Skip to content
2000
Volume 31, Issue 36
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Gastrointestinal (GI) cancers, including gastric cancer, are among the most common and deadly cancers worldwide. Patients diagnosed with GI cancer still have a poor prognosis, largely resulting from the late stage of presentation for most of these patients and resistance to conventional therapy. This review covers new therapeutic strategies that apply advances in nanotechnology, immunotherapy, and drug delivery to overcome these challenges. Polymeric and metallic nanoparticles are distinguished for their potential to improve drug stability and solubility, as well as targeting drugs, thus diminishing systemic toxicity. The review centers around the use of immunotherapy in immune checkpoint inhibitors, CAR-T cell therapy, as well as the use of cancer vaccines to re-orient the immune system to be effective against cancer cells. Oncolytic viral therapy and bacteria-based treatments are unique non-conventional approaches that have a potential synergistic impact when used in concomitance with traditional methods. This review presents one of the most promising drug delivery systems: liposomes and micelles that can enhance pharmacokinetics and improve therapeutic results with controlled and site-specific release of anticancer agents. This review critically analyzes the strengths and challenges that include bioavailability, toxicity, and clinical translation, along with strategies to overcome such barriers. The review presents the most salient evidence to date and demonstrates the transformative potential of combining nanotechnology with immunotherapeutic and targeted treatments for managing gastric and other GI cancers. Future research should be focused on optimizing these platforms for clinical applications for the betterment of patient outcomes around the globe.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128363261250224191453
2025-03-19
2025-09-14
Loading full text...

Full text loading...

References

  1. MukkamallaS.K.R. Recio-BoilesA. BabikerH.M. Gastric cancer.In: StatPearls.Treasure Island, FLStatPearls Publishing202429083746
    [Google Scholar]
  2. IlicM. IlicI. Epidemiology of stomach cancer.World J. Gastroenterol.202228121187120310.3748/wjg.v28.i12.118735431510
    [Google Scholar]
  3. WuB. YangD. YangS. ZhangG. Dietary salt intake and gastric cancer risk: A systematic review and meta-analysis.Front. Nutr.2021880122810.3389/fnut.2021.80122834957192
    [Google Scholar]
  4. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑735043370
    [Google Scholar]
  5. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  6. ShifanaA.S. AdnanM. GuptaA. Ajazuddin JainP. A comprehensive review on novel pathways in cancer treatment: Clinical applications and future prospects.Curr. Cancer Drug Targets20242410.2174/0115680096312603240709112520
    [Google Scholar]
  7. GuptaS.L. BasuS. SoniV. JaiswalR.K. Immunotherapy: an alternative promising therapeutic approach against cancers.Mol. Biol. Rep.202249109903991310.1007/s11033‑022‑07525‑835759082
    [Google Scholar]
  8. GiriP.M. BanerjeeA. LayekB. A recent review on cancer nanomedicine.Cancers (Basel)2023158225610.3390/cancers1508225637190185
    [Google Scholar]
  9. RazaM.A. SharmaM.K. NagoriK. JainP. GhoshV. GuptaU. Ajazuddin Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine.Int. J. Pharm.202466612473410.1016/j.ijpharm.2024.12473439343332
    [Google Scholar]
  10. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/156720182066623011217003536644864
    [Google Scholar]
  11. Prabha AS, Dorothy R, Jancirani S, Rajendran S, Singh G, Kumaran SS. Recent advances in the study of toxicity of polymer-based nanomaterials. In: Micrro and Nano Technologies, Nanotoxicity; Rajendran S, Mukherjee A, Nguyen TA, Godugu C, Shukla RK. Eds.; Elsevier 2020; pp.143-65.10.1016/B978‑0‑12‑819943‑5.00007‑5
  12. HongJ. FengZ. Synergic fabrication of combination therapy of Irinotecan and 5-Fluorouracil encapsulated polymeric nanoparticles for the treatment of gastric cancer therapy.Process Biochem.202110619119810.1016/j.procbio.2021.04.008
    [Google Scholar]
  13. MatsuokaT. YashiroM. The role of PI3K/Akt/mTOR signaling in gastric carcinoma.Cancers (Basel)2014631441146310.3390/cancers603144125003395
    [Google Scholar]
  14. CaiJ. QianK. ZuoX. YueW. BianY. YangJ. WeiJ. ZhaoW. QianH. LiuB. PLGA nanoparticle-based docetaxel/LY294002 drug delivery system enhances antitumor activities against gastric cancer.J. Biomater. Appl.201933101394140610.1177/088532821983768330952195
