Skip to content
2000
image of New Standards in the Treatment of Advanced Metastatic Melanoma: Immunotherapy and BRAF-Targeted Therapies as Emerging Paradigms

Abstract

Although cutaneous melanoma accounts for only about 2% of skin cancers, its rapid progression makes it an aggressive skin cancer with a high mortality rate. As of 2018, the SEER database estimated that the 5-year overall survival (OS) rate is 29.8% in patients with stage IV disease at diagnosis in the United States. Non-cutaneous melanoma, including mucosal and uveal subtypes, carries a generally worse prognosis. Once considered refractory to conventional treatments, such as chemotherapy and radiation therapy, the advent of immunotherapy, including immune checkpoint inhibitors (ICIs), vaccines, and tumor-infiltrating lymphocytes (TIL), and of targeted therapy over the past decade has resulted in dramatic improvements in melanoma. Importantly, ICIs have resulted in long-term remission for patients with melanoma, thus introducing the possibility of a cure for some patients with metastatic disease. These include antibodies against programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), and lymphocyte activation gene-3 (LAG-3). In this review, we will provide an overview of metastatic melanoma while focusing on its current pharmacologic armamentarium, toxicities of treatment, including ICIs and targeted therapy, and its therapeutic clinical strategies. The therapeutic advances presented in this review serve as the foundation for an ever-expanding repertoire of innovative approaches. These include mRNA vaccines, oncolytic viruses, bispecific engagers, oral immunomodulators, and novel cytokines. Adoptive cellular strategies are evolving to TILS transduced with conditional gene expression cassettes, as well as non-T cell approaches involving dendritic cells and natural killer (NK) cells. Targeted therapy strategies have broadened to include upstream components of RAS, other MAP kinase pathways, and HDAC inhibitors, among others. All these new paradigms translate into increasingly complex decision-making for the treatment team, a burden that is more than offset by the tremendous benefit for melanoma patients. This is truly the beginning of a new era.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128341628250519093548
2025-05-26
2025-09-06
Loading full text...

Full text loading...

References

  1. Tracey E.H. Vij A. Updates in melanoma. Dermatol. Clin. 2019 37 1 73 82 10.1016/j.det.2018.08.003 30466690
    [Google Scholar]
  2. Balch C.M. Gershenwald J.E. Soong S. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol. 2009 27 36 6199 6206 10.1200/JCO.2009.23.4799 19917835
    [Google Scholar]
  3. Cancer stat facts: Melanoma of the skin. Available from: https://seer.cancer.gov/statfacts/html/melan.html
  4. Explore cancer statistics. Available from: https://cancerstatisticscenter.cancer.org/#!/cancer-site/Melanoma% 20of%20the%20skin
  5. Wong V.K. Lubner M.G. Menias C.O. Clinical and imaging features of noncutaneous melanoma. AJR Am. J. Roentgenol. 2017 208 5 942 959 10.2214/AJR.16.16800 28301211
    [Google Scholar]
  6. Robert C. LAG-3 and PD-1 blockade raises the bar for melanoma. Nat. Can. 2021 2 12 1251 1253 10.1038/s43018‑021‑00276‑8 35121906
    [Google Scholar]
  7. Long L. Zhang X. Chen F. The promising immune checkpoint LAG-3: From tumor microenvironment to cancer immunotherapy. Genes Cancer 2018 9 5-6 176 189 10.18632/genesandcancer.180 30603054
    [Google Scholar]
  8. Karimkhani C. Green A.C. Nijsten T. The global burden of melanoma: Results from the global burden of disease study 2015. Br. J. Dermatol. 2017 177 1 134 140 10.1111/bjd.15510 28369739
    [Google Scholar]
  9. Tímár J. Vizkeleti L. Doma V. Barbai T. Rásó E. Genetic progression of malignant melanoma. Cancer Metastasis Rev. 2016 35 1 93 107 10.1007/s10555‑016‑9613‑5 26970965
    [Google Scholar]
  10. Law M.H. MacGregor S. Hayward N.K. Melanoma genetics: Recent findings take us beyond well-traveled pathways. J. Invest. Dermatol. 2012 132 7 1763 1774 10.1038/jid.2012.75 22475760
    [Google Scholar]
  11. Barrett J.H. Iles M.M. Harland M. Genome-wide association study identifies three new melanoma susceptibility loci. Nat. Genet. 2011 43 11 1108 1113 10.1038/ng.959 21983787
    [Google Scholar]
  12. Amos C.I. Wang L.E. Lee J.E. Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum. Mol. Genet. 2011 20 24 5012 5023 10.1093/hmg/ddr415 21926416
    [Google Scholar]
  13. Baxter A.J. Hughes M.C. Kvaskoff M. The Queensland Study of Melanoma: Environmental and genetic associations (Q-MEGA); Study design, baseline characteristics, and repeatability of phenotype and sun exposure measures. Twin Res. Hum. Genet. 2008 11 2 183 196 10.1375/twin.11.2.183 18361720
    [Google Scholar]
  14. Tímár J. Ladányi A. Molecular pathology of skin melanoma: Epidemiology, differential diagnostics, prognosis and therapy prediction. Int. J. Mol. Sci. 2022 23 10 5384 10.3390/ijms23105384 35628196
    [Google Scholar]
  15. Akbani R. Akdemir K.C. Aksoy B.A. Genomic classification of cutaneous melanoma. Cell 2015 161 7 1681 1696 10.1016/j.cell.2015.05.044 26091043
    [Google Scholar]
  16. Lovly C.M. Dahlman K.B. Fohn L.E. Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials. PLoS One 2012 7 4 e35309 e35322 10.1371/journal.pone.0035309 22536370
