Skip to content
2000
Volume 31, Issue 36
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Chronic lymphocytic leukemia (CLL) constitutes a heterogeneous hematological malignancy, often correlated with disruptions in various signaling pathways, chromosomal deletions, and gene mutations. A comprehensive grasp of CLL pathogenesis and its associated risk factors remains vital for the development of more efficacious treatment strategies. Although non-coding RNAs (ncRNAs) do not encode proteins, they possess substantial regulatory influence over target genes. These ncRNAs govern a multitude of target genes implicated in the pathogenesis of CLL. Furthermore, some ncRNAs serve as prognostic markers in CLL and might contribute to overcoming chemotherapy resistance. This review determines the association between ncRNAs and the molecular mechanisms driving the onset and advancement of CLL, with particular emphasis on the roles of these ncRNAs in modulating signaling pathways, encompassing NF-κB/PI3K-AKT/TNF and P53 in CLL. It also underscores their relevance as significant biomarkers and their potential as therapeutic targets in clinical CLL settings.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128361848250401200001
2025-04-25
2025-09-14
Loading full text...

Full text loading...

References

  1. HallekM. Al-SawafO. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures.Am. J. Hematol.202196121679170510.1002/ajh.26367 34625994
    [Google Scholar]
  2. ParryE.M. LeshchinerI. GuièzeR. Evolutionary history of transformation from chronic lymphocytic leukemia to Richter syndrome.Nat. Med.202329115816910.1038/s41591‑022‑02113‑6 36624313
    [Google Scholar]
  3. HampelP.J. ParikhS.A. Chronic lymphocytic leukemia treatment algorithm 2022.Blood Cancer J.2022121116110.1038/s41408‑022‑00756‑9 36446777
    [Google Scholar]
  4. BurgerJ.A. Treatment of chronic lymphocytic leukemia.N. Engl. J. Med.2020383546047310.1056/NEJMra1908213 32726532
    [Google Scholar]
  5. SlackF.J. ChinnaiyanA.M. The Role of Non-coding RNAs in oncology.Cell201917951033105510.1016/j.cell.2019.10.017 31730848
    [Google Scholar]
  6. LinguaM.F. CarràG. MaffeoB. MorottiA. Non-coding RNAs: The “dark side matter” of the CLL universe.Pharmaceuticals (Basel)202114216810.3390/ph14020168 33669945
    [Google Scholar]
  7. O’BrienJ. HayderH. ZayedY. PengC. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol. (Lausanne)2018940210.3389/fendo.2018.00402 30123182
    [Google Scholar]
  8. AgarwalV. BellG.W. NamJ.W. BartelD.P. Predicting effective microRNA target sites in mammalian mRNAs.eLife20154e0500510.7554/eLife.05005 26267216
    [Google Scholar]
  9. AllesJ. FehlmannT. FischerU. An estimate of the total number of true human miRNAs.Nucleic Acids Res.20194773353336410.1093/nar/gkz097 30820533
    [Google Scholar]
  10. MirzaeiH. FathullahzadehS. KhanmohammadiR. State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia.J. Cell. Physiol.2018233288890010.1002/jcp.25799 28084621
    [Google Scholar]
  11. ZhouH. HaoX. ZhangP. HeS. Noncoding RNA mutations in cancer.Wiley Interdiscip. Rev. RNA2023146e181210.1002/wrna.1812 37544928
    [Google Scholar]
  12. SbirkovY. VergovB. MehterovN. SarafianV. miRNAs in Lymphocytic Leukaemias—The miRror of Drug Resistance.Int. J. Mol. Sci.2022239465710.3390/ijms23094657 35563051
    [Google Scholar]
  13. AutoreF. RamassoneA. StirparoL. Role of microRNAs in Chronic Lymphocytic Leukemia.Int. J. Mol. Sci.202324151247110.3390/ijms241512471 37569845
    [Google Scholar]
  14. JurjA. PopL. PetrushevB. Exosome-carried microRNA-based signature as a cellular trigger for the evolution of chronic lymphocytic leukemia into Richter syndrome.Crit. Rev. Clin. Lab. Sci.201855750151510.1080/10408363.2018.1499707 30238808
    [Google Scholar]
  15. TangX. RenH. GuoM. QianJ. YangY. GuC. Review on circular RNAs and new insights into their roles in cancer.Comput. Struct. Biotechnol. J.20211991092810.1016/j.csbj.2021.01.018 33598105
    [Google Scholar]
  16. ZhouX. ZhanL. HuangK. WangX. The functions and clinical significance of circRNAs in hematological malignancies.J. Hematol. Oncol.202013113810.1186/s13045‑020‑00976‑1 33069241
    [Google Scholar]
  17. MemczakS. JensM. ElefsiniotiA. Circular RNAs are a large class of animal RNAs with regulatory potency.Nature2013495744133333810.1038/nature11928 23446348
    [Google Scholar]
  18. GharibE. NasrabadiP.N. RobichaudG.A. Circular RNA expression signatures provide promising diagnostic and therapeutic biomarkers for chronic lymphocytic leukemia.Cancers (Basel)2023155155410.3390/cancers15051554 36900344
    [Google Scholar]