    [Google Scholar]
  15. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  16. KuwarU.C. PradhanM. DhoteN.S. PatelR. SinhaA. JainP. Ajazuddin Novel approaches and applications of nanotechnology in the delivery of topical drugs for psoriasis via nanocarriers.Curr. Nanosci.20242012710.2174/0115734137301584240722054651
    [Google Scholar]
  17. DhoteNS PatelRD KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets202424437539610.2174/156800962366623080311171837534485
    [Google Scholar]
  18. SahuS. GhoshV. JainP. Ajazuddin. Recent Advancement of Novel Drug Delivery Systems for Topical Anaesthesia Formulations.Curr. Nanomed.202515117
    [Google Scholar]
  19. SharmaA. GoyalA.K. RathG. Recent advances in metal nanoparticles in cancer therapy.J. Drug Target.201826861763210.1080/1061186X.2017.140055329095640
    [Google Scholar]
  20. Tinajero-DíazE. Salado-LezaD. GonzalezC. Martínez VelázquezM. LópezZ. Bravo-MadrigalJ. KnauthP. Flores-HernándezF.Y. Herrera-RodríguezS.E. NavarroR.E. Cabrera-WroomanA. KrötzschE. CarvajalZ.Y.G. Hernández-GutiérrezR. Green metallic nanoparticles for cancer therapy: Evaluation models and cancer applications.Pharmaceutics20211310171910.3390/pharmaceutics1310171934684012
    [Google Scholar]
  21. SahuN. JainP. NagoriK. Ajazuddin Recent advancement and novel treatment strategies for breast fibroadenoma: Clinical approach and prospects.Curr. Cancer Ther. Rev.20242011110.2174/0115733947318171240802100419
    [Google Scholar]
  22. TangQ. XiaH. LiangW. HuoX. WeiX. Synthesis and characterization of zinc oxide nanoparticles from Morus nigra and its anticancer activity of AGS gastric cancer cells.J. Photochem. Photobiol. B202020211169810.1016/j.jphotobiol.2019.11169831734436
    [Google Scholar]
  23. SunH. MohanS.K. ChinnathambiA. AlahmadiT.A. ManikandanV. RengarajanT. VeeraraghavanV.P. Green synthesized zinc oxide/neodymium nanocomposites from Avaram Senna flower extract induces apoptosis in gastric cancer AGS cell line through inhibition of the PI3K/AKT/mTOR signaling pathway.J. King Saud Univ. Sci.202133810164110.1016/j.jksus.2021.101641
    [Google Scholar]
  24. SinghM. Harris-BirtillD.C.C. MarkarS.R. HannaG.B. ElsonD.S. Application of gold nanoparticles for gastrointestinal cancer theranostics: A systematic review.Nanomedicine20151182083209810.1016/j.nano.2015.05.01026115635
    [Google Scholar]
  25. DhandapaniS. XuX. WangR. PujaA.M. KimH. PerumalsamyH. BalusamyS.R. KimY.J. Biosynthesis of gold nanoparticles using Nigella sativa and Curtobacterium proimmune K3 and evaluation of their anticancer activity.Mater. Sci. Eng. C202112711221410.1016/j.msec.2021.11221434225866
    [Google Scholar]
  26. FernandesE. FerreiraD. PeixotoA. FreitasR. Relvas-SantosM. PalmeiraC. MartinsG. BarrosA. SantosL.L. SarmentoB. FerreiraJ.A. Glycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic potential.Int. J. Pharm.201957011864610.1016/j.ijpharm.2019.11864631465836
    [Google Scholar]
  27. HosseinkhahM. GhasemianR. ShokrollahiF. MojdehiS.R. NoveiriM.J.S. HedayatiM. RezaeiM. SalehzadehA. Glycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic potential.Int. J. Pharm.20223351910.1007/s10876‑021‑02124‑2
    [Google Scholar]
  28. WangY. El-KottA.F. El-KenawyA.E. XueL. Decorated CuO nanoparticles over chitosan-functionalized magnetic nanoparticles: Investigation of its anti-colon carcinoma and anti-gastric cancer effects.Arab. J. Chem.202114710320110.1016/j.arabjc.2021.103201
    [Google Scholar]
  29. YangC. PangX. ChenW. WangX. LinG. ChuC. ZhangX. DengX. ChenX. LiuG. Environmentally responsive dual- targeting nanotheranostics for overcoming cancer multidrug resistance.Sci. Bull. (Beijing)2019641070571410.1016/j.scib.2019.04.01936659653
    [Google Scholar]
  30. LiD. CuiR. XuS. LiuY. Synergism of cisplatin-oleanolic acid co-loaded hybrid nanoparticles on gastric carcinoma cells for enhanced apoptosis and reversed multidrug resistance.Drug Deliv.202027119119910.1080/10717544.2019.171062231924110
    [Google Scholar]
  31. HuY. WangZ. QiuY. LiuY. DingM. ZhangY. Anti-miRNA21 and resveratrol-loaded polysaccharide-based mesoporous silica nanoparticle for synergistic activity in gastric carcinoma.J. Drug Target.201927101135114310.1080/1061186X.2019.161076631017473
    [Google Scholar]
  32. BardelliA. PantelK. Liquid biopsies, what we do not know (yet).Cancer Cell201731217217910.1016/j.ccell.2017.01.00228196593
    [Google Scholar]
  33. KalraH. DrummenG. MathivananS. Focus on extracellular vesicles: Introducing the next small big thing.Int. J. Mol. Sci.201617217010.3390/ijms1702017026861301