    [Google Scholar]
  17. Maldonado J.L. Fridlyand J. Patel H. Determinants of BRAF mutations in primary melanomas. J. Natl. Cancer Inst. 2003 95 24 1878 1890 10.1093/jnci/djg123 14679157
    [Google Scholar]
  18. Castellani G. Buccarelli M. Arasi M.B. BRAF mutations in melanoma: Biological aspects, therapeutic implications, and circulating biomarkers. Cancers 2023 15 16 4026 10.3390/cancers15164026 37627054
    [Google Scholar]
  19. Aivazian K. Ahmed T. El Sharouni M.A. Histological regression in melanoma: Impact on sentinel lymph node status and survival. Mod. Pathol. 2021 34 11 1999 2008 10.1038/s41379‑021‑00870‑2 34247192
    [Google Scholar]
  20. Sharma P. Allison J.P. The future of immune checkpoint therapy. Science 2015 348 6230 56 61 10.1126/science.aaa8172 25838373
    [Google Scholar]
  21. Hemon P. Jean-Louis F. Ramgolam K. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J. Immunol. 2011 186 9 5173 5183 10.4049/jimmunol.1002050 21441454
    [Google Scholar]
  22. Hopkins A.C. Pancreatic cancer immunotherapy: T-cell receptor sequencing and personalized gene fusion vaccines. PhD. Thesis, The Johns Hopkins University, USA 2017
    [Google Scholar]
  23. Johnson D.B. Frampton G.M. Rioth M.J. Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol. Res. 2016 4 11 959 967 10.1158/2326‑6066.CIR‑16‑0143 27671167
    [Google Scholar]
  24. Snyder A. Makarov V. Merghoub T. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 2014 371 23 2189 2199 10.1056/NEJMoa1406498 25409260
    [Google Scholar]
  25. Yaghmour G. Pandey M. Ireland C. Role of genomic instability in immunotherapy with checkpoint inhibitors. Anticancer Res. 2016 36 8 4033 4038 27466509
    [Google Scholar]
  26. Hua G. Carlson D. Starr J.R. Tebentafusp-tebn: A novel bispecific T-cell engager for metastatic uveal melanoma. J. Adv. Pract. Oncol. 2022 13 7 717 723 10.6004/jadpro.2022.13.7.8 36199496
    [Google Scholar]
  27. Velho T. Metastatic melanoma - A review of current and future drugs. Drugs Context 2012 2012 1 17 10.7573/dic.212242 24432031
    [Google Scholar]
  28. Wolchok J.D. Chiarion-Sileni V. Gonzalez R. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J. Clin. Oncol. 2022 40 2 127 137 10.1200/JCO.21.02229 34818112
    [Google Scholar]
  29. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/202806Orig1s002.pdf last accessed June 5, 2025.
  30. Kreidieh F.Y. Tawbi H.A. The introduction of LAG-3 checkpoint blockade in melanoma: immunotherapy landscape beyond PD-1 and CTLA-4 inhibition. Ther. Adv. Med. Oncol. 2023 15 17588359231186027 10.1177/17588359231186027 37484526
    [Google Scholar]
  31. Atkins M.B. Lotze M.T. Dutcher J.P. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 1999 17 7 2105 2116 10.1200/JCO.1999.17.7.2105 10561265
    [Google Scholar]
  32. Rosenberg S.A. Yang J.C. White D.E. Steinberg S.M. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: Identification of the antigens mediating response. Ann. Surg. 1998 228 3 307 319 10.1097/00000658‑199809000‑00004 9742914
    [Google Scholar]
  33. Anderson P.M. Sorenson M.A. Effects of route and formulation on clinical pharmacokinetics of interleukin-2. Clin. Pharmacokinet. 1994 27 1 19 31 10.2165/00003088‑199427010‑00003 7955769
    [Google Scholar]
  34. Atzpodien J. Körfer A. Evers P. Low-dose subcutaneous recombinant interleukin-2 in advanced human malignancy: A phase II outpatient study. Mol. Biother. 1990 2 1 18 26 2334534
    [Google Scholar]
  35. Atkins M.B. Interleukin-2: Clinical applications. Semin. Oncol. 2002 29 3 Suppl. 7 12 17 10.1053/sonc.2002.33077
    [Google Scholar]
  36. Karp S.E. Low-dose intravenous bolus interleukin-2 with interferon-alpha therapy for metastatic melanoma and renal cell carcinoma. J. Immunother. 1998 21 1 56 61 10.1097/00002371‑199801000‑00007 9456437
    [Google Scholar]
  37. Tagliaferri P. Barile C. Caraglia M. Daily low-dose subcutaneous recombinant interleukin-2 by alternate weekly administration: Antitumor activity and immunomodulatory effects. Am. J. Clin. Oncol. 1998 21 1 48 53 10.1097/00000421‑199802000‑00011 9499257
    [Google Scholar]
  38. Mullard A. Restoring IL-2 to its cancer immunotherapy glory. Nat. Rev. Drug Discov. 2021 20 3 163 165 10.1038/d41573‑021‑00034‑6 33603157
    [Google Scholar]
  39. Diab A. Tykodi S.S. Daniels G.A. Bempegaldesleukin plus nivolumab in first-line metastatic melanoma. J. Clin. Oncol. 2021 39 26 2914 2925 10.1200/JCO.21.00675 34255535
    [Google Scholar]
  40. Ascierto P.A. Daponte A. Parasole R. Intermediate dose recombinant interferon-α as second-line treatment for patients with recurrent cutaneous melanoma who were pretreated with low dose interferon. Cancer 2000 89 7 1490 1494 10.1002/1097‑0142(20001001)89:7<1490:AID‑CNCR11>3.0.CO;2‑V 11013362
    [Google Scholar]
  41. Daponte A. Signoriello S. Maiorino L. Phase III randomized study of fotemustine and dacarbazine versus dacarbazine with or without interferon-α in advanced malignant melanoma. J. Transl. Med. 2013 11 1 38 10.1186/1479‑5876‑11‑38 23402397
    [Google Scholar]
  42. Young A.M. Marsden J. Goodman A. Burton A. Dunn J.A. Prospective randomized comparison of dacarbazine (DTIC) versus DTIC plus interferon-alpha (IFN-alpha) in metastatic melanoma. Clin. Oncol. 2001 13 6 458 465 11824887