  19. XiaL. WuL. BaoJ. Circular RNA circ-CBFB promotes proliferation and inhibits apoptosis in chronic lymphocytic leukemia through regulating miR-607/FZD3/Wnt/β-catenin pathway.Biochem. Biophys. Res. Commun.2018503138539010.1016/j.bbrc.2018.06.045 29902450
    [Google Scholar]
  20. WuZ. SunH. LiuW. Circ-RPL15: A plasma circular RNA as novel oncogenic driver to promote progression of chronic lymphocytic leukemia.Leukemia202034391992310.1038/s41375‑019‑0594‑6 31611623
    [Google Scholar]
  21. SunQ. HaoQ. PrasanthK.V. Nuclear long noncoding RNAs: Key regulators of gene expression.Trends Genet.201834214215710.1016/j.tig.2017.11.005 29249332
    [Google Scholar]
  22. LiuY. SunP. ZhaoY. LiuB. The role of long non‐coding RNAs and downstream signaling pathways in leukemia progression.Hematol. Oncol.2021391274010.1002/hon.2776 32621547
    [Google Scholar]
  23. FerrerG. MontserratE. Critical molecular pathways in CLL therapy.Mol. Med.2018241910.1186/s10020‑018‑0001‑1 30134797
    [Google Scholar]
  24. InghamM. SchwartzG.K. Cell-cycle therapeutics come of age.J. Clin. Oncol.201735252949295910.1200/JCO.2016.69.0032 28580868
    [Google Scholar]
  25. HutterK. RülickeT. DrachM. AndersenL. VillungerA. HerzogS. Differential roles of miR‐15a/16‐1 and miR‐497/195 clusters in immune cell development and homeostasis.FEBS J.202128851533154510.1111/febs.15493 32705746
    [Google Scholar]
  26. PekarskyY. CroceC.M. Role of miR-15/16 in CLL.Cell Death Differ.201522161110.1038/cdd.2014.87 24971479
    [Google Scholar]
  27. GardingA. BhattacharyaN. ClausR. Epigenetic upregulation of lncRNAs at 13q14.3 in leukemia is linked to the In Cis downregulation of a gene cluster that targets NF-kB.PLoS Genet.201394e100337310.1371/journal.pgen.1003373 23593011
    [Google Scholar]
  28. HuarteM. GuttmanM. FeldserD. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response.Cell2010142340941910.1016/j.cell.2010.06.040 20673990
    [Google Scholar]
  29. CimminoA. CalinG.A. FabbriM. miR-15 and miR-16 induce apoptosis by targeting BCL2.Proc. Natl. Acad. Sci. USA200510239139441394910.1073/pnas.0506654102 16166262
    [Google Scholar]
  30. KleinU. LiaM. CrespoM. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia.Cancer Cell2010171284010.1016/j.ccr.2009.11.019 20060366
    [Google Scholar]
  31. AshoftehN. AminiR. MolaeeN. KaramiH. BaazmM. MiRNA-mediated knock-down of Bcl-2 and Mcl-1 increases fludarabine-sensitivity in CLL-CII cells.Asian Pac. J. Cancer Prev.20212272191219810.31557/APJCP.2021.22.7.2191 34319043
    [Google Scholar]
  32. LiC. LiY. LuY. miR-26 family and its target genes in tumorigenesis and development.Crit. Rev. Oncol. Hematol.202115710312410.1016/j.critrevonc.2020.103124 33254041
    [Google Scholar]
  33. LiJ. SunC.K. In vitro analysis of microRNA-26a in chronic lymphocytic leukemia cells.Int. J. Mol. Med.20184263364337010.3892/ijmm.2018.3925 30320374
    [Google Scholar]
  34. D’AbundoL. CallegariE. BresinA. Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model.Oncogene201736476617662610.1038/onc.2017.269 28783166
    [Google Scholar]
  35. CalinG.A. SevignaniC. DumitruC.D. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc. Natl. Acad. Sci. USA200410192999300410.1073/pnas.0307323101 14973191
    [Google Scholar]
  36. MissoG. Di MartinoM.T. De RosaG. Mir-34: a new weapon against cancer?Mol. Ther. Nucleic Acids201439e194 25247240
    [Google Scholar]
  37. BlumeC.J. Hotz-WagenblattA. HülleinJ. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia.Leukemia201529102015202310.1038/leu.2015.119 25971364
    [Google Scholar]
  38. SorrentinoA. LiuC.G. AddarioA. PeschleC. ScambiaG. FerliniC. Role of microRNAs in drug-resistant ovarian cancer cells.Gynecol. Oncol.2008111347848610.1016/j.ygyno.2008.08.017 18823650
    [Google Scholar]
  39. KovalevaV. MoraR. ParkY.J. miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells.Cancer Res.20127271763177210.1158/0008‑5472.CAN‑11‑3671 22350415
    [Google Scholar]
  40. SunX. SitA. FeinbergM.W. Role of miR-181 family in regulating vascular inflammation and immunity.Trends Cardiovasc. Med.201424310511210.1016/j.tcm.2013.09.002 24183793
    [Google Scholar]
  41. MrazM. KippsT.J. MicroRNAs and B cell receptor signaling in chronic lymphocytic leukemia.Leuk. Lymphoma20135481836183910.3109/10428194.2013.796055 23597135
    [Google Scholar]
  42. MrazM. MrazM. PospisilovaS. MalinovaK. SlapakI. MayerJ. MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes.Leuk. Lymphoma200950350650910.1080/10428190902763517 19347736
    [Google Scholar]
  43. RamkissoonS.H. MainwaringL.A. OgasawaraY. Hematopoietic-specific microRNA expression in human cells.Leuk. Res.200630564364710.1016/j.leukres.2005.09.001 16226311
