Skip to content
2000
image of Mechanistic Insights into Astragalus Membranaceus for Oral Submucosal Fibrosis: A Network Pharmacology and Experimental Approach

Abstract

Background

Oral Submucosal Fibrosis (OSF) is a chronic progressive oral mucosal disease with a tendency to progress to cancer. Astragalus membranaceus (AST) is a traditional Chinese medicine used to invigorate Qi and strengthen the body, with anti-fibrosis properties. However, the effect and mechanism of AST on OSF remain unclear.

Objective

This study aims to explore the mechanism of Astragalus membranaceus in OSF using network pharmacology and to validate its effects on oral mucosal fibroblasts through experiments.

Methods

Network pharmacology was employed to construct an “AST - ingredient - target - OSF” network and perform Protein-Protein Interaction (PPI) analysis. Molecular docking was used to confirm core interactions between key targets and ingredients, and all results met the criterion of a binding energy of <- -1.2 kcal/mol. experiments were conducted to assess the cytotoxicity of arecoline (ARE) and Astragalus membranaceus injection (ASI) on Oral Mucosal Fibroblasts (OMF).

Results

Analysis revealed 68 common targets between AST and OSF, and a corresponding PPI network was constructed. KEGG and GO enrichment analyses identified 138 pathways and 178 biological processes associated with these targets. Molecular docking confirmed core interactions between five key targets (EGFR, VEGFA, MAPK3, HRAS, JUN) and other ingredients. experiments showed that ARE at concentrations of 20-40 µg/ml significantly upregulated ACTA2, EGFR, and VEGFA mRNA expression. ASI treatment at varying concentrations significantly inhibited these increases, with 100 mg/ml ASI downregulating EGFR and VEGFA mRNA, and 300-400 mg/ml ASI reducing ACTA2 expression.

Discussion

Astragalus membranaceus injection engages multiple targets and pathways to counteract OSF, aligning with previous antifibrotic evidence and underscoring the need for further and clinical validation.

Conclusion

Astragalus membranaceus injection may suppress ARE-induced fibrosis by targeting EGFR and VEGFA, supporting its potential therapeutic role in the treatment of OSF.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128374420250707120128
2025-07-31
2025-09-16
Loading full text...

Full text loading...