    [Google Scholar]
  43. Bajetta E. Del Vecchio M. Nova P. Multicenter phase III randomized trial of polychemotherapy (CVD regimen) versus the same chemotherapy (CT) plus subcutaneous interleukin-2 and interferon-α2b in metastatic melanoma. Ann. Oncol. 2006 17 4 571 577 10.1093/annonc/mdl007 16469753
    [Google Scholar]
  44. Eton O. Legha S.S. Bedikian A.Y. Sequential biochemotherapy versus chemotherapy for metastatic melanoma: Results from a phase III randomized trial. J. Clin. Oncol. 2002 20 8 2045 2052 10.1200/JCO.2002.07.044 11956264
    [Google Scholar]
  45. Riker A.I. Rossi G.R. Masih P. Combination immunotherapy for high-risk resected and metastatic melanoma patients. Ochsner J. 2014 14 2 164 174 24940124
    [Google Scholar]
  46. Egberts F. Gutzmer R. Ugurel S. Sorafenib and pegylated interferon-α2b in advanced metastatic melanoma: A multicenter phase II DeCOG trial. Ann. Oncol. 2011 22 7 1667 1674 10.1093/annonc/mdq648 21220519
    [Google Scholar]
  47. Grignol V.P. Olencki T. Relekar K. A phase 2 trial of bevacizumab and high-dose interferon alpha 2B in metastatic melanoma. J. Immunother. 2011 34 6 509 515 10.1097/CJI.0b013e31821dcefd 21654521
    [Google Scholar]
  48. Guenterberg K.D. Grignol V.P. Relekar K.V. A pilot study of bevacizumab and interferon-α2b in ocular melanoma. Am. J. Clin. Oncol. 2011 34 1 87 91 10.1097/COC.0b013e3181d2ed67 20458209
    [Google Scholar]
  49. Tarhini A.A. Cherian J. Moschos S.J. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J. Clin. Oncol. 2012 30 3 322 328 10.1200/JCO.2011.37.5394 22184371
    [Google Scholar]
  50. Small E.J. Tchekmedyian N.S. Rini B.I. Fong L. Lowy I. Allison J.P. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 2007 13 6 1810 1815 10.1158/1078‑0432.CCR‑06‑2318 17363537
    [Google Scholar]
  51. Switzer B. Puzanov I. Skitzki J.J. Hamad L. Ernstoff M.S. Managing metastatic melanoma in 2022: A clinical review. JCO Oncol. Pract. 2022 18 5 335 351 10.1200/OP.21.00686 35133862
    [Google Scholar]
  52. Hodi F.S. O’Day S.J. McDermott D.F. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010 363 8 711 723 10.1056/NEJMoa1003466 20525992
    [Google Scholar]
  53. Eggermont A.M.M. Chiarion-Sileni V. Grob J.J. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2015 16 5 522 530 10.1016/S1470‑2045(15)70122‑1 25840693
    [Google Scholar]
  54. Larkin J. Chiarion-Sileni V. Gonzalez R. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2019 381 16 1535 1546 10.1056/NEJMoa1910836 31562797
    [Google Scholar]
  55. Wolchok J.D. Chiarion-Sileni V. Gonzalez R. CheckMate 067: 6.5-year outcomes in patients (pts) with advanced melanoma. J. Clin. Oncol. 2021 39 15 9506 6
    [Google Scholar]
  56. Ascierto P.A. Del Vecchio M. Robert C. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2017 18 5 611 622 10.1016/S1470‑2045(17)30231‑0 28359784
    [Google Scholar]
  57. Ascierto P.A. Del Vecchio M. Mackiewicz A. Overall survival at 5 years of follow-up in a phase III trial comparing ipilimumab 10 mg/kg with 3 mg/kg in patients with advanced melanoma. J. Immunother. Cancer 2020 8 1 e000391 10.1136/jitc‑2019‑000391 32503946
    [Google Scholar]
  58. Romano E. Kusio-Kobialka M. Foukas P.G. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl. Acad. Sci. USA 2015 112 19 6140 6145 10.1073/pnas.1417320112 25918390
    [Google Scholar]
  59. Reilley M.J. Morrow B. Ager C.R. Liu A. Hong D.S. Curran M.A. TLR9 activation cooperates with T cell checkpoint blockade to regress poorly immunogenic melanoma. J. Immunother. Cancer 2019 7 1 323 10.1186/s40425‑019‑0811‑x 31771649
    [Google Scholar]
  60. Tarhini A. Lin Y. Lin H. Neoadjuvant ipilimumab (3 mg/kg or 10 mg/kg) and high dose IFN-α2b in locally/regionally advanced melanoma: Safety, efficacy and impact on T-cell repertoire. J. Immunother. Cancer 2018 6 1 112 10.1186/s40425‑018‑0428‑5 30352626
    [Google Scholar]
  61. Robert C. Ribas A. Schachter J. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): Post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019 20 9 1239 1251 10.1016/S1470‑2045(19)30388‑2 31345627
    [Google Scholar]
  62. Robert C. Long G.V. Brady B. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015 372 4 320 330 10.1056/NEJMoa1412082 25399552
    [Google Scholar]
  63. Hodi F.S. Chesney J. Pavlick A.C. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016 17 11 1558 1568 10.1016/S1470‑2045(16)30366‑7 27622997
    [Google Scholar]
  64. Long G.V. Atkinson V. Lo S. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol. 2018 19 5 672 681 10.1016/S1470‑2045(18)30139‑6 29602646
    [Google Scholar]
  65. Tawbi H.A. Forsyth P.A. Algazi A. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 2018 379 8 722 730 10.1056/NEJMoa1805453 30134131
    [Google Scholar]
  66. Schvartsman G. Taranto P. Glitza I.C. Agarwala S.S. Atkins M.B. Buzaid A.C. Management of metastatic cutaneous melanoma: Updates in clinical practice. Ther. Adv. Med. Oncol. 2019 11 1758835919851663 10.1177/1758835919851663 31205512
    [Google Scholar]
  67. Piulats J.M. Espinosa E. de la Cruz Merino L. Nivolumab plus ipilimumab for treatment-naïve metastatic uveal melanoma: An open-label, multicenter, phase II trial by the Spanish Multidisciplinary Melanoma Group (GEM-1402). J. Clin. Oncol. 2021 39 6 586 598 10.1200/JCO.20.00550 33417511
