skin cancer treatment.Appl. Mater. Today20233510200110.1016/j.apmt.2023.102001
    [Google Scholar]
  128. MárquezP.G. WolmanF.J. GlisoniR.J. Nanotechnology platforms for antigen and immunostimulant delivery in vaccine formulations.Nano Trends2024810005810.1016/j.nwnano.2024.100058
    [Google Scholar]
  129. DembergT. Robert-GuroffM. Mucosal immunity and protection against HIV/SIV infection: Strategies and challenges for vaccine design.Int. Rev. Immunol.2009281-2204810.1080/08830180802684331 19241252
    [Google Scholar]
  130. LovelynC. AttamaA. Current state of nanoemulsions in drug delivery.J. Biomater. Nanobiotechnol.20112562663910.4236/jbnb.2011.225075
    [Google Scholar]
  131. KhalilRM BashaM KamelR Nanoemulsions as parenteral drug delivery systems for a new anticancer benzimidazole derivative: Formulation and in vitro: Evaluation. Egyp Pharmaceutical J2015143
    [Google Scholar]
  132. Grassin-DelyleS. BuenestadoA. NalineE. Intranasal drug delivery: An efficient and non-invasive route for systemic administration.Pharmacol. Ther.2012134336637910.1016/j.pharmthera.2012.03.003 22465159
    [Google Scholar]
  133. JusrilN.A. Abu BakarS.I. KhalilK.A. Md SaadW.M. WenN.K. AdenanM.I. Development and optimization of nanoemulsion] from ethanolic extract of Centella asiatica (NanoSECA) using] d-optimal mixture design to improve blood-brain barrier permeability.Evid. Based Complement. Alternat. Med.2022202211810.1155/2022/3483511 35295926
    [Google Scholar]
  134. NamH.Y. ParkJ.H. KimK. KwonI.C. JeongS.Y. Lipid-based emulsion system as non-viral gene carriers.Arch. Pharm. Res.200932563964610.1007/s12272‑009‑1500‑y 19471876
    [Google Scholar]
  135. ParvinN. JooS.W. MandalT.K. Enhancing vaccine efficacy and stability: A review of the utilization of nanoparticles in mRNA vaccines.Biomolecules2024148103610.3390/biom14081036 39199422
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128370159250401012611
Loading
/content/journals/cpd/10.2174/0113816128370159250401012611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test