    [Google Scholar]
  44. ZhuW. ShanX. WangT. ShuY. LiuP. miR‐181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines.Int. J. Cancer2010127112520252910.1002/ijc.25260 20162574
    [Google Scholar]
  45. FathullahzadehS. MirzaeiH. HonardoostM.A. SahebkarA. SalehiM. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia.Cancer Gene Ther.2016231032733210.1038/cgt.2016.34 27659777
    [Google Scholar]
  46. BergV. RuschM. VartakN. miRs-138 and -424 control palmitoylation-dependent CD95-mediated cell death by targeting acyl protein thioesterases 1 and 2 in CLL.Blood2015125192948295710.1182/blood‑2014‑07‑586511 25670628
    [Google Scholar]
  47. LiS. ChenJ. FanY. CircZNF91 promotes the malignant phenotype of chronic lymphocytic leukemia cells by targeting the miR‐1283/WEE1 axis.BioMed Res. Int.202220221285539410.1155/2022/2855394 35572733
    [Google Scholar]
  48. MaC. ShiX. ZhuQ. The growth arrest-specific transcript 5 (GAS5): a pivotal tumor suppressor long noncoding RNA in human cancers.Tumour Biol.20163721437144410.1007/s13277‑015‑4521‑9 26634743
    [Google Scholar]
  49. WilliamsG.T. Mourtada-MaarabouniM. FarzanehF. A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes.Biochem. Soc. Trans.201139248248610.1042/BST0390482 21428924
    [Google Scholar]
  50. JingZ. GaoL. WangH. ChenJ. NieB. HongQ. Long non-coding RNA GAS5 regulates human B lymphocytic leukaemia tumourigenesis and metastasis by sponging miR-222.Cancer Biomark.201926338539210.3233/cbm‑190246 31594210
    [Google Scholar]
  51. FrenquelliM. MuzioM. ScielzoC. MicroRNA and proliferation control in chronic lymphocytic leukemia: Functional relationship between miR-221/222 cluster and p27.Blood2010115193949395910.1182/blood‑2009‑11‑254656 20203269
    [Google Scholar]
  52. PickardM. WilliamsG. Molecular and cellular mechanisms of action of tumour suppressor GAS5 LncRNA.Genes (Basel)20156348449910.3390/genes6030484 26198250
    [Google Scholar]
  53. MazarJ. RosadoA. ShelleyJ. MarchicaJ. WestmorelandT.J. The long non-coding RNA GAS5 differentially regulates cell cycle arrest and apoptosis through activation of BRCA1 and p53 in human neuroblastoma.Oncotarget2017846589660710.18632/oncotarget.14244 28035057
    [Google Scholar]
  54. WangL.Q. WongK.Y. LiZ.H. ChimC.S. Epigenetic silencing of tumor suppressor long non-coding RNA BM742401 in chronic lymphocytic leukemia.Oncotarget2016750824008241010.18632/oncotarget.12252 27689399
    [Google Scholar]
  55. YuY. YangJ. LiQ. XuB. LianY. MiaoL. LINC 00152: A pivotal oncogenic long non‐coding RNA in human cancers.Cell Prolif.2017504e1234910.1111/cpr.12349 28464433
    [Google Scholar]
  56. MatisS. RossiM. BrondoloL. LINC00152 expression in normal and chronic lymphocytic leukemia B cells.Hematol. Oncol.2022401414810.1002/hon.2938 34679195
    [Google Scholar]
  57. MansouriL. PapakonstantinouN. NtoufaS. StamatopoulosK. RosenquistR. NF-κB activation in chronic lymphocytic leukemia: A point of convergence of external triggers and intrinsic lesions.Semin. Cancer Biol.201639404810.1016/j.semcancer.2016.07.005 27491692
    [Google Scholar]
  58. OeckinghausA. HaydenM.S. GhoshS. Crosstalk in NF-κB signaling pathways.Nat. Immunol.201112869570810.1038/ni.2065 21772278
    [Google Scholar]
  59. GaspariniC. CeleghiniC. MonastaL. ZauliG. NF-κB pathways in hematological malignancies.Cell. Mol. Life Sci.201471112083210210.1007/s00018‑013‑1545‑4 24419302
    [Google Scholar]
  60. RushworthS.A. MurrayM.Y. BarreraL.N. HeasmanS.A. ZaitsevaL. MacewanD.J. Understanding the role of miRNA in regulating NF-κB in blood cancer.Am. J. Cancer Res.2012216574 22206046
    [Google Scholar]
  61. WangL.Q. KwongY.L. KhoC.S.B. Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia - implications on constitutive activation of NFκB pathway.Mol. Cancer201312117310.1186/1476‑4598‑12‑173 24373626
    [Google Scholar]
  62. PalamarchukA. EfanovA. NazaryanN. 13q14 deletions in CLL involve cooperating tumor suppressors.Blood2010115193916392210.1182/blood‑2009‑10‑249367 20071661
    [Google Scholar]
  63. HanB.W. FengD.D. LiZ.G. A set of miRNAs that involve in the pathways of drug resistance and leukemic stem-cell differentiation is associated with the risk of relapse and glucocorticoid response in childhood ALL.Hum. Mol. Genet.201120244903491510.1093/hmg/ddr428 21926415
    [Google Scholar]
  64. HoritaM. FarquharsonC. StephenL.A. The role of miR‐29 family in disease.J. Cell. Biochem.2021122769671510.1002/jcb.29896 33529442
    [Google Scholar]
  65. KollinerovaS. VassanelliS. ModrianskyM. The role of miR-29 family members in malignant hematopoiesis.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2014158448950110.5507/bp.2014.029 24993745