    [Google Scholar]
  68. Najjar Y.G. Navrazhina K. Ding F. Ipilimumab plus nivolumab for patients with metastatic uveal melanoma: A multicenter, retrospective study. J. Immunother. Cancer 2020 8 1 e000331 10.1136/jitc‑2019‑000331 32581057
    [Google Scholar]
  69. Pelster M.S. Gruschkus S.K. Bassett R. Nivolumab and ipilimumab in metastatic uveal melanoma: Results from a single-arm phase II study. J. Clin. Oncol. 2021 39 6 599 607 10.1200/JCO.20.00605 33125309
    [Google Scholar]
  70. Triebel F.A. A novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 1996 171 12
    [Google Scholar]
  71. Huang C.T. Workman C.J. Flies D. Role of LAG-3 in regulatory T cells. Immunity 2004 21 4 503 513 10.1016/j.immuni.2004.08.010 15485628
    [Google Scholar]
  72. Hannier S. Tournier M. Bismuth G. Triebel F. CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. J. Immunol. 1998 161 8 4058 4065 10.4049/jimmunol.161.8.4058 9780176
    [Google Scholar]
  73. Bjoern J. Lyngaa R. Andersen R. Influence of ipilimumab on expanded tumour derived T cells from patients with metastatic melanoma. Oncotarget 2017 8 16 27062 27074 10.18632/oncotarget.16003 28423678
    [Google Scholar]
  74. Woo S.R. Turnis M.E. Goldberg M.V. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012 72 4 917 927 10.1158/0008‑5472.CAN‑11‑1620 22186141
    [Google Scholar]
  75. Romano E. Michielin O. Voelter V. MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: Results of a Phase I trial. J. Transl. Med. 2014 12 1 97 10.1186/1479‑5876‑12‑97 24726012
    [Google Scholar]
  76. Brignone C. Gutierrez M. Mefti F. First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J. Transl. Med. 2010 8 1 71 10.1186/1479‑5876‑8‑71 20653948
    [Google Scholar]
  77. Brignone C. Escudier B. Grygar C. Marcu M. Triebel F. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin. Cancer Res. 2009 15 19 6225 6231 10.1158/1078‑0432.CCR‑09‑0068 19755389
    [Google Scholar]
  78. Hahn A.W. Gill D.M. Pal S.K. Agarwal N. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy 2017 9 8 681 692 10.2217/imt‑2017‑0024 28653573
    [Google Scholar]
  79. Lipson E. Initial experience administering BMS-986016, a monoclonal antibody that targets lymphocyte activation gene (LAG)-3, alone and in combination with nivolumab to patients with hematologic and solid malignancies. J. Immunother. Cancer 2016 4 Suppl. 1 232
    [Google Scholar]
  80. Ascierto PA Melero I Bhatia S Initial efficacy of antilymphocyte activation gene-3 (anti-LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti-PD-1/PD-L1 therapy. 2017 35 15 9520 0
    [Google Scholar]
  81. Ascierto P.A. Bono P. Bhatia S. Efficacy of BMS-986016, a monoclonal antibody that targets lymphocyte activation gene-3 (LAG-3), in combination with nivolumab in pts with melanoma who progressed during prior anti-PD-1/PD-L1 therapy (mel prior IO) in all-comer and biomarker-enriched populations. Ann. Oncol. 2017 28 v611 v612 10.1093/annonc/mdx440.011
    [Google Scholar]
  82. Evan J.L. Tawbi H.A.H. Schadendorf D. Relatlimab (RELA) plus nivolumab (NIVO) versus NIVO in first-line advanced melanoma: Primary phase III results from RELATIVITY-047 (CA224-047). J. Clin. Oncol. 2021 39 15_suppl 9503 10.1200/JCO.2021.39.15_suppl.9503
    [Google Scholar]
  83. Tawbi H.A. Schadendorf D. Lipson E.J. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 2022 386 1 24 34 10.1056/NEJMoa2109970 34986285
    [Google Scholar]
  84. Long Georgina V. Hodi F.S. Lipson E.J. Relatlimab and nivolumab versus nivolumab in previously untreated metastatic or unresectable melanoma: Overall survival and response rates from RELATIVITY-047 (CA224-047). J. Clin. Oncol. 2022 40 36_suppl 10.1200/JCO.2022.40.36_suppl.360385
    [Google Scholar]
  85. Study of efficacy and safety of novel spartalizumab combinations in patients with previously treated unresectable or metastatic melanoma (PLATforM). NCT03484923 2024
  86. Available from: https://www.cancer.gov/research/participate/clinical-trials/disease/melanoma/treatment?pn=1last accessed June 5,2025
  87. Dose escalation study of a PD1-LAG3 bispecific antibody in patients with advanced and/or metastatic solid tumors. NCT04140500 2025
  88. Rosenberg S.A. Restifo N.P. Yang J.C. Morgan R.A. Dudley M.E. Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 2008 8 4 299 308 10.1038/nrc2355 18354418
    [Google Scholar]
  89. Sarnaik A.A. Hamid O. Khushalani N.I. Lifileucel, a tumor-infiltrating lymphocyte therapy, in metastatic melanoma. J. Clin. Oncol. 2021 39 24 2656 2666 10.1200/JCO.21.00612 33979178
    [Google Scholar]
  90. Betof Warner A. Corrie P.G. Hamid O. Tumor-infiltrating lymphocyte therapy in melanoma: Facts to the future. Clin. Cancer Res. 2023 29 10 1835 1854 10.1158/1078‑0432.CCR‑22‑1922 36485001
    [Google Scholar]
  91. Carreno B.M. Magrini V. Becker-Hapak M. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015 348 6236 803 808 10.1126/science.aaa3828 25837513
    [Google Scholar]
  92. Hu Z. Leet D.E. Allesøe R.L. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 2021 27 3 515 525 10.1038/s41591‑020‑01206‑4 33479501
    [Google Scholar]