References

  1. Pindborg J.J. Is submucous fibrosis a precancerous condition in the oral cavity? Int. Dent. J. 1972 22 4 474 480 [PMID: 4566996
    [Google Scholar]
  2. Zeng Y. Luo M. Yao Z. Xiao X. Adiponectin inhibits ROS/NLRP3 inflammatory pathway through FOXO3A to ameliorate oral submucosal fibrosis. Odontology 2024 112 3 811 825 10.1007/s10266‑023‑00891‑0 38217790
    [Google Scholar]
  3. Zhu B. Jiang Q. Que G. Dai Z. Wu Y. Role of autophagy and apoptosis in atrophic epithelium in oral submucous fibrosis. J. Oral Sci. 2020 62 2 184 188 10.2334/josnusd.19‑0170 32132327
    [Google Scholar]
  4. Chen P.Y. Ho D.C. Liao Y.W. Honokiol inhibits arecoline-induced oral fibrogenesis through transforming growth factor-β/] Smad2/3 signaling inhibition. J. Formos. Med. Assoc. 2021 120 11 1988 1993 10.1016/j.jfma.2021.04.012
    [Google Scholar]
  5. Wang L. Tang Z. Immunopathogenesis of oral submucous fibrosis by chewing the areca nut. J. Leukoc. Biol. 2022 111 2 469 476 10.1002/JLB.3MR0521‑763RR 34124802
    [Google Scholar]
  6. Myers A.L. Metabolism of the areca alkaloids - toxic and psychoactive constituents of the areca (betel) nut. Drug Metab. Rev. 2022 54 4 343 360 10.1080/03602532.2022.2075010 35543097
    [Google Scholar]
  7. Horenstein N.A. Quadri M. Stokes C. Shoaib M. Papke R.L. Cracking the betel nut: Cholinergic activity of areca alkaloids and related compounds. Nicotine Tob. Res. 2019 21 6 805 812 10.1093/ntr/ntx187 29059390
    [Google Scholar]
  8. Kuo T.M. Nithiyanantham S. Lee C.P. Arecoline N‐oxide regulates oral squamous cell carcinoma development through NOTCH1 and FAT1 expressions. J. Cell. Physiol. 2019 234 8 13984 13993 10.1002/jcp.28084 30624777
    [Google Scholar]
  9. Li X. Gao Y. Chen W. N6-methyladenosine modification contributes to arecoline-mediated oral submucosal fibrosis. J. Oral Pathol. Med. 2022 51 5 474 482 10.1111/jop.13292
    [Google Scholar]
  10. Gopinath D. Hui L.M. Veettil S.K. Balakrishnan Nair A. Maharajan M.K. Comparative efficacy of interventions for the management of oral submucous fibrosis: A systematic review and network meta-analysis. J. Pers. Med. 2022 12 8 1272 10.3390/jpm12081272 36013221
    [Google Scholar]
  11. Al-Aroomi M.A. Chen J. Jiang C. Oropharyngeal stenosis in patient with oral submucous fibrosis: A case report with 8-year follow-up. BMC Oral Health 2024 24 1 688 10.1186/s12903‑024‑04467‑4 38872152
    [Google Scholar]
  12. Kumar M.A. Radhika B. Gollamudi N. Reddy S.P. Yaga U.S. Hyperbaric oxygen therapy—a novel treatment modality in oral submucous fibrosis: A review. J. Clin. Diagn. Res. 2015 9 5 ZE01 ZE04 10.7860/JCDR/2015/11500.5905 26155590
    [Google Scholar]
  13. Xu J. Wang Y. Shao Z. Adipose-derived stem cell exosomes attenuates myofibroblast transformation via inhibiting autophagy through TGF-β/Smad2 axis in oral submucosal fibrosis. J. Nanobiotechnology 2024 22 1 780 10.1186/s12951‑024‑03067‑2 39702233
    [Google Scholar]
  14. Yao J. Peng T. Shao C. Liu Y. Lin H. Liu Y. The Antioxidant Action of Astragali radix: Its Active Components and Molecular Basis. Molecules 2024 29 8 1691 10.3390/molecules29081691 38675511
    [Google Scholar]
  15. Chen Z. Liu L. Gao C. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. J. Ethnopharmacol. 2020 258 112895 10.1016/j.jep.2020.112895 32330511
    [Google Scholar]
  16. Zheng W. Wu Y. Gao H. Ouyang D. Traditional Chinese medicine injections: Where we are after 80-year development. Chin. Med. 2022 17 1 127 10.1186/s13020‑022‑00681‑w 36348487
    [Google Scholar]