    [Google Scholar]
  66. SantanamU. ZanesiN. EfanovA. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression.Proc. Natl. Acad. Sci. USA201010727122101221510.1073/pnas.1007186107 20566844
    [Google Scholar]
  67. PekarskyY. SantanamU. CimminoA. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181.Cancer Res.20066624115901159310.1158/0008‑5472.CAN‑06‑3613 17178851
    [Google Scholar]
  68. VisoneR. RassentiL.Z. VeroneseA. Karyotype-specific microRNA signature in chronic lymphocytic leukemia.Blood2009114183872387910.1182/blood‑2009‑06‑229211 19717645
    [Google Scholar]
  69. WangL. ToomeyN.L. DiazL.A. Oncogenic IRFs provide a survival advantage for Epstein-Barr virus- or human T-cell leukemia virus type 1-transformed cells through induction of BIC expression.J. Virol.201185168328833710.1128/JVI.00570‑11 21680528
    [Google Scholar]
  70. CuiB. ChenL. ZhangS. MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia.Blood2014124454655410.1182/blood‑2014‑03‑559690 24914134
    [Google Scholar]
  71. Di MarcoM. VeschiS. LanutiP. Enhanced expression of miR-181b in B cells of CLL improves the anti-tumor cytotoxic T cell response.Cancers (Basel)202113225710.3390/cancers13020257 33445508
    [Google Scholar]
  72. GasicV. Karan-DjurasevicT. PavlovicD. ZukicB. PavlovicS. TosicN. Diagnostic and therapeutic implications of long non-coding RNAs in leukemia.Life (Basel)20221211177010.3390/life12111770 36362925
    [Google Scholar]
  73. DahlM. KristensenL.S. GrønbækK. Long non-coding RNAs guide the fine-tuning of gene regulation in B-cell development and malignancy.Int. J. Mol. Sci.2018199247510.3390/ijms19092475 30134619
    [Google Scholar]
  74. SteeleA.J. PrenticeA.G. HoffbrandA.V. P53-mediated apoptosis of CLL cells: Evidence for a transcription-independent mechanism.Blood200811293827383410.1182/blood‑2008‑05‑156380 18682598
    [Google Scholar]
  75. FabbriM. BottoniA. ShimizuM. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia.JAMA20113051596710.1001/jama.2010.1919 21205967
    [Google Scholar]
  76. HofbauerS.W. PiñónJ.D. BrachtlG. Modifying akt signaling in B-cell chronic lymphocytic leukemia cells.Cancer Res.201070187336734410.1158/0008‑5472.CAN‑09‑4411 20823161
    [Google Scholar]
  77. LiuJ. ChenG. FengL. Loss of p53 and altered miR15-a/16-1→MCL-1 pathway in CLL: Insights from TCL1-Tg:p53−/− mouse model and primary human leukemia cells.Leukemia201428111812810.1038/leu.2013.125 23608884
    [Google Scholar]
  78. DenebergS. KanduriM. AliD. MicroRNA-34b/c on chromosome 11q23 is aberrantly methylated in chronic lymphocytic leukemia.Epigenetics20149691091710.4161/epi.28603 24686393
    [Google Scholar]
  79. CernaK. OppeltJ. ChocholaV. MicroRNA miR-34a downregulates FOXP1 during DNA damage response to limit BCR signalling in chronic lymphocytic leukaemia B cells.Leukemia201933240341410.1038/s41375‑018‑0230‑x 30111844
    [Google Scholar]
  80. ZouZ.J. FanL. WangL. MiR-26a and miR-214 down-regulate expression of the PTEN gene in chronic lymphocytic leukemia, but not PTEN mutation or promoter methylation.Oncotarget2015621276128510.18632/oncotarget.2626 25361012
    [Google Scholar]
  81. CarràG. PanuzzoC. TortiD. Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: A strategy to overcome TP53 mutated/deleted clones.Oncotarget2017822355083552210.18632/oncotarget.16348 28418900
    [Google Scholar]
  82. XuD.M. KongY.L. WangL. EBV-miR-BHRF1-1 targets p53 Gene: Potential role in epstein-barr virus associated chronic lymphocytic leukemia.Cancer Res. Treat.202052249250410.4143/crt.2019.457 31671936
    [Google Scholar]
  83. Abo ElwafaR. Abd ElrahmanA. GhallabO. Long intergenic non-coding RNA-p21 is associated with poor prognosis in chronic lymphocytic leukemia.Clin. Transl. Oncol.2021231929910.1007/s12094‑020‑02398‑4 32468342
    [Google Scholar]
  84. ChenS. LiangH. YangH. LincRNa-p21: Function and mechanism in cancer.Med. Oncol.20173459810.1007/s12032‑017‑0959‑5 28425074
    [Google Scholar]
  85. SasakiY.T.F. IdeueT. SanoM. MituyamaT. HiroseT. MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles.Proc. Natl. Acad. Sci. USA200910682525253010.1073/pnas.0807899106 19188602
    [Google Scholar]
  86. RonchettiD. FavasuliV. MontiP. NEAT1 long isoform is highly expressed in chronic lymphocytic leukemia irrespectively of cytogenetic groups or clinical outcome.Noncoding RNA2020611110.3390/ncrna6010011 32182990
    [Google Scholar]
  87. AdriaensC. StandaertL. BarraJ. P53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity.Nat. Med.201622886186810.1038/nm.4135 27376578
    [Google Scholar]