  93. Moderna and Merck announce mRNA-4157/V940, an investigational personalized mRNA cancer vaccine, in combination with KEYTRUDA® (pembrolizumab), met primary efficacy endpoint in phase 2b KEYNOTE-942 trial. 2022 Available from: https://www.merck.com/news/moderna-and-merck-announce-mrna-4157-v940-an-investigational-personalized-mrna-cancer-vaccine-in-combination-with-keytruda-pembrolizumab-met-primary-efficacy-endpoint-in-phase-2b-keynote-94/
  94. Inamdar G.S. Madhunapantula S.V. Robertson G.P. Targeting the MAPK pathway in melanoma: Why some approaches succeed and other fail. Biochem. Pharmacol. 2010 80 5 624 637 10.1016/j.bcp.2010.04.029 20450891
    [Google Scholar]
  95. Long G.V. Stroyakovskiy D. Gogas H. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 2014 371 20 1877 1888 10.1056/NEJMoa1406037 25265492
    [Google Scholar]
  96. Trojaniello C. Luke J.J. Ascierto P.A. Therapeutic advancements across clinical stages in melanoma, with a focus on targeted immunotherapy. Front. Oncol. 2021 11 670726 10.3389/fonc.2021.670726 34178657
    [Google Scholar]
  97. Hamid O. Cowey C.L. Offner M. Faries M. Carvajal R.D. Efficacy, safety, and tolerability of approved combination BRAF and MEK inhibitor regimens for BRAF-mutant melanoma. Cancers 2019 11 11 1642 10.3390/cancers11111642 31653096
    [Google Scholar]
  98. Heinrich M.C. Griffith D.J. Druker B.J. Wait C.L. Ott K.A. Zigler A.J. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 2000 96 3 925 932 10.1182/blood.V96.3.925 10910906
    [Google Scholar]
  99. Carvajal R.D. Antonescu C.R. Wolchok J.D. KIT as a therapeutic target in metastatic melanoma. JAMA 2011 305 22 2327 2334 10.1001/jama.2011.746 21642685
    [Google Scholar]
  100. Nassar K.W. Tan A.C. The mutational landscape of mucosal melanoma. Semin. Cancer Biol. 2020 61 139 148
    [Google Scholar]
  101. Jakob J.A. Bassett R.L. Ng C.S. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 2012 118 16 4014 4023 10.1002/cncr.26724 22180178
    [Google Scholar]
  102. Mandalà M. Merelli B. Massi D. NRAS in melanoma: Targeting the undruggable target. Crit. Rev. Oncol. Hematol. 2014 92 2 107 122 10.1016/j.critrevonc.2014.05.005 24985059
    [Google Scholar]
  103. Al Mahi A. Ablain J. RAS pathway regulation in melanoma. Dis. Model. Mech. 2022 15 2 dmm049229 10.1242/dmm.049229 35234863
    [Google Scholar]
  104. Kirkwood J.M. Agarwala S.S. Systemic cytotoxic and biologic therapy of melanoma. PPO Updates 1993 7 1 1993 1996
    [Google Scholar]
  105. Glover D. Ibrahim J. Kirkwood J. Phase II randomized trial of cisplatin and WR-2721 versus cisplatin alone for metastatic melanoma. Melanoma Res. 2003 13 6 619 626 10.1097/00008390‑200312000‑00012 14646626
    [Google Scholar]
  106. Evans L.M. Casper E.S. Rosenbluth R. Phase II trial of carboplatin in advanced malignant melanoma. Cancer Treat. Rep. 1987 71 2 171 172 3542209
    [Google Scholar]
  107. Dasari S. Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014 740 364 378 10.1016/j.ejphar.2014.07.025 25058905
    [Google Scholar]
  108. Güven K. Kittler H. Wolff K. Pehamberger H. Cisplatin and carboplatin combination as second-line chemotherapy in dacarbazine-resistant melanoma patients. Melanoma Res. 2001 11 4 411 415 10.1097/00008390‑200108000‑00012 11479430
    [Google Scholar]
  109. Wiernik P.H. Taxol in malignant melanoma. J. Natl. Cancer Inst. Monogr. 1993 15 185 187
    [Google Scholar]
  110. Einzig A.I. Hochster H. Wiernik P.H. A phase II study of taxol in patients with malignant melanoma. Invest. New Drugs 1991 9 1 59 64 10.1007/BF00194546 1673965
    [Google Scholar]
  111. Legha S.S. Ring S. Papadopoulos N. Raber M. Benjamin R.S. A phase II trial of taxol in metastatic melanoma. Cancer 1990 65 11 2478 2481 10.1002/1097‑0142(19900601)65:11<2478:AID‑CNCR2820651114>3.0.CO;2‑S 1970948
    [Google Scholar]
  112. Weiss R.B. Donehower R.C. Wiernik P.H. Hypersensitivity reactions from taxol. J. Clin. Oncol. 1990 8 7 1263 1268 10.1200/JCO.1990.8.7.1263 1972736
    [Google Scholar]
  113. Yamamoto Y. Kawano I. Iwase H. Nab-paclitaxel for the treatment of breast cancer: Efficacy, safety, and approval. OncoTargets Ther. 2011 4 123 136 10.2147/OTT.S13836 21792318
    [Google Scholar]
  114. Hersh E.M. Del Vecchio M. Brown M.P. A randomized, controlled phase III trial of nab-Paclitaxel versus dacarbazine in chemotherapy-naïve patients with metastatic melanoma. Ann. Oncol. 2015 26 11 2267 2274 10.1093/annonc/mdv324 26410620
    [Google Scholar]
  115. Eggermont A.M.M. Kirkwood J.M. Re-evaluating the role of dacarbazine in metastatic melanoma: What have we learned in 30 years? Eur. J. Cancer 2004 40 12 1825 1836 10.1016/j.ejca.2004.04.030 15288283
    [Google Scholar]
  116. Wilson M.A. Schuchter L.M. Chemotherapy for melanoma. Melanoma 2016 167 209 229 10.1007/978‑3‑319‑22539‑5_8
    [Google Scholar]
  117. Huncharek M. Caubet J.F. McGarry R. Single-agent DTIC versus combination chemotherapy with or without immunotherapy in metastatic melanoma: A meta-analysis of 3273 patients from 20 randomized trials. Melanoma Res. 2001 11 1 75 81 10.1097/00008390‑200102000‑00009 11254118
    [Google Scholar]
  118. Crosby T. Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst. Rev. 1996 2014 6
    [Google Scholar]