  17. Han X. Huang L. Li G. Mou X. Cheng C. Effect of astragalus injection on left ventricular remodeling in HFmrEF: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2024 11 1374114 10.3389/fcvm.2024.1374114 39165261
    [Google Scholar]
  18. Li K. Li S. Du Y. Qin X. Screening and structure study of active components of Astragalus polysaccharide for injection based on different molecular weights. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020 1152 122255 10.1016/j.jchromb.2020.122255 32673831
    [Google Scholar]
  19. Yang C.G. Mao X.L. Wu J.F. Amelioration of lung fibrosis by total flavonoids of astragalus via inflammatory modulation and epithelium regeneration. Am. J. Chin. Med. 2023 51 2 373 389 10.1142/S0192415X23500192 36655684
    [Google Scholar]
  20. Li Z.H. Xu R. Shi J. Astragalus total saponins ameliorate peritoneal fibrosis by promoting mitochondrial synthesis and inhibiting apoptosis. Am. J. Chin. Med. 2022 50 1 261 274 10.1142/S0192415X22500094 34983328
    [Google Scholar]
  21. Liu T. Zhang M. Niu H. Astragalus polysaccharide from astragalus melittin ameliorates inflammation via suppressing the activation of TLR-4/NF-κB p65 signal pathway and protects mice from CVB3-induced virus myocarditis. Int. J. Biol. Macromol. 2019 126 179 186 10.1016/j.ijbiomac.2018.12.207 30586589
    [Google Scholar]
  22. Zheng Y. Ren W. Zhang L. Zhang Y. Liu D. Liu Y. A review of the pharmacological action of astragalus polysaccharide. Front. Pharmacol. 2020 11 349 10.3389/fphar.2020.00349 32265719
    [Google Scholar]
  23. Tang G. Li S. Zhang C. Chen H. Wang N. Feng Y. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm. Sin. B 2021 11 9 2749 2767 10.1016/j.apsb.2020.12.020 34589395
    [Google Scholar]
  24. Zhong Y. Wen W. Luo Z. Cheng N. A multi-component, multi-target, and multi-pathway prediction method for Chinese medicine based on the combination of mass spectrometry analysis and network analysis: An example using Weifuchun. J. Chromatogr. A 2024 1731 465164 10.1016/j.chroma.2024.465164 39043100
    [Google Scholar]
  25. Zhou Z. Chen B. Chen S. Applications of network pharmacology in traditional chinese medicine research. Evid. Based Complement. Alternat. Med. 2020 2020 1646905 10.1155/2020/1646905
    [Google Scholar]
  26. Bashar M.A. Hossain M.A. Kavey M.R.H. Network pharmacology and in silico elucidation of phytochemicals extracted from ajwa dates (Phoenix dactylifera L.) to Inhibit Akt and PI3K causing triple negative breast cancer (TNBC). Curr. Pharm. Des. 2024 1 6 [PMID: 39698883
    [Google Scholar]
  27. Nogales C. Mamdouh Z.M. List M. Kiel C. Casas A.I. Schmidt H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022 43 2 136 150 10.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  28. Luo Z. Xia L.Y. Tang Y.Q. Action mechanism underlying improvement effect of fuzi lizhong decoction on nonalcoholic fatty liver disease: A study based on network pharmacology and molecular docking. Evid. Based Complement. Alternat. Med. 2022 2022 1670014 10.1155/2022/1670014
    [Google Scholar]
  29. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  30. Li R. Li Y. Liang X. Yang L. Su M. Lai K.P. Network Pharmacology and bioinformatics analyses identify intersection genes of niacin and COVID-19 as potential therapeutic targets. Brief. Bioinform. 2021 22 2 1279 1290 10.1093/bib/bbaa300 33169132
    [Google Scholar]
  31. Xu P. Cheng C. Jiao J. Chen H. Chen Z. Li P. Matrine injection inhibits pancreatic cancer growth via modulating carbonic anhydrases- a network pharmacology-based study with in vitro validation. J. Ethnopharmacol. 2022 287 114691 10.1016/j.jep.2021.114691 34597654