  88. BertacchiniJ. HeidariN. MedianiL. Targeting PI3K/AKT/mTOR network for treatment of leukemia.Cell. Mol. Life Sci.201572122337234710.1007/s00018‑015‑1867‑5 25712020
    [Google Scholar]
  89. SuD. ZhouY. HuS. Role of GAB1/PI3K/AKT signaling high glucose-induced cardiomyocyte apoptosis.Biomed. Pharmacother.2017931197120410.1016/j.biopha.2017.07.063 28738535
    [Google Scholar]
  90. HuY. YuC. ChengL. Flavokawain C inhibits glucose metabolism and tumor angiogenesis in nasopharyngeal carcinoma by targeting the HSP90B1/STAT3/HK2 signaling axis.Cancer Cell Int.202424115810.1186/s12935‑024‑03314‑4 38711062
    [Google Scholar]
  91. HlozkovaK. HermanovaI. SafrhansovaL. PTEN/PI3K/Akt pathway alters sensitivity of T-cell acute lymphoblastic leukemia to l-asparaginase.Sci. Rep.2022121404310.1038/s41598‑022‑08049‑8 35260738
    [Google Scholar]
  92. HutterK. RülickeT. SzaboT.G. AndersenL. VillungerA. HerzogS. The miR-15a/16-1 and miR-15b/16-2 clusters regulate early B cell development by limiting IL-7 receptor expression.Front. Immunol.20221396791410.3389/fimmu.2022.967914 36110849
    [Google Scholar]
  93. PalaciosF. AbreuC. PrietoD. Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation.Leukemia201529111512510.1038/leu.2014.158 24825182
    [Google Scholar]
  94. JinH.Y. OdaH. LaiM. MicroRNA-17∼92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways.EMBO J.201332172377239110.1038/emboj.2013.178 23921550
    [Google Scholar]
  95. XiaoC. SrinivasanL. CaladoD.P. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes.Nat. Immunol.20089440541410.1038/ni1575 18327259
    [Google Scholar]
  96. BuscagliaL.E.B. LiY. Apoptosis and the target genes of microRNA-21.Chin. J. Cancer201130637138010.5732/cjc.30.0371 21627859
    [Google Scholar]
  97. FabbriM. PaoneA. CaloreF. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response.Proc. Natl. Acad. Sci. USA201210931E2110E211610.1073/pnas.1209414109 22753494
    [Google Scholar]
  98. SchmidV.K. KhadourA. AhmedN. B-cell antigen receptor expression and phosphatidylinositol 3-kinase signaling regulate genesis and maintenance of mouse chronic lymphocytic leukemia.Haematologica202210781796181410.3324/haematol.2021.279924 35021605
    [Google Scholar]
  99. KapoorI. BodoJ. HillB.T. AlmasanA. Cooperative miRNA-dependent PTEN regulation drives resistance to BTK inhibition in B-cell lymphoid malignancies.Cell Death Dis.20211211106110.1038/s41419‑021‑04353‑9 34750354
    [Google Scholar]
  100. BryantD. SmithL. Rogers-BroadwayK.R. Network analysis reveals a major role for 14q32 cluster miRNAs in determining transcriptional differences between IGHV-mutated and unmutated CLL.Leukemia20233771454146310.1038/s41375‑023‑01918‑9 37169950
    [Google Scholar]
  101. MrazM. ChenL. RassentiL.Z. miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1.Blood20141241849510.1182/blood‑2013‑09‑527234 24787006
    [Google Scholar]
  102. Rodríguez-VicenteA.E. QuwaiderD. BenitoR. MicroRNA-223 is a novel negative regulator of HSP90B1 in CLL.BMC Cancer201515123810.1186/s12885‑015‑1212‑2 25880332
    [Google Scholar]
  103. JanovskáP. BryjaV. Wnt signalling pathways in chronic lymphocytic leukaemia and B‐cell lymphomas.Br. J. Pharmacol.2017174244701471510.1111/bph.13949 28703283
    [Google Scholar]
  104. RassentiL.Z. BalattiV. GhiaE.M. MicroRNA dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia.Proc. Natl. Acad. Sci. USA201711440107311073610.1073/pnas.1708264114 28923920
    [Google Scholar]
  105. HutchinsonJ.N. EnsmingerA.W. ClemsonC.M. LynchC.R. LawrenceJ.B. ChessA. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains.BMC Genomics2007813910.1186/1471‑2164‑8‑39 17270048
    [Google Scholar]
  106. AhmadiA. KavianiS. YaghmaieM. Altered expression of MALAT1 lncRNA in chronic lymphocytic leukemia patients, correlation with cytogenetic findings.Blood Res.201853432032410.5045/br.2018.53.4.320 30588470
    [Google Scholar]
  107. TripathiV. ShenZ. ChakrabortyA. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB.PLoS Genet.201393e100336810.1371/journal.pgen.1003368 23555285
    [Google Scholar]
  108. WongK.Y. YimR.L.H. KwongY.L. Epigenetic inactivation of the MIR129-2 in hematological malignancies.J. Hematol. Oncol.2013611610.1186/1756‑8722‑6‑16 23406679
    [Google Scholar]
  109. MesarosO. VeresS. OnciulM. Dysregulated MicroRNAs in chronic lymphocytic leukemia.Cureus2024169e68770 39376808
    [Google Scholar]
  110. StamatopoulosB. Van DammeM. CrompotE. Opposite prognostic significance of cellular and serum circulating MicroRNA-150 in patients with chronic lymphocytic leukemia.Mol. Med.201521112313310.2119/molmed.2014.00214 25584781
    [Google Scholar]