    [Google Scholar]
  34. FuM. GuJ. JiangP. QianH. XuW. ZhangX. Exosomes in gastric cancer: roles, mechanisms, and applications.Mol. Cancer20191814110.1186/s12943‑019‑1001‑730876419
    [Google Scholar]
  35. XuG. ShiC. GuoD. WangL. LingY. HanX. LuoJ. Functional-segregated coumarin-containing telodendrimer nanocarriers for efficient delivery of SN-38 for colon cancer treatment.Acta Biomater.201521859810.1016/j.actbio.2015.04.02125910639
    [Google Scholar]
  36. YousefiM. NarmaniA. JafariS.M. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals.Adv. Colloid Interface Sci.202027810212510.1016/j.cis.2020.10212532109595
    [Google Scholar]
  37. EsfandR. TomaliaD.A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.Drug Discov. Today20016842743610.1016/S1359‑6446(01)01757‑311301287
    [Google Scholar]
  38. StiribaS.E. FreyH. HaagR. Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy.Angew. Chem. Int. Ed.20024181329133410.1002/1521‑3773(20020415)41:8<1329::AID‑ANIE1329>3.0.CO;2‑P19750755
    [Google Scholar]
  39. NajafiF. Pashaei-SarnaghiR. Salami-KalajahiM. Roghani-MamaqaniH. Application of poly(amidoamine) dendrimer as transfer agent to synthesize poly(amidoamine)-b-poly(methyl acrylate) amphiphilc block copolymers: Self-assembly in aqueous media and drug delivery.J. Drug Deliv. Sci. Technol.20216410262610.1016/j.jddst.2021.102626
    [Google Scholar]
  40. YooH. JulianoR.L. Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers.Nucleic Acids Res.200028214225423110.1093/nar/28.21.422511058121
    [Google Scholar]
  41. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
  42. IslamM. HuangY. JainP. FanB. TongL. WangF. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno- functional property.Biocatal. Agric. Biotechnol.20235010270010.1016/j.bcab.2023.102700
    [Google Scholar]
  43. PattniB.S. ChupinV.V. TorchilinV.P. New developments in liposomal drug delivery.Chem. Rev.201511519109381096610.1021/acs.chemrev.5b0004626010257
    [Google Scholar]
  44. BJain A Bajaj S, Jain P, Majumdar A, Singh A, Soni P. A review on biotechnologically derived techniques to combat COVID-19 situation.Heal Sci Rev20238100112
    [Google Scholar]
  45. ZylberbergC. MatosevicS. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape.Drug Deliv.20162393319332910.1080/10717544.2016.117713627145899
    [Google Scholar]
  46. DasM. HuangL. Liposomal nanostructures for drug delivery in gastrointestinal cancers.J. Pharmacol. Exp. Ther.2019370364765610.1124/jpet.118.25479730541917
    [Google Scholar]
  47. TangW. LiuR. YanY. PanX. WangM. HanX. RenH. ZhangZ. Expression of estrogen receptors and androgen receptor and their clinical significance in gastric cancer.Oncotarget2017825407654077710.18632/oncotarget.1658228388558
    [Google Scholar]
  48. RahmanM.S.U. CaoJ. Estrogen receptors in gastric cancer: Advances and perspectives.World J. Gastroenterol.20162282475248210.3748/wjg.v22.i8.247526937135
    [Google Scholar]
  49. SunY. XieY. TangH. RenZ. LuanX. ZhangY. ZhuM. LvZ. BaoH. LiY. LiuR. ShenY. ZhengY. PeiJ. In vitro and in vivo evaluation of a novel estrogen-targeted pegylated oxaliplatin liposome for gastric cancer.Int. J. Nanomedicine2021168279830310.2147/IJN.S34018034992365
    [Google Scholar]
  50. WangS. ChenY. GuoJ. HuangQ. Liposomes for tumor targeted therapy: A review.Int. J. Mol. Sci.2023243264310.3390/ijms2403264336768966
    [Google Scholar]
  51. NakoniecznaS. GrabarskaA. Kukula-KochW. The potential anticancer activity of phytoconstituents against gastric cancer—A review on in vitro, in vivo, and clinical studies.Int. J. Mol. Sci.20202121830710.3390/ijms2121830733167519
    [Google Scholar]
  52. ZhangQ. WangX. CaoS. SunY. HeX. JiangB. YuY. DuanJ. QiuF. KangN. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways.Biomed. Pharmacother.202012811024510.1016/j.biopha.2020.11024532454290
    [Google Scholar]
  53. WangX. WangQ. LiuZ. ZhengX. Preparation, pharmacokinetics and tumour-suppressive activity of berberine liposomes.J. Pharm. Pharmacol.201769662563210.1111/jphp.1269228295319
    [Google Scholar]
  54. LeeY.K. BaeK. YooH.S. ChoS.H. Benefit of adjuvant traditional herbal medicine with chemotherapy for resectable gastric cancer.Integr. Cancer Ther.201817361962710.1177/153473541775354229614889
    [Google Scholar]
  55. HongC. WangD. LiangJ. GuoY. ZhuY. XiaJ. QinJ. ZhanH. WangJ. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer.Theranostics20199154437444910.7150/thno.3495331285771
    [Google Scholar]