    [Google Scholar]
  32. Hou F. Yu Z. Cheng Y. Liu Y. Liang S. Zhang F. Deciphering the pharmacological mechanisms of Scutellaria baicalensis Georgi on oral leukoplakia by combining network pharmacology, molecular docking and experimental evaluations. Phytomedicine 2022 103 154195 10.1016/j.phymed.2022.154195 35667260
    [Google Scholar]
  33. Zhu Y. Chai Y. Xiao G. Astragalus and its formulas as a therapeutic option for fibrotic diseases: Pharmacology and mechanisms. Front. Pharmacol. 2022 13 1040350 10.3389/fphar.2022.1040350 36408254
    [Google Scholar]
  34. Hong F. Xiao W. Ragupathi G. The known immunologically active components of Astragalus account for only a small proportion of the immunological adjuvant activity when combined with conjugate vaccines. Planta Med. 2011 77 8 817 824 10.1055/s‑0030‑1250574 21128203
    [Google Scholar]
  35. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357-64 10.1093/nar/gkz382 31106366
    [Google Scholar]
  36. Amberger J.S. Bocchini C.A. Scott A.F. Hamosh A. OMIM.org: Leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019 47 D1 D1038 D1043 10.1093/nar/gky1151 30445645
    [Google Scholar]
  37. Lin Y. Hu Z. Bioinformatics analysis of candidate genes involved in ethanol-induced microtia pathogenesis based on a human genome database: GeneCards. Int. J. Pediatr. Otorhinolaryngol. 2021 142 110595 10.1016/j.ijporl.2020.110595 33418206
    [Google Scholar]
  38. Szklarczyk D. Gable A.L. Lyon D. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  39. Kundu P. Pant I. Jain R. Rao S.G. Kondaiah P. Genome‐wide DNA methylation changes in oral submucous fibrosis. Oral Dis. 2022 28 4 1094 1103 10.1111/odi.13811 33615634
    [Google Scholar]
  40. Zhang Y. Chen Z. Chen L. Astragali radix (Huangqi): A time-honored nourishing herbal medicine. Chin. Med. 2024 19 1 119 10.1186/s13020‑024‑00977‑z 39215362
    [Google Scholar]
  41. Saso L. Reza A. Ng E. A comprehensive analysis of the role of oxidative stress in the pathogenesis and chemoprevention of oral submucous fibrosis. Antioxidants 2022 11 5 868 10.3390/antiox11050868
    [Google Scholar]
  42. Chole R.H. Gondivkar S.M. Gadbail A.R. Review of drug treatment of oral submucous fibrosis. Oral Oncol. 2012 48 5 393 398 10.1016/j.oraloncology.2011.11.021 22206808
    [Google Scholar]
  43. Chen X. Xie H. Guo J. Drug treatment for oral submucous fibrosis: An update. BMC Oral Health 2023 23 1 748 10.1186/s12903‑023‑03488‑9 37828490
    [Google Scholar]
  44. Zhao W. Li J. Cai J. Gao J. Hu Y. Dong C. Research progress on the antifibrotic activity of traditional chinese medicine polysaccharides. Chem. Biodivers. 2024 202402012 10.1002/cbdv.202402012 39563554
    [Google Scholar]
  45. Li H. Advances in anti hepatic fibrotic therapy with traditional chinese medicine herbal formula. J. Ethnopharmacol. 2020 251 112442 10.1016/j.jep.2019.112442 31891799
    [Google Scholar]
  46. Li X. Li L. Lei W. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed. Pharmacother. 2021 142 111979 10.1016/j.biopha.2021.111979
    [Google Scholar]
  47. Zhi X. Ren C. Li Q. Therapeutic potential of Angelica sinensis in addressing organ fibrosis: A comprehensive review. Biomed. Pharmacother. 2024 173 116429 10.1016/j.biopha.2024.116429
    [Google Scholar]
  48. Liu Y. Lv W. Research progress in astragalus membranaceus and its active components on immune responses in liver fibrosis. Chin. J. Integr. Med. 2020 26 10 794 800 10.1007/s11655‑019‑3039‑1 31502184