  111. KouZ. MaoM. LiuH. CARD11 is a novel target of miR-181b that is upregulated in chronic lymphocytic leukemia.Biomarkers Med.202115962363510.2217/bmm‑2020‑0601 34039026
    [Google Scholar]
  112. KouZ. LiuH. WangY.C. Expression level and target gene prediction of miR-181b in patients with chronic lymphocytic leukemia.Zhongguo Shi Yan Xue Ye Xue Za Zhi2020283808814 32552940
    [Google Scholar]
  113. BombenR. RoismanA. D’AgaroT. Expression of the transcribed ultraconserved region 70 and the related long non‐coding RNA AC 092652.2‐202 has prognostic value in chronic lymphocytic leukaemia.Br. J. Haematol.201918461045105010.1111/bjh.15237 29687884
    [Google Scholar]
  114. Gil-KulikP. KluzN. PrzywaraD. Potential use of exosomal non-coding MicroRNAs in leukemia therapy: A systematic review.Cancers (Basel)20241623394810.3390/cancers16233948 39682135
    [Google Scholar]
  115. RonchettiD. ManzoniM. AgnelliL. LncRNA profiling in early-stage chronic lymphocytic leukemia identifies transcriptional fingerprints with relevance in clinical outcome.Blood Cancer J.201669e46810.1038/bcj.2016.77 27611921
    [Google Scholar]
  116. YangY.Q. TianT. ZhuH.Y. NDRG2 mRNA levels and miR-28-5p and miR-650 activity in chronic lymphocytic leukemia.BMC Cancer2018181100910.1186/s12885‑018‑4915‑3 30348117
    [Google Scholar]
  117. NiJ. HongJ. LiQ. ZengQ. XiaR. Long non-coding RNA CRNDE suppressing cell proliferation is regulated by DNA methylation in chronic lymphocytic leukemia.Leuk. Res.202110510656410.1016/j.leukres.2021.106564 33857783
    [Google Scholar]
  118. WuW. WuZ. XiaY. Downregulation of circ_0132266 in chronic lymphocytic leukemia promoted cell viability through miR-337-3p/PML axis.Aging (Albany NY)201911113561357310.18632/aging.101997 31152142
    [Google Scholar]
  119. FerracinM. ZagattiB. RizzottoL. MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia.Mol. Cancer20109112310.1186/1476‑4598‑9‑123 20504344
    [Google Scholar]
  120. ZenzT. MohrJ. ElderingE. miR-34a as part of the resistance network in chronic lymphocytic leukemia.Blood2009113163801380810.1182/blood‑2008‑08‑172254 18941118
    [Google Scholar]
  121. ØromU.A. DerrienT. BeringerM. Long noncoding RNAs with enhancer-like function in human cells.Cell20101431465810.1016/j.cell.2010.09.001 20887892
    [Google Scholar]
  122. MillerC.R. RuppertA.S. FobareS. The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia.Oncotarget2017816259422595410.18632/oncotarget.15401 28412730
    [Google Scholar]
  123. LuX.Y. JinH. MiRNAs function in the development of resistance against doxorubicin in cancer cells: Targeting ABC transporters.Front. Pharmacol.202415148678310.3389/fphar.2024.1486783 39679367
    [Google Scholar]
  124. LajevardiM.S. AshrafpourM. MubarakS.M.H. Dual roles of extracellular vesicles in acute lymphoblastic leukemia: Implications for disease progression and theranostic strategies.Med. Oncol.20244211110.1007/s12032‑024‑02547‑7 39572459
    [Google Scholar]
  125. FarahaniM. RubbiC. LiuL. SlupskyJ.R. KalakondaN. CLL exosomes modulate the transcriptome and behaviour of recipient stromal cells and are selectively enriched in miR-202-3p.PLoS One20151010e014142910.1371/journal.pone.0141429 26509439
    [Google Scholar]
  126. WuZ. SunH. WangC. Mitochondrial genome-derived circRNA mc-COX2 functions as an oncogene in chronic lymphocytic leukemia.Mol. Ther. Nucleic Acids20202080181110.1016/j.omtn.2020.04.017 32438315
    [Google Scholar]
  127. TouchaeiA.Z. VahidiS. Unraveling the interplay of CD8 + T cells and microRNA signaling in cancer: implications for immune dysfunction and therapeutic approaches.J. Transl. Med.2024221113110.1186/s12967‑024‑05963‑5 39707465
    [Google Scholar]
  128. ZenzT. HäbeS. DenzelT. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial.Blood2009114132589259710.1182/blood‑2009‑05‑224071 19643983
    [Google Scholar]
  129. BalattiV. TomaselloL. RassentiL.Z. miR-125a and miR-34a expression predicts Richter syndrome in chronic lymphocytic leukemia patients.Blood2018132202179218210.1182/blood‑2018‑04‑845115 30242085
    [Google Scholar]
  130. RossiS. ShimizuM. BarbarottoE. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival.Blood2010116694595210.1182/blood‑2010‑01‑263889 20393129
    [Google Scholar]
  131. FerrajoliA. ShanafeltT.D. IvanC. Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia.Blood2013122111891189910.1182/blood‑2013‑01‑478222 23821659
    [Google Scholar]
  132. VisoneR. VeroneseA. RassentiL.Z. miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia.Blood2011118113072307910.1182/blood‑2011‑01‑333484 21636858
    [Google Scholar]
  133. CalinG.A. FerracinM. CimminoA. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia.N. Engl. J. Med.2005353171793180110.1056/NEJMoa050995 16251535