  119. Bajetta E. Vecchio M.D. Bernard-Marty C. Metastatic melanoma: Chemotherapy. Semin. Oncol. 2002 29 5 427 445 10.1053/sonc.2002.35238
    [Google Scholar]
  120. Quirt I. Verma S. Petrella T. Bak K. Charette M. Temozolomide for the treatment of metastatic melanoma: A systematic review. Oncologist 2007 12 9 1114 1123 10.1634/theoncologist.12‑9‑1114 17914081
    [Google Scholar]
  121. Middleton M.R. Grob J.J. Aaronson N. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. Clin. Oncol. 2000 18 1 158 166 10.1200/JCO.2000.18.1.158 10623706
    [Google Scholar]
  122. Paul M.J. Summers Y. Calvert A.H. Effect of temozolomide on central nervous system relapse in patients with advanced melanoma. Melanoma Res. 2002 12 2 175 178 10.1097/00008390‑200204000‑00011 11930115
    [Google Scholar]
  123. Bhatia S. Tykodi S.S. Thompson J.A. Treatment of metastatic melanoma: An overview. Oncology 2009 23 6 488 496 19544689
    [Google Scholar]
  124. Ribas A. Hodi F.S. Callahan M. Konto C. Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 2013 368 14 1365 1366 10.1056/NEJMc1302338 23550685
    [Google Scholar]
  125. Hu-Lieskovan S. Mok S. Moreno B.H. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Sci. Transl. Med. 2015 7 279 279ra41 10.1126/scitranslmed.aaa4691
    [Google Scholar]
  126. Lelliott E.J. McArthur G.A. Oliaro J. Sheppard K.E. Immunomodulatory effects of BRAF, MEK, and CDK4/6 inhibitors: Implications for combining targeted therapy and immune checkpoint blockade for the treatment of melanoma. Front. Immunol. 2021 12 661737 10.3389/fimmu.2021.661737 34025662
    [Google Scholar]
  127. Ferrucci P.F. Di Giacomo A.M. Del Vecchio M. KEYNOTE-022 part 3: A randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma. J. Immunother. Cancer 2020 8 2 e001806 10.1136/jitc‑2020‑001806 33361337
    [Google Scholar]
  128. Long GV Lebbe C Atkinson V The anti-PD-1 antibody spartalizumab (S) in combination with dabrafenib (D) and trametinib (T) in previously untreated patients (pts) with advanced BRAF V600- mutant melanoma: Updated efficacy and safety from parts 1 and 2 of COMBI-i. 2019 38 5 9531 1
  129. Stachyra-Strawa P. Ciesielka M. Janiszewski M. Grzybowska-Szatkowska L. The role of immunotherapy and molecular targeted therapy in the treatment of melanoma (Review). Oncol. Rep. 2021 46 2 158 10.3892/or.2021.8109 34109986
    [Google Scholar]
  130. Weidner N. Semple J.P. Welch W.R. Folkman J. Tumor angiogenesis and metastasis - Correlation in invasive breast carcinoma. N. Engl. J. Med. 1991 324 1 1 8 10.1056/NEJM199101033240101 1701519
    [Google Scholar]
  131. Weidner N. Folkman J. Pozza F. Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl. Cancer Inst. 1992 84 24 1875 1887 10.1093/jnci/84.24.1875 1281237
    [Google Scholar]
  132. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1995 1 1 27 30 10.1038/nm0195‑27 7584949
    [Google Scholar]
  133. Imao T. Egawa M. Takashima H. Koshida K. Namiki M. Inverse correlation of microvessel density with metastasis and prognosis in renal cell carcinoma. Int. J. Urol. 2004 11 11 948 953 10.1111/j.1442‑2042.2004.00931.x 15509196
    [Google Scholar]
  134. Busam K.J. Berwick M. Blessing K. Tumor vascularity is not a prognostic factor for malignant melanoma of the skin. Am. J. Pathol. 1995 147 4 1049 1056 7573350
    [Google Scholar]
  135. Carnochan P. Briggs J.C. Westbury G. Davies A.J.S. The vascularity of cutaneous melanoma: A quantitative histological study of lesions 0.85-1.25 mm in thickness. Br. J. Cancer 1991 64 1 102 107 10.1038/bjc.1991.250 1854608
    [Google Scholar]
  136. Neitzel L.T. Neitzel C.D. Magee K.L. Malafa M.P. Angiogenesis correlates with metastasis in melanoma. Ann. Surg. Oncol. 1999 6 1 70 74 10.1007/s10434‑999‑0070‑z 10030417
    [Google Scholar]
  137. Georganaki M. van Hooren L. Dimberg A. Vascular targeting to increase the efficiency of immune checkpoint blockade in cancer. Front. Immunol. 2018 9 3081 10.3389/fimmu.2018.03081 30627131
    [Google Scholar]
  138. Song Y. Fu Y. Xie Q. Zhu B. Wang J. Zhang B. Anti-angiogenic agents in combination with immune checkpoint inhibitors: A promising strategy for cancer treatment. Front. Immunol. 2020 11 1956 10.3389/fimmu.2020.01956 32983126
    [Google Scholar]
  139. Arance A. de la Cruz-Merino L. Petrella T.M. Phase II LEAP-004 study of lenvatinib plus pembrolizumab for melanoma with confirmed progression on a programmed cell death protein-1 or programmed death ligand 1 inhibitor given as monotherapy or in combination. J. Clin. Oncol. 2023 41 1 75 85 10.1200/JCO.22.00221 35867951
    [Google Scholar]
  140. Welcome to NCCN.org.Available from: https://www.nccn.org/
  141. Cancer immunotherapy guidelines cutaneous melanoma - Current algorithms. 2018 Available from: https://www.sitcancer.org/research/cancer-immunotherapy-guidelines/melanoma/currentalgorithms/
  142. Atkins M.B. Lee S.J. Chmielowski B. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: The DREAMseq trial—ECOG-ACRIN EA6134. J. Clin. Oncol. 2023 41 2 186 197 10.1200/JCO.22.01763 36166727
    [Google Scholar]
  143. Robert C Dutriaux C Oppong FB Combination of encorafenib and binimetinib followed by ipilimumab and nivolumab versus ipilimumab and nivolumab in patients with advanced BRAF V600E/K-mutated melanoma: The primary analysis of an EORTC randomized phase II study (EBIN). 2024 42 17 LBA9503 LBA922