    [Google Scholar]
  49. Gong F. Qu R. Li Y. Lv Y. Dai J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front. Pharmacol. 2022 13 976561 10.3389/fphar.2022.976561 36160396
    [Google Scholar]
  50. Gong G. Guan Y.Y. Zhang Z.L. Isorhamnetin: A review of pharmacological effects. Biomed. Pharmacother. 2020 128 110301 10.1016/j.biopha.2020.110301
    [Google Scholar]
  51. Wu J. Song Y. Wang J. Isorhamnetin inhibits hypertrophic scar formation through TGF-β1/Smad and TGF-β1/CREB3L1 signaling pathways. Heliyon 2024 10 13 33802 10.1016/j.heliyon.2024.e33802 39055792
    [Google Scholar]
  52. Liu N. Feng J. Lu X. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-β 1/Smad3 and TGF-β 1/p38 MAPK pathways. Mediators Inflamm. 2019 2019 1 14 10.1155/2019/6175091 31467486
    [Google Scholar]
  53. Ganbold M. Owada Y. Ozawa Y. Isorhamnetin alleviates steatosis and fibrosis in mice with nonalcoholic steatohepatitis. Sci. Rep. 2019 9 1 16210 10.1038/s41598‑019‑52736‑y 31700054
    [Google Scholar]
  54. Zhai T. Zhang X. Hei Z. Isorhamnetin inhibits human gallbladder cancer cell proliferation and metastasis via PI3K/AKT signaling pathway inactivation. Front. Pharmacol. 2021 12 628621 10.3389/fphar.2021.628621 33679411
    [Google Scholar]
  55. Yao S. Wang X. Li C. Zhao T. Jin H. Fang W. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway. Tumour Biol. 2016 37 8 10247 10256 10.1007/s13277‑016‑4912‑6 26831667
    [Google Scholar]
  56. Liu H. Yu H. Cao Z. Kaempferol modulates autophagy and alleviates silica-induced pulmonary fibrosis. DNA Cell Biol. 2019 38 12 1418 1426 10.1089/dna.2019.4941 31560574
    [Google Scholar]
  57. Zhang Z. Guo Y. Chen M. Chen F. Liu B. Shen C. Kaempferol potentiates the sensitivity of pancreatic cancer cells to erlotinib via inhibition of the PI3K/AKT signaling pathway and epidermal growth factor receptor. Inflammopharmacology 2021 29 5 1587 1601 10.1007/s10787‑021‑00848‑1 34322786
    [Google Scholar]
  58. An L. Wang Y. Wu G. Defining the sensitivity landscape of EGFR variants to tyrosine kinase inhibitors. Transl. Res. 2023 255 14 25 10.1016/j.trsl.2022.11.002 36347492
    [Google Scholar]
  59. Song W. Dang Q. Xu D. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling. Oncol. Rep. 2014 31 3 1350 1356 10.3892/or.2014.2965 24399193
    [Google Scholar]
  60. Choi E.H. Xu Y. Medynets M. Activated T cells induce proliferation of oligodendrocyte progenitor cells via release of vascular endothelial cell growth factor‐A. Glia 2018 66 11 2503 2513 10.1002/glia.23501 30500113
    [Google Scholar]
  61. Wu Q. Han L. Gui W. Wang F. Yan W. Jiang H. MiR‐503 suppresses fibroblast activation and myofibroblast differentiation by targeting VEGFA and FGFR1 in silica‐induced pulmonary fibrosis. J. Cell. Mol. Med. 2020 24 24 14339 14348 10.1111/jcmm.16051 33135394
    [Google Scholar]
  62. Seitz T. Hellerbrand C. Role of fibroblast growth factor signalling in hepatic fibrosis. Liver Int. 2021 41 6 1201 1215 10.1111/liv.14863
    [Google Scholar]
  63. Zha Y. Li Y. Ge Z. ADAMTS8 promotes cardiac fibrosis partly through activating egfr dependent pathway. Front. Cardiovasc. Med. 2022 9 797137 10.3389/fcvm.2022.797137 35224040
    [Google Scholar]
  64. Zhu Q. Dong H. Bukhari A.A.S. HUWE1 promotes EGFR ubiquitination and degradation to protect against renal tubulointerstitial fibrosis. FASEB J. 2020 34 3 4591 4601 10.1096/fj.201902751R 32017279
    [Google Scholar]