    [Google Scholar]
  134. FuertesT. RamiroA.R. de YebenesV.G. miRNA-based therapies in B cell non-hodgkin lymphoma.Trends Immunol.2020411093294710.1016/j.it.2020.08.006 32888820
    [Google Scholar]
  135. BaskarS. KwongK.Y. HoferT. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia.Clin. Cancer Res.200814239640410.1158/1078‑0432.CCR‑07‑1823 18223214
    [Google Scholar]
  136. Ruiz-LafuenteN. Alcaraz-GarcíaM.J. Sebastián-RuizS. IL-4 up-regulates miR-21 and the miRNAs hosted in the CLCN5 gene in chronic lymphocytic leukemia.PLoS One2015104e012493610.1371/journal.pone.0124936 25909590
    [Google Scholar]
  137. IliopoulosD. JaegerS.A. HirschH.A. BulykM.L. StruhlK. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer.Mol. Cell201039449350610.1016/j.molcel.2010.07.023 20797623
    [Google Scholar]
  138. IshiiN. OzakiK. SatoH. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction.J. Hum. Genet.200651121087109910.1007/s10038‑006‑0070‑9 17066261
    [Google Scholar]
  139. SoneM. HayashiT. TaruiH. AgataK. TakeichiM. NakagawaS. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons.J. Cell Sci.2007120152498250610.1242/jcs.009357 17623775
    [Google Scholar]
  140. TsuijiH. YoshimotoR. HasegawaY. FurunoM. YoshidaM. NakagawaS. Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1.Genes Cells201116547949010.1111/j.1365‑2443.2011.01502.x 21463453
    [Google Scholar]
  141. SattariA. SiddiquiH. MoshiriF. Upregulation of long noncoding RNA MIAT in aggressive form of chronic lymphocytic leukemias.Oncotarget2016734541745418210.18632/oncotarget.11099 27527866
    [Google Scholar]
  142. Congrains-CastilloA. NiemannF.S. Santos DuarteA.S. Olalla-SaadS.T. LEF1‐AS1, long non‐coding RNA, inhibits proliferation in myeloid malignancy.J. Cell. Mol. Med.20192343021302510.1111/jcmm.14152 30770626
    [Google Scholar]
  143. DuX. LiuH. YangC. LncRNA landscape analysis identified LncRNA LEF-AS1 as an oncogene that upregulates LEF1 and promotes survival in chronic lymphocytic leukemia.Leuk. Res.202111010670610.1016/j.leukres.2021.106706 34563944
    [Google Scholar]
  144. KaurG. RuhelaV. RaniL. RNA-Seq profiling of deregulated miRs in CLL and their impact on clinical outcome.Blood Cancer J.2020101610.1038/s41408‑019‑0272‑y 31932582
    [Google Scholar]
  145. SubhashS. AnderssonP.O. KosalaiS.T. KanduriC. KanduriM. Global DNA methylation profiling reveals new insights into epigenetically deregulated protein coding and long noncoding RNAs in CLL.Clin. Epigenetics20168110610.1186/s13148‑016‑0274‑6 27777635
    [Google Scholar]
  146. KuoG. WuC.Y. YangH.Y. MiR-17-92 cluster and immunity.J. Formos. Med. Assoc.201911812610.1016/j.jfma.2018.04.013 29857952
    [Google Scholar]
  147. BombenR. GobessiS. Dal BoM. The miR-17∼92 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes.Leukemia20122671584159310.1038/leu.2012.44 22343732
    [Google Scholar]
  148. LiY. ShiY. McCawL. Microenvironmental interleukin-6 suppresses toll-like receptor signaling in human leukemia cells through miR-17/19A.Blood2015126676677810.1182/blood‑2014‑12‑618678 26041742
    [Google Scholar]
  149. CasabonneD. BenaventeY. SeifertJ. Serum levels of hsa‐miR‐16‐5p, hsa‐miR‐29a‐3p, hsa‐miR‐150‐5p, hsa‐miR‐155‐5p and hsa‐miR‐223‐3p and subsequent risk of chronic lymphocytic leukemia in the EPIC study.Int. J. Cancer202014751315132410.1002/ijc.32894 32012253
    [Google Scholar]
  150. YehY.Y. OzerH.G. LehmanA.M. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling.Blood2015125213297330510.1182/blood‑2014‑12‑618470 25833959
    [Google Scholar]
  151. LawrieC.H. SonejiS. MarafiotiT. Microrna expression distinguishes between germinal center B cell‐like and activated B cell‐like subtypes of diffuse large B cell lymphoma.Int. J. Cancer200712151156116110.1002/ijc.22800 17487835
    [Google Scholar]
  152. van den BergA. KroesenB.J. KooistraK. High expression of B‐cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma.Genes Chromosomes Cancer2003371202810.1002/gcc.10186 12661002
    [Google Scholar]
  153. KluiverJ. PoppemaS. de JongD. BIC and miR‐155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas.J. Pathol.2005207224324910.1002/path.1825 16041695
    [Google Scholar]
  154. FulciV. ChiarettiS. GoldoniM. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia.Blood2007109114944495110.1182/blood‑2006‑12‑062398 17327404
    [Google Scholar]
  155. VoliniaS. CalinG.A. LiuC.G. A microRNA expression signature of human solid tumors defines cancer gene targets.Proc. Natl. Acad. Sci. USA200610372257226110.1073/pnas.0510565103 16461460
    [Google Scholar]