  56. SelimJ.H. ShaheenS. SheuW.C. HsuehC.T. Targeted and novel therapy in advanced gastric cancer.Exp. Hematol. Oncol.2019812510.1186/s40164‑019‑0149‑631632839
    [Google Scholar]
  57. ScottL.J. Apatinib: A Review in advanced gastric cancer and other advanced cancers.Drugs201878774775810.1007/s40265‑018‑0903‑929663291
    [Google Scholar]
  58. LongY. WangZ. FanJ. YuanL. TongC. ZhaoY. LiuB. A hybrid membrane coating nanodrug system against gastric cancer via the VEGFR2/STAT3 signaling pathway.J. Mater. Chem. B Mater. Biol. Med.20219183838385510.1039/D1TB00029B33908580
    [Google Scholar]
  59. RaoX. ZhangC. LuoH. ZhangJ. ZhuangZ. LiangZ. WuX. Targeting Gastric Cancer Stem Cells to Enhance Treatment Response.Cells20221118282810.3390/cells1118282836139403
    [Google Scholar]
  60. PandeyH. RaniR. AgarwalV. Liposome and their applications in cancer therapy.Braz. Arch. Biol. Technol.20165911010.1590/1678‑4324‑2016150477
    [Google Scholar]
  61. XuG. TangH. ChenJ. ZhuM. XieY. LiY. HaoQ. SunY. CongD. MengQ. RenZ. LiQ. BaoH. LvZ. LiY. PeiJ. Estrone-targeted liposomes for mitoxantrone delivery via estrogen receptor: In vivo targeting efficacy, antitumor activity, acute toxicity and pharmacokinetics.Eur. J. Pharm. Sci.202116110578010.1016/j.ejps.2021.10578033667664
    [Google Scholar]
  62. ZhaoY. BaiY. ShenM. LiY. Therapeutic strategies for gastric cancer targeting immune cells: Future directions.Front. Immunol.20221399276210.3389/fimmu.2022.99276236225938
    [Google Scholar]
  63. SakamotoJ. MatsuiT. KoderaY. Paclitaxel chemotherapy for the treatment of gastric cancer.Gastric Cancer2009122697810.1007/s10120‑009‑0505‑z19562460
    [Google Scholar]
  64. IchikawaK. AsaiT. ShimizuK. YonezawaS. UrakamiT. MiyauchiH. KawashimaH. IshidaT. KiwadaH. OkuN. Suppression of immune response by antigen-modified liposomes encapsulating model agents: A novel strategy for the treatment of allergy.J. Control. Release2013167328428910.1016/j.jconrel.2013.02.00223419947
    [Google Scholar]
  65. QiuL. GeL. LongM. MaoJ. AhmedK.S. ShanX. ZhangH. QinL. LvG. ChenJ. Redox-responsive biocompatible nanocarriers based on novel heparosan polysaccharides for intracellular anticancer drug delivery.Asian J. Pharm. Sci.2020151839410.1016/j.ajps.2018.11.00532175020
    [Google Scholar]
  66. MoriT. HazekawaM. YoshidaM. NishinakagawaT. UchidaT. IshibashiD. Enhancing the anticancer efficacy of a LL-37 peptide fragment analog using peptide-linked PLGA conjugate micelles in tumor cells.Int. J. Pharm.202160612089110.1016/j.ijpharm.2021.12089134324984
    [Google Scholar]
  67. GuoW. DengL. ChenZ. ChenZ. YuJ. LiuH. LiT. LinT. ChenH. ZhaoM. ZhangL. LiG. HuY. Vitamin B12-conjugated sericin micelles for targeting CD320-overexpressed gastric cancer and reversing drug resistance.Nanomedicine (Lond.)201914335337010.2217/nnm‑2018‑032130328369
    [Google Scholar]
  68. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.03133652113
    [Google Scholar]
  69. JhaveriA.M. TorchilinV.P. Multifunctional polymeric micelles for delivery of drugs and siRNA.Front. Pharmacol.201457710.3389/fphar.2014.0007724795633
    [Google Scholar]
  70. Sarisozen C, Joshi U, Mendes LP, Torchilin VP. Stimuli-responsive polymeric micelles for extracellular and intracellular drug delivery. In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications; Makhlouf ASH, Abu-Thabit NY, Eds.; Woodhead Publishing 2019; 2: pp. 269-304.10.1016/B978‑0‑08‑101995‑5.00012‑X
  71. JiangX. MaM. LiM. ShaoS. YuanH. HuF. LiuJ. HuangX. Preparation and evaluation of novel emodin-loaded stearic acid-g-chitosan oligosaccharide nanomicelles.Nanoscale Res. Lett.20201519310.1186/s11671‑020‑03304‑132335740
    [Google Scholar]
  72. LiX. WangJ. GuL. YaoX. CaiF. JingM. LiX. JuR. Dual variable of drug loaded micelles in both particle and electrical charge on gastric cancer treatment.J. Drug Target.202028101071108410.1080/1061186X.2020.177741932484364
    [Google Scholar]
  73. XuL. ZhuL. ZhengK. LiuJ. TianP. HuD. WangQ. ZuoQ. OuyangX. DaiY. FuY. DaiX. HuangF. ChengJ. The design and synthesis of redox-responsive oridonin polymeric prodrug micelle formulation for effective gastric cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20219133068307810.1039/D1TB00127B33885668
    [Google Scholar]
  74. LuZ. PangT. YinX. CuiH. FangG. XueX. LuoT. Delivery of TSPAN1 siRNA by novel Th17 targeted cationic liposomes for gastric cancer intervention.J. Pharm. Sci.202010992854286010.1016/j.xphs.2020.05.01832497593
    [Google Scholar]
  75. YangF. ZhengZ. XueX. ZhengL. QinJ. LiH. ZhouY. FangG. Targeted eradication of gastric cancer stem cells by CD44 targeting USP22 small interfering RNA-loaded nanoliposomes.Future Oncol.201915328129510.2217/fon‑2018‑029530543303