  144. Hieken T.J. Kreidieh F. Aedo-Lopez V. Block M.S. McArthur G.A. Amaria R.N. Neoadjuvant immunotherapy in melanoma: The paradigm shift. Am. Soc. Clin. Oncol. Educ. Book 2023 43 43 e390614 e390622 10.1200/EDBK_390614 37116111
    [Google Scholar]
  145. Patel S.P. Othus M. Chen Y. Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 2023 388 9 813 823 10.1056/NEJMoa2211437 36856617
    [Google Scholar]
  146. Amaria R.N. Postow M. Burton E.M. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature 2022 611 7934 155 160 10.1038/s41586‑022‑05368‑8 36289334
    [Google Scholar]
  147. Whijae R. Chen P. Reuben A. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. J. Transl. Med. 2017 9 379 10.1126/scitranslmed.aah3560
    [Google Scholar]
  148. Erstad D.J. Witt R.G. Wargo J.A. Neoadjuvant therapy for melanoma: New and evolving concepts. Clin. Adv. Hematol. Oncol. 2022 20 1 47 55 35060962
    [Google Scholar]
  149. Rozeman E.A. Menzies A.M. van Akkooi A.C.J. Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): A multicentre, phase 2, randomised, controlled trial. Lancet Oncol. 2019 20 7 948 960 10.1016/S1470‑2045(19)30151‑2 31160251
    [Google Scholar]
  150. Smith M.J.F. Smith H.G. Joshi K. The impact of effective systemic therapies on surgery for stage IV melanoma. Eur. J. Cancer 2018 103 24 31 10.1016/j.ejca.2018.08.008 30196107
    [Google Scholar]
  151. Blankenstein S.A. Aarts M.J.B. van den Berkmortel F.W.P.J. Surgery for unresectable stage IIIC and IV melanoma in the era of new systemic therapy. Cancers 2020 12 5 1176 10.3390/cancers12051176 32392717
    [Google Scholar]
  152. Bello D.M. Panageas K.S. Hollmann T. Survival outcomes after metastasectomy in melanoma patients categorized by response to checkpoint blockade. Ann. Surg. Oncol. 2020 27 4 1180 1188 10.1245/s10434‑019‑08099‑9 31848819
    [Google Scholar]
  153. Ch’ng S. Uyulmaz S. Carlino M.S. Re-defining the role of surgery in the management of patients with oligometastatic stage IV melanoma in the era of effective systemic therapies. Eur. J. Cancer 2021 153 8 15 10.1016/j.ejca.2021.04.037 34126335
    [Google Scholar]
  154. Paul S. Altorki N.K. Sheng S. Thoracoscopic lobectomy is associated with lower morbidity than open lobectomy: A propensity-matched analysis from the STS database. J. Thorac. Cardiovasc. Surg. 2010 139 2 366 378 10.1016/j.jtcvs.2009.08.026 20106398
    [Google Scholar]
  155. Rose D.M. Essner R. Hughes T.M. Surgical resection for metastatic melanoma to the liver: The John Wayne Cancer Institute and Sydney Melanoma Unit experience. Arch. Surg. 2001 136 8 950 955 10.1001/archsurg.136.8.950 11485537
    [Google Scholar]
  156. Leung A.M. Hari D.M. Morton D.L. Surgery for distant melanoma metastasis. Cancer J. 2012 18 2 176 184 10.1097/PPO.0b013e31824bc981 22453019
    [Google Scholar]
  157. Flaherty D.C. Deutsch G.B. Kirchoff D.D. Adrenalectomy for metastatic melanoma: Current role in the age of nonsurgical treatments. Am. Surg. 2015 81 10 1005 1009 10.1177/000313481508101019 26463298
    [Google Scholar]
  158. Russo A.E. Untch B.R. Kris M.G. Adrenal metastasectomy in the presence and absence of extraadrenal metastatic disease. Ann. Surg. 2019 270 2 373 377 10.1097/SLA.0000000000002749 29578911
    [Google Scholar]
  159. Kreidieh F.Y. Tawbi H.A. Current and emerging options for patients with melanoma brain metastases. Clin. Adv. Hematol. Oncol. 2022 20 10 619 627 36206074
    [Google Scholar]
  160. Tawbi H.A. Boutros C. Kok D. Robert C. McArthur G. New era in the management of melanoma brain metastases. Am. Soc. Clin. Oncol. Educ. Book 2018 38 38 741 750 10.1200/EDBK_200819 30231345
    [Google Scholar]
  161. Rishi A. Yu H.H.M. Current treatment of melanoma brain metastasis. Curr. Treat. Options Oncol. 2020 21 6 45 10.1007/s11864‑020‑00733‑z 32350685
    [Google Scholar]
  162. Gazzeri R. Nalavenkata S. Teo C. Minimally invasive key-hole approach for the surgical treatment of single and multiple brain metastases. Clin. Neurol. Neurosurg. 2014 123 117 126 10.1016/j.clineuro.2014.05.010 25012023
    [Google Scholar]
  163. Hatiboglu M.A. Wildrick D.M. Sawaya R. The role of surgical resection in patients with brain metastases. Ecancermedicalscience 2013 7 308 23634178
    [Google Scholar]
  164. Yamamoto M. Kawabe T. Sato Y. Stereotactic radiosurgery for patients with multiple brain metastases: A case-matched study comparing treatment results for patients with 2-9 versus 10 or more tumors. J. Neurosurg. 2014 121 Suppl. 2 16 25 10.3171/2014.8.GKS141421 25434933
    [Google Scholar]
  165. Tawbi H.A. Forsyth P.A. Hodi F.S. Safety and efficacy of the combination of nivolumab plus ipilimumab in patients with melanoma and asymptomatic or symptomatic brain metastases (CheckMate 204). Neuro-oncol. 2021 23 11 1961 1973 10.1093/neuonc/noab094 33880555
    [Google Scholar]
  166. Mandalà M. De Logu F. Merelli B. Nassini R. Massi D. Immunomodulating property of MAPK inhibitors: From translational knowledge to clinical implementation. Lab. Invest. 2017 97 2 166 175 10.1038/labinvest.2016.132 27991907
    [Google Scholar]
  167. Gutzmer R. Stroyakovskiy D. Gogas H. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): Primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2020 395 10240 1835 1844 10.1016/S0140‑6736(20)30934‑X 32534646