  156. LeeE.J. GusevY. JiangJ. Expression profiling identifies microRNA signature in pancreatic cancer.Int. J. Cancer200712051046105410.1002/ijc.22394 17149698
    [Google Scholar]
  157. FaraoniI. AntonettiF.R. CardoneJ. BonmassarE. miR-155 gene: A typical multifunctional microRNA.Biochim. Biophys. Acta Mol. Basis Dis.20091792649750510.1016/j.bbadis.2009.02.013 19268705
    [Google Scholar]
  158. JayC. NemunaitisJ. ChenP. FulghamP. TongA.W. miRNA profiling for diagnosis and prognosis of human cancer.DNA Cell Biol.200726529330010.1089/dna.2006.0554 17504025
    [Google Scholar]
  159. PapageorgiouS.G. KontosC.K. DiamantopoulosM.A. MicroRNA-155-5p overexpression in peripheral blood mononuclear cells of chronic lymphocytic leukemia patients is a novel, independent molecular biomarker of poor prognosis.Dis. Markers2017201711010.1155/2017/2046545 29463948
    [Google Scholar]
  160. PagottoS. VeroneseA. SorannoA. HNRNPL restrains miR-155 targeting of BUB1 to stabilize aberrant karyotypes of transformed cells in chronic lymphocytic leukemia.Cancers (Basel)201911457510.3390/cancers11040575 31018621
    [Google Scholar]
  161. ZhaoH. ZhangJ. ShaoH. Transforming growth factor β1/Smad4 signaling affects osteoclast differentiation via regulation of miR-155 expression.Mol. Cells201740321122110.14348/molcells.2017.2303 28359146
    [Google Scholar]
  162. KarabonL. AndrzejczakA. CiszakL. BTLA expression in CLL: Epigenetic regulation and impact on CLL B cell proliferation and ability to IL-4 production.Cells20211011300910.3390/cells10113009 34831232
    [Google Scholar]
  163. GaidanoG. FoàR. Dalla-FaveraR. Molecular pathogenesis of chronic lymphocytic leukemia.J. Clin. Invest.2012122103432343810.1172/JCI64101 23023714
    [Google Scholar]
  164. PepeF. RassentiL.Z. PekarskyY. A large fraction of trisomy 12, 17p −, and 11q − CLL cases carry unidentified microdeletions of miR-15a/16-1.Proc. Natl. Acad. Sci. USA20221194e211875211910.1073/pnas.2118752119 35064090
    [Google Scholar]
  165. YılmazM. KuruR.D. ErdoğanI. SoysalT. HacıhanefiogluS. BaykaraO. Investigation of 13q14.3 deletion by cytogenetic analysis and FISH technique and miRNA-15a and miRNA-16-1 by real time PCR in chronic lymphocytic leukemia.Afr. Health Sci.202222317318210.4314/ahs.v22i3.20 36910369
    [Google Scholar]
  166. VeroneseA. PepeF. ChiacchiaJ. Allele-specific loss and transcription of the miR-15a/16-1 cluster in chronic lymphocytic leukemia.Leukemia2015291869510.1038/leu.2014.139 24732594
    [Google Scholar]
  167. LernerM. HaradaM. LovénJ. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1.Exp. Cell Res.2009315172941295210.1016/j.yexcr.2009.07.001 19591824
    [Google Scholar]
  168. KasarS. UnderbayevC. YuanY. Therapeutic implications of activation of the host gene (Dleu2) promoter for miR-15a/16-1 in chronic lymphocytic leukemia.Oncogene201433253307331510.1038/onc.2013.291 23995789
    [Google Scholar]
  169. SampathD. LiuC. VasanK. Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia.Blood201211951162117210.1182/blood‑2011‑05‑351510 22096249
    [Google Scholar]
  170. AllegraD. BilanV. GardingA. Defective DROSHA processing contributes to downregulation of miR-15/-16 in chronic lymphocytic leukemia.Leukemia20142819810710.1038/leu.2013.246 23974981
    [Google Scholar]
  171. Dal BoM. RossiF.M. RossiD. 13q14 Deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia.Genes Chromosomes Cancer201150863364310.1002/gcc.20885 21563234
    [Google Scholar]
  172. WhiteA.M. BestO.G. HotinskiA.K. KussB.J. ThurgoodL.A. The role of cholesterol in chronic lymphocytic leukemia development and pathogenesis.Metabolites202313779910.3390/metabo13070799 37512506
    [Google Scholar]
  173. NieY. YunX. ZhangY. WangX. Targeting metabolic reprogramming in chronic lymphocytic leukemia.Exp. Hematol. Oncol.20221113910.1186/s40164‑022‑00292‑z 35761419
    [Google Scholar]
  174. WuZ. GuD. WangR. CircRIC8B regulates the lipid metabolism of chronic lymphocytic leukemia through miR199b-5p/LPL axis.Exp. Hematol. Oncol.20221115110.1186/s40164‑022‑00302‑0 36064433
    [Google Scholar]
  175. WuZ. ZuoX. ZhangW. m6A‐modified circTET2 interacting with HNRNPC regulates fatty acid oxidation to promote the proliferation of chronic lymphocytic leukemia.Adv. Sci. (Weinh.)20231034230489510.1002/advs.202304895 37821382
    [Google Scholar]
  176. GassnerF.J. ZaborskyN. FeldbacherD. GreilR. GeisbergerR. RNA editing alters miRNA function in chronic lymphocytic leukemia.Cancers (Basel)2020125115910.3390/cancers12051159 32380696
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128361848250401200001
Loading
/content/journals/cpd/10.2174/0113816128361848250401200001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test