    [Google Scholar]
  76. YangF. ZhengZ. ZhengL. QinJ. LiH. XueX. GaoJ. FangG. SATB1 siRNA-encapsulated immunoliposomes conjugated with CD44 antibodies target and eliminate gastric cancer-initiating cells.OncoTargets Ther.2018116811682510.2147/OTT.S18243730349314
    [Google Scholar]
  77. ShiJ. LiuS. YuY. HeC. TanL. ShenY.M. RGD peptide-decorated micelles assembled from polymer–paclitaxel conjugates towards gastric cancer therapy.Colloids Surf. B Biointerfaces2019180586710.1016/j.colsurfb.2019.04.04231028965
    [Google Scholar]
  78. YokodaR. NagaloB.M. AroraM. EganJ.B. BogenbergerJ.M. DeLeonT.T. ZhouY. AhnD.H. BoradM.J. Oncolytic virotherapy in upper gastrointestinal tract cancers.Oncolytic Virother.20187132410.2147/OV.S16139729616200
    [Google Scholar]
  79. LawlerS.E. SperanzaM.C. ChoC.F. ChioccaE.A. Oncolytic viruses in cancer treatment.JAMA Oncol.20173684184910.1001/jamaoncol.2016.206427441411
    [Google Scholar]
  80. GongJ. SachdevE. MitaA.C. MitaM.M. Clinical development of reovirus for cancer therapy: An oncolytic virus with immune-mediated antitumor activity.World J. Methodol.201661254210.5662/wjm.v6.i1.2527019795
    [Google Scholar]
  81. KaufmanH.L. KohlhappF.J. ZlozaA. Oncolytic viruses: a new class of immunotherapy drugs.Nat. Rev. Drug Discov.201514964266210.1038/nrd466326323545
    [Google Scholar]
  82. SahaD. MartuzaR.L. RabkinS.D. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade.Cancer Cell201732225326710.1016/j.ccell.2017.07.00628810147
    [Google Scholar]
  83. ZamarinD. RiccaJ.M. SadekovaS. OseledchykA. YuY. BlumenscheinW.M. WongJ. GigouxM. MerghoubT. WolchokJ.D. PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy.J. Clin. Invest.201812811518410.1172/JCI12503930277478
    [Google Scholar]
  84. BridleB.W. NguyenA. SalemO. ZhangL. KoshyS. ClouthierD. ChenL. PolJ. SwiftS.L. BowdishD.M.E. LichtyB.D. BramsonJ.L. WanY. Privileged antigen presentation in splenic B cell follicles maximizes T cell responses in prime-boost vaccination.J. Immunol.2016196114587459510.4049/jimmunol.160010627183620
    [Google Scholar]
  85. DayG.L. BryanM.L. NorthrupS.A. LylesD.S. WestcottM.M. StewartJ.H.IV Immune effects of M51R vesicular stomatitis virus treatment of carcinomatosis from colon cancer.J. Surg. Res.202024512713510.1016/j.jss.2019.07.03231415934
    [Google Scholar]
  86. MarvelD. GabrilovichD.I. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected.J. Clin. Invest.201512593356336410.1172/JCI8000526168215
    [Google Scholar]
  87. AlkayyalA.A. TaiL.H. KennedyM.A. de SouzaC.T. ZhangJ. LefebvreC. SahiS. AnanthA.A. MahmoudA.B. MakrigiannisA.P. CronG.O. MacdonaldB. MargineanE.C. StojdlD.F. BellJ.C. AuerR.C. NK-Cell recruitment is necessary for eradication of peritoneal carcinomatosis with an IL12-expressing maraba virus cellular vaccine.Cancer Immunol. Res.20175321122110.1158/2326‑6066.CIR‑16‑016228159747
    [Google Scholar]
  88. SintyaE. WedariNPH BudayantiNS RahayuNMM Modifications in adenoviral vectors to enhance its tropism: A literature review.J. Clin. Microbiol. Infect. Dis.20222222610.51559/jcmid.v2i2.32
    [Google Scholar]
  89. MantwillK. KleinF.G. WangD. HindupurS.V. EhrenfeldM. HolmP.S. NawrothR. Concepts in oncolytic adenovirus therapy.Int. J. Mol. Sci.202122191052210.3390/ijms22191052234638863
    [Google Scholar]
  90. IshigamiH. FujiwaraY. FukushimaR. NashimotoA. YabusakiH. ImanoM. ImamotoH. KoderaY. UenosonoY. AmagaiK. KadowakiS. MiwaH. YamaguchiH. YamaguchiT. MiyajiT. KitayamaJ. Phase III trial comparing intraperitoneal and intravenous paclitaxel plus S-1 versus cisplatin plus S-1 in patients with gastric cancer with peritoneal metastasis: PHOENIX-GC trial.J. Clin. Oncol.201836191922192910.1200/JCO.2018.77.861329746229
    [Google Scholar]
  91. YanoS. TazawaH. HashimotoY. ShirakawaY. KurodaS. NishizakiM. KishimotoH. UnoF. NagasakaT. UrataY. KagawaS. HoffmanR.M. FujiwaraT. A genetically engineered oncolytic adenovirus decoys and lethally traps quiescent cancer stem-like cells in S/G2/M phases.Clin. Cancer Res.201319236495650510.1158/1078‑0432.CCR‑13‑074224081978
    [Google Scholar]
  92. IshikawaW. KikuchiS. OgawaT. TabuchiM. TazawaH. KurodaS. NomaK. NishizakiM. KagawaS. UrataY. FujiwaraT. Boosting replication and penetration of oncolytic adenovirus by paclitaxel eradicate peritoneal metastasis of gastric cancer.Mol. Ther. Oncolytics20201826227110.1016/j.omto.2020.06.02132728614
    [Google Scholar]