    [Google Scholar]
  168. Phase II study of nivolumab in combination with relatlimab in patients with active melanoma brain metastases. NCT05704647 2024
  169. S8 immunotoxicity studies for human pharmaceuticals 2006 Available from: https://www.fda.gov/media/72047/download
  170. Carlos G. Anforth R. Clements A. Cutaneous toxic effects of BRAF inhibitors alone and in combination with MEK inhibitors for metastatic melanoma. JAMA Dermatol. 2015 151 10 1103 1109 10.1001/jamadermatol.2015.1745 26200476
    [Google Scholar]
  171. Haanen J. Obeid M. Spain L. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022 33 12 1217 1238 10.1016/j.annonc.2022.10.001 36270461
    [Google Scholar]
  172. Larkin J. Chiarion-Sileni V. Gonzalez R. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 2015 373 1 23 34 10.1056/NEJMoa1504030 26027431
    [Google Scholar]
  173. Wolchok J.D. Neyns B. Linette G. Ipilimumab monotherapy in patients with pretreated advanced melanoma: A randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010 11 2 155 164 10.1016/S1470‑2045(09)70334‑1 20004617
    [Google Scholar]
  174. Eggermont A.M.M. Chiarion-Sileni V. Grob J.J. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N. Engl. J. Med. 2016 375 1845 1855 10.1056/NEJMoa1611299
    [Google Scholar]
  175. Naidoo J. Page D.B. Li B.T. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 2015 26 12 2375 2391 10.1093/annonc/mdv383 26371282
    [Google Scholar]
  176. Brahmer J. Reckamp K.L. Baas P. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 2015 373 2 123 135 10.1056/NEJMoa1504627 26028407
    [Google Scholar]
  177. Ribas A. Puzanov I. Dummer R. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol. 2015 16 8 908 918 10.1016/S1470‑2045(15)00083‑2 26115796
    [Google Scholar]
  178. Eigentler T.K. Hassel J.C. Berking C. Diagnosis, monitoring and management of immune-related adverse drug reactions of anti-PD-1 antibody therapy. Cancer Treat. Rev. 2016 45 7 18 10.1016/j.ctrv.2016.02.003 26922661
    [Google Scholar]
  179. Weber J.S. Hodi F.S. Wolchok J.D. Safety profile of nivolumab monotherapy: A pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 2017 35 7 785 792 10.1200/JCO.2015.66.1389 28068177
    [Google Scholar]
  180. Horvat T.Z. Adel N.G. Dang T.O. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J. Clin. Oncol. 2015 33 28 3193 3198 10.1200/JCO.2015.60.8448 26282644
    [Google Scholar]
  181. Garutti M. Bergnach M. Polesel J. Palmero L. Pizzichetta M.A. Puglisi F. BRAF and MEK inhibitors and their toxicities: A meta-analysis. Cancers (Basel) 2022 15 1 141 10.3390/cancers15010141 36612138
    [Google Scholar]
  182. Mincu R.I. Mahabadi A.A. Michel L. Cardiovascular adverse events associated with BRAF and MEK inhibitors: A systematic review and meta-analysis. JAMA Netw. Open 2019 2 8 e198890 10.1001/jamanetworkopen.2019.8890 31397860
    [Google Scholar]
  183. Arangalage D. Degrauwe N. Michielin O. Monney P. Özdemir B.C. Pathophysiology, diagnosis and management of cardiac toxicity induced by immune checkpoint inhibitors and BRAF and MEK inhibitors. Cancer Treat. Rev. 2021 100 102282 10.1016/j.ctrv.2021.102282 34438238
    [Google Scholar]
  184. Zelboraf European Medicines Agency 2013 Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/zelboraf
  185. Kreidieh F. McQuade J. Novel insights into cardiovascular toxicity of cancer targeted and immune therapies: Beyond ischemia with non-obstructive coronary arteries (INOCA). In: Am Heart J Plus. 2024 40 100374 10.1016/j.ahjo.2024.100374 38510501
    [Google Scholar]
  186. Banks M. Crowell K. Proctor A. Jensen B.C. Cardiovascular effects of the MEK inhibitor, trametinib: A case report, literature review, and consideration of mechanism. Cardiovasc. Toxicol. 2017 17 4 487 493 10.1007/s12012‑017‑9425‑z 28861837
    [Google Scholar]
  187. Dummer R. Rinderknecht J. Goldinger S.M. Ultraviolet A and photosensitivity during vemurafenib therapy. N. Engl. J. Med. 2012 366 5 480 481 10.1056/NEJMc1113752 22296092
    [Google Scholar]
  188. Hauschild A. Grob J.J. Demidov L.V. Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012 380 9839 358 365 10.1016/S0140‑6736(12)60868‑X 22735384
    [Google Scholar]
  189. Chapman P.B. Hauschild A. Robert C. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011 364 26 2507 2516 10.1056/NEJMoa1103782 21639808
    [Google Scholar]
  190. McArthur G.A. Chapman P.B. Robert C. Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): Extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014 15 3 323 332 10.1016/S1470‑2045(14)70012‑9 24508103
    [Google Scholar]
  191. Flaherty L. Hamid O. Linette G. A single-arm, open-label, expanded access study of vemurafenib in patients with metastatic melanoma in the United States. Cancer J. 2014 20 1 18 24 10.1097/PPO.0000000000000024 24445759
    [Google Scholar]
  192. Livingstone E. Zimmer L. Vaubel J. Schadendorf D. BRAF, MEK and KIT inhibitors for melanoma: Adverse events and their management. Chin Clin Oncol 2014 3 3 29 9 25841455
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128341628250519093548
Loading
/content/journals/cpd/10.2174/0113816128341628250519093548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test