  65. Zhang T. Yang Y. Wang B. XSSJS inhibits hepatic fibrosis by promoting the miR-29b-3p/VEGFA axis in vitro and in vivo. Biosci. Rep. 2022 42 2 BSR20212241 10.1042/BSR20212241 35118493
    [Google Scholar]
  66. Moorthy A. Venugopal D.C. Shyamsundar V. Identification of EGFR as a biomarker in saliva and buccal cells from oral submucous fibrosis patients-a baseline study. Diagnostics 2022 12 8 1935 10.3390/diagnostics12081935
    [Google Scholar]
  67. Lin Y. Jiang Y. Xian H. Cai X. Wang T. Expression and correlation of the Pi3k/Akt pathway and VEGF in oral submucous fibrosis. Cell Prolif. 2023 56 11 13491 10.1111/cpr.13491 37157945
    [Google Scholar]
  68. Pérez-Gutiérrez L. Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat. Rev. Mol. Cell Biol. 2023 24 11 816 834 10.1038/s41580‑023‑00631‑w 37491579
    [Google Scholar]
  69. Ancelin M. Buteau-Lozano H. Meduri G. A dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and vascular permeability in human uterus. Proc. Natl. Acad. Sci. USA 2002 99 9 6023 6028 10.1073/pnas.082110999 11972026
    [Google Scholar]
  70. Jeng J.H. Wang Y.J. Chiang B.L. Roles of keratinocyte inflammation in oral cancer: Regulating the prostaglandin E2, interleukin-6 and TNF- production of oral epithelial cells by areca nut extract and arecoline. Carcinogenesis 2003 24 8 1301 1315 10.1093/carcin/bgg083 12807728
    [Google Scholar]
  71. Sodhi S. Sodhi J.S. Khambete N. Kumar R. Marthala M. Sodhi N.K. Expression of tumor necrosis factor α and its correlation with severity of oral submucous fibrosis: A case-control study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014 117 6 704 708 10.1016/j.oooo.2014.02.030 24787450
    [Google Scholar]
  72. Chang M.C. Chan C.P. Chen Y.J. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: Role of reactive oxygen species, EGF and JAK signaling. Oncotarget 2016 7 13 16879 16894 10.18632/oncotarget.7621 26919242
    [Google Scholar]
  73. Wang Z. Chen Z. Li B. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways. Pharm. Biol. 2020 58 1 828 837 10.1080/13880209.2020.1809462 32866059
    [Google Scholar]
  74. Gong Z. Lin J. Zheng J. Dahuang Zhechong pill attenuates CCl4‐induced rat liver fibrosis via the PI3K‐Akt signaling pathway. J. Cell. Biochem. 2020 121 2 1431 1440 10.1002/jcb.29378 31502329
    [Google Scholar]
  75. Dai J.P. Chen X.X. Zhu D.X. Panax notoginseng saponins inhibit areca nut extract-induced oral submucous fibrosis in vitro. J. Oral Pathol. Med. 2014 43 6 464 470 10.1111/jop.12158
    [Google Scholar]
  76. Hara-Saito Y. Kato H. Saito N. Distinct differences in hypoxic responses between human oral mucosa and skin fibroblasts in a 3D collagen matrix. In Vitro Cell. Dev. Biol. Anim. 2020 56 6 452 479 10.1007/s11626‑020‑00458‑1 32588253
    [Google Scholar]
  77. Yang H.W. Yu C.C. Hsieh P.L. Arecoline enhances miR-21 to promote buccal mucosal fibroblasts activation. J. Formos. Med. Assoc. 2021 120 4 1108 1113 10.1016/j.jfma.2020.10.019
    [Google Scholar]
  78. Zhang B. Gao L. Shao C. Deng M. Chen L. Arecoline enhances phosphodiesterase 4a activity to promote transforming growth factor-β-induced buccal mucosal fibroblast activation via cAMP-Epac1 signaling pathway. Front. Pharmacol. 2021 12 722040 10.3389/fphar.2021.722040 34819854
    [Google Scholar]
  79. Chou M.Y. Fang C.Y. Hsieh P.L. Depletion of miR-155 hinders the myofibroblast activities and reactive oxygen species generation in oral submucous fibrosis. J. Formos. Med. Assoc. 2022 121 2 467 472 10.1016/j.jfma.2021.06.028
    [Google Scholar]
  80. Yang H. Lu Y. Yang H