  93. YasudaT. KoiwaM. YonemuraA. MiyakeK. KariyaR. KubotaS. Yokomizo-NakanoT. Yasuda-YoshiharaN. UchiharaT. ItoyamaR. BuL. FuL. ArimaK. IzumiD. IwagamiS. EtoK. IwatsukiM. BabaY. YoshidaN. OhguchiH. OkadaS. MatsusakiK. SashidaG. TakahashiA. TanP. BabaH. IshimotoT. Inflammation-driven senescence-associated secretory phenotype in cancer-associated fibroblasts enhances peritoneal dissemination.Cell Rep.202134810877910.1016/j.celrep.2021.10877933626356
    [Google Scholar]
  94. OgawaT. KikuchiS. TabuchiM. MitsuiE. UneY. TazawaH. KurodaS. NomaK. OharaT. KagawaS. UrataY. FujiwaraT. Modulation of p53 expression in cancer-associated fibroblasts prevents peritoneal metastasis of gastric cancer.Mol. Ther. Oncolytics20222524926110.1016/j.omto.2022.04.00935615263
    [Google Scholar]
  95. ZhouW. DaiS. ZhuH. SongZ. CaiY. LeeJ.B. LiZ. HuX. FangB. HeC. HuangX. Telomerase-specific oncolytic adenovirus expressing TRAIL suppresses peritoneal dissemination of gastric cancer.Gene Ther.201724419920710.1038/gt.2017.228075429
    [Google Scholar]
  96. BurriN. ShawP. BouzoureneH. SordatI. SordatB. GilletM. SchorderetD. BosmanF.T. ChaubertP. Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer.Lab. Invest.200181221722910.1038/labinvest.378023011232644
    [Google Scholar]
  97. PaliwalS. PandeS. KoviR.C. SharplessN.E. BardeesyN. GrossmanS.R. Targeting of C-terminal binding protein (CtBP) by ARF results in p53-independent apoptosis.Mol. Cell. Biol.20062662360237210.1128/MCB.26.6.2360‑2372.200616508011
    [Google Scholar]
  98. SherrC.J. BertwistleD. DEN BestenW et al. p53-Dependent and -independent functions of the Arf tumor suppressor.Cold Spring Harb Symp Quant Bio 2005701293710.1101/sqb.2005.70.00416869746
    [Google Scholar]
  99. RajeshkumarB.R. PaliwalS. LambertL. GrossmanS.R. WhalenG.F. Treatment of peritoneal carcinomatosis with intraperitoneal administration of Ad-hARF.J. Surg. Res.20151971859010.1016/j.jss.2015.03.04825935465
    [Google Scholar]
  100. JohriN. KumarD. NagarP. MauryaA. VengatM. JainP. Clinical manifestations of human monkeypox infection and implications for outbreak strategy.Health Sci. Rev. (Oxf.)2022510005510.1016/j.hsr.2022.10005536254190
    [Google Scholar]
  101. YangZ. ZouL. YueB. HuM. Salmonella typhimurium may support cancer treatment: A review.Acta Biochim. Biophys. Sin. (Shanghai)202355333134210.3724/abbs.202300736786073
    [Google Scholar]
  102. KaimalaS. MohamedY.A. NaderN. IssacJ. ElkordE. ChouaibS. Fernandez-CabezudoM.J. al-RamadiB.K. Salmonella-mediated tumor regression involves targeting of tumor myeloid suppressor cells causing a shift to M1-like phenotype and reduction in suppressive capacity.Cancer Immunol. Immunother.201463658759910.1007/s00262‑014‑1543‑x24668365
    [Google Scholar]
  103. LiangK. LiuQ. LiP. HanY. BianX. TangY. KongQ. Endostatin gene therapy delivered by attenuated Salmonella typhimurium in murine tumor models.Cancer Gene Ther.2018257-816718310.1038/s41417‑018‑0021‑629755110
    [Google Scholar]
  104. GniadekT.J. AugustinL. SchottelJ. LeonardA. SaltzmanD. GreenoE. BatistG. A phase I, dose escalation, single dose trial of oral attenuated Salmonella typhimurium containing human IL-2 in patients with metastatic gastrointestinal cancers.J. Immunother.202043721722110.1097/CJI.000000000000032532554977
    [Google Scholar]
  105. AbramsonJ.S. Anti-CD19 CAR T-cell therapy for B-cell Non-hodgkin lymphoma.Transfus. Med. Rev.2020341293310.1016/j.tmrv.2019.08.00331677848
    [Google Scholar]
  106. WaltonM. SharifS. SimmondsM. ClaxtonL. HodgsonR. Tisagenlecleucel for the treatment of relapsed or refractory B-cell acute lymphoblastic leukaemia in people aged up to 25 years: An evidence review group perspective of a NICE single technology appraisal.PharmacoEconomics201937101209121710.1007/s40273‑019‑00799‑030982165
    [Google Scholar]
  107. QiC. GongJ. LiJ. LiuD. QinY. GeS. ZhangM. PengZ. ZhouJ. CaoY. ZhangX. LuZ. LuM. YuanJ. WangZ. WangY. PengX. GaoH. LiuZ. WangH. YuanD. XiaoJ. MaH. WangW. LiZ. ShenL. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results.Nat. Med.20222861189119810.1038/s41591‑022‑01800‑835534566
    [Google Scholar]
  108. PatriarcaC. MacchiR.M. MarschnerA.K. MellstedtH. Epithelial cell adhesion molecule expression (CD326) in cancer: A short review.Cancer Treat. Rev.2012381687510.1016/j.ctrv.2011.04.00221576002
    [Google Scholar]
  109. HeissM.M. MurawaP. KoralewskiP. KutarskaE. KolesnikO.O. IvanchenkoV.V. DudnichenkoA.S. AleknavicieneB. RazbadauskasA. GoreM. Ganea-MotanE. CiuleanuT. WimbergerP. SchmittelA. SchmalfeldtB. BurgesA. BokemeyerC. LindhoferH. LahrA. ParsonsS.L. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial.Int. J. Cancer201012792209222110.1002/ijc.2542320473913
    [Google Scholar]
  110. StröhleinM.A. LordickF. RüttingerD. GrütznerK.U. SchemanskiO.C. JägerM. LindhoferH. HennigM. JauchK.W. PeschelC. HeissM.M. Immunotherapy of peritoneal carcinomatosis with the antibody catumaxomab in colon, gastric, or pancreatic cancer: an open-label, multicenter, phase I/II trial.Onkologie201134310110810.1159/00032466721358214
    [Google Scholar]
  111. AngW.X. LiZ. ChiZ. DuS.H. ChenC. TayJ.C.K. TohH.C. ConnollyJ.E. XuX.H. WangS. Intraperitoneal immunotherapy with T cells stably and transiently expressing anti-EpCAM CAR in xenograft models of peritoneal carcinomatosis.Oncotarget201788135451355910.18632/oncotarget.1459228088790
    [Google Scholar]
  112. LalosevicMS StankovicS. StojkovicM. MarkovicV. DimitrijevicI. LalosevicJ. PetrovicJ. BrankovicM. Pavlovic MarkovicA. KrivokapicZ. Can preoperative CEA and CA19-9 serum concentrations suggest metastatic disease in colorectal cancer patients?Hell. J. Nucl. Med.2017201414528315907
    [Google Scholar]
  113. ZhangC. WangZ. YangZ. WangM. LiS. LiY. ZhangR. XiongZ. WeiZ. ShenJ. LuoY. ZhangQ. LiuL. QinH. LiuW. WuF. ChenW. PanF. ZhangX. BieP. LiangH. PecherG. QianC. Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers.Mol. Ther.20172551248125810.1016/j.ymthe.2017.03.01028366766
    [Google Scholar]
  114. KatzS.C. BurgaR.A. McCormackE. WangL.J. MooringW. PointG.R. KhareP.D. ThornM. MaQ. StainkenB.F. AssanahE.O. DaviesR. EspatN.J. JunghansR.P. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor–modified T-cell therapy for CEA+ liver metastases.Clin. Cancer Res.201521143149315910.1158/1078‑0432.CCR‑14‑142125850950
    [Google Scholar]
  115. SullivanK.M. JiangX. GuhaP. LaustedC. CarterJ.A. HsuC. LabadieK.P. KohliK. KenersonH.L. DanielS.K. YanX. MengC. AbbasiA. ChanM. SeoY.D. ParkJ.O. CrispeI.N. YeungR.S. KimT.S. GujralT.S. TianQ. KatzS.C. PillarisettyV.G. Blockade of interleukin 10 potentiates antitumour immune function in human colorectal cancer liver metastases.Gut202372232533710.1136/gutjnl‑2021‑32580835705369
    [Google Scholar]
  116. KatzS.C. PointG.R. CunettaM. ThornM. GuhaP. EspatN.J. BoutrosC. HannaN. JunghansR.P. Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery.Cancer Gene Ther.201623514214810.1038/cgt.2016.1427080226
    [Google Scholar]
  117. BurgaR.A. ThornM. PointG.R. GuhaP. NguyenC.T. LicataL.A. DeMatteoR.P. AyalaA. Joseph EspatN. JunghansR.P. KatzS.C. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T.Cancer Immunol. Immunother.201564781782910.1007/s00262‑015‑1692‑625850344
    [Google Scholar]
  118. Rodriguez-GarciaA. PalazonA. Noguera-OrtegaE. PowellD.J.Jr GuedanS. CAR-T cells hit the tumor microenvironment: Strategies to overcome tumor escape.Front. Immunol.202011110910.3389/fimmu.2020.0110932625204
    [Google Scholar]
  119. TangS. NingQ. YangL. MoZ. TangS. Mechanisms of immune escape in the cancer immune cycle.Int. Immunopharmacol.20208610670010.1016/j.intimp.2020.10670032590316
    [Google Scholar]
  120. BarbariC. FontaineT. ParajuliP. LamichhaneN. JakubskiS. LamichhaneP. DeshmukhR.R. Immunotherapies and combination strategies for immuno-oncology.Int. J. Mol. Sci.20202114500910.3390/ijms2114500932679922
    [Google Scholar]
  121. KumarA. SwainC.A. ShevdeL.A. Informing the new developments and future of cancer immunotherapy.Cancer Metastasis Rev.202140254956210.1007/s10555‑021‑09967‑134003425
    [Google Scholar]
  122. FinnO.J. A believer’s overview of cancer immunosurveillance and immunotherapy.J. Immunol.2018200238539110.4049/jimmunol.170130229311379
    [Google Scholar]
  123. ChenD.S. MellmanI. Elements of cancer immunity and the cancer–immune set point.Nature2017541763732133010.1038/nature2134928102259
    [Google Scholar]
  124. HelmyK.Y. PatelS.A. NahasG.R. RameshwarP. Cancer immunotherapy: accomplishments to date and future promise.Ther. Deliv.20134101307132010.4155/tde.13.8824116914
    [Google Scholar]
  125. SharmaP. Hu-LieskovanS. WargoJ.A. RibasA. Primary, adaptive, and acquired resistance to cancer immunotherapy.Cell2017168470772310.1016/j.cell.2017.01.01728187290
    [Google Scholar]
  126. GubinM.M. VeselyM.D. Cancer immunoediting in the era of immuno-oncology.Clin. Cancer Res.202228183917392810.1158/1078‑0432.CCR‑21‑180435594163
    [Google Scholar]
  127. RalphC. ElkordE. BurtD.J. O’DwyerJ.F. AustinE.B. SternP.L. HawkinsR.E. ThistlethwaiteF.C. Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma.Clin. Cancer Res.20101651662167210.1158/1078‑0432.CCR‑09‑287020179239
    [Google Scholar]
  128. De MelloR.A. LordickF. MuroK. JanjigianY.Y. Current and future aspects of immunotherapy for esophageal and gastric malignancies.Am. Soc. Clin. Oncol. Educ. Book2019393923724710.1200/EDBK_23669931099644
    [Google Scholar]
  129. LeD.T. BendellJ.C. CalvoE. KimJ.W. AsciertoP.A. SharmaP. OttP.A. BonoP. JaegerD. EvansT.R.J. De BraudF.G. ChauI. ChristensenO. HarbisonC. LinC-S. JanjigianY.Y. Safety and activity of nivolumab monotherapy in advanced and metastatic (A/M) gastric or gastroesophageal junction cancer (GC/GEC): Results from the CheckMate-032 study.J. Clin. Oncol.2016344_suppl610.1200/jco.2016.34.4_suppl.6
    [Google Scholar]
  130. KangY.K. SatohT. RyuM.H. ChaoY. KatoK. ChungH.C. ChenJ.S. MuroK. KangW.K. YoshikawaT. OhS.C. TamuraT. LeeK-W. BokuN. ChenL-T. Nivolumab (ONO-4538/BMS-936558) as salvage treatment after second or later-line chemotherapy for advanced gastric or gastro-esophageal junction cancer (AGC): A double-blinded, randomized, phase III trial.J. Clin. Oncol.2017354_suppl210.1200/JCO.2017.35.4_suppl.2
    [Google Scholar]
  131. GuillebonE. RoussilleP. FrouinE. TougeronD. Anti program death-1/anti program death-ligand 1 in digestive cancers.World J. Gastrointest. Oncol.2015789510110.4251/wjgo.v7.i8.9526306141
    [Google Scholar]
  132. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma.Nature2014513751720220910.1038/nature1348025079317
    [Google Scholar]
  133. FuchsC.S. ÖzgüroğluM. BangY.J. Di BartolomeoM. MandalaM. RyuM.H. FornaroL. OlesinskiT. CaglevicC. ChungH.C. MuroK. Van CutsemE. ElmeA. Thuss-PatienceP. ChauI. OhtsuA. BhagiaP. WangA. ShihC.S. ShitaraK. Pembrolizumab versus paclitaxel for previously treated PD-L1-positive advanced gastric or gastroesophageal junction cancer: 2-year update of the randomized phase 3 KEYNOTE-061 trial.Gastric Cancer202225119720610.1007/s10120‑021‑01227‑z34468869
    [Google Scholar]
  134. ShitaraK. Van CutsemE. BangY.J. FuchsC. WyrwiczL. LeeK.W. KudabaI. GarridoM. ChungH.C. LeeJ. CastroH.R. MansoorW. BraghiroliM.I. KarasevaN. CaglevicC. VillanuevaL. GoekkurtE. SatakeH. EnzingerP. AlsinaM. BensonA. ChaoJ. KoA.H. WainbergZ.A. KherU. ShahS. KangS.P. TaberneroJ. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs. chemotherapy alone for patients with first-line, advanced gastric cancer: The KEYNOTE-062 phase 3 randomized clinical trial.JAMA Oncol.20206101571158010.1001/jamaoncol.2020.337032880601
    [Google Scholar]
  135. KimS.T. CristescuR. BassA.J. KimK.M. OdegaardJ.I. KimK. LiuX.Q. SherX. JungH. LeeM. LeeS. ParkS.H. ParkJ.O. ParkY.S. LimH.Y. LeeH. ChoiM. TalasazA. KangP.S. ChengJ. LobodaA. LeeJ. KangW.K. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer.Nat. Med.20182491449145810.1038/s41591‑018‑0101‑z30013197
    [Google Scholar]
  136. ChenY. GuoZ.Q. ShiC.M. ZhouZ.F. YeY.B. ChenQ. Efficacy of adjuvant chemotherapy combined with immunotherapy with cytokine-induced killer cells for gastric cancer after d2 gastrectomy.Int. J. Clin. Exp. Med.2015857728773626221323
    [Google Scholar]
  137. YonedaA. KurokiT. EguchiS. Immunotherapeutic advances in gastric cancer.Surg. Today202151111727173510.1007/s00595‑021‑02236‑233590326
    [Google Scholar]
  138. MasuzawaT. FujiwaraY. OkadaK. NakamuraA. TakiguchiS. NakajimaK. MiyataH. YamasakiM. KurokawaY. OsawaR. TakedaK. YoshidaK. TsunodaT. NakamuraY. MoriM. DokiY. Phase I/II study of S-1 plus cisplatin combined with peptide vaccines for human vascular endothelial growth factor receptor 1 and 2 in patients with advanced gastric cancer.Int. J. Oncol.20124141297130410.3892/ijo.2012.157322842485
    [Google Scholar]
  139. IshikawaH. ImanoM. ShiraishiO. YasudaA. PengY.F. ShinkaiM. YasudaT. ImamotoH. ShiozakiH. Phase I clinical trial of vaccination with LY6K-derived peptide in patients with advanced gastric cancer.Gastric Cancer201417117318010.1007/s10120‑013‑0258‑623613128
    [Google Scholar]
  140. ZhangG.Q. ZhaoH. WuJ.Y. LiJ.Y. YanX. WangG. WuL.L. ZhangX.G. ShaoY. WangY. JiaoS.C. Prolonged overall survival in gastric cancer patients after adoptive immunotherapy.World J. Gastroenterol.20152192777278510.3748/wjg.v21.i9.277725759549
    [Google Scholar]
  141. SongY. TongC. WangY. GaoY. DaiH. GuoY. ZhaoX. WangY. WangZ. HanW. ChenL. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo.Protein Cell201891086787810.1007/s13238‑017‑0384‑828284008
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128363261250224191453
Loading
/content/journals/cpd/10.2174/0113816128363261250224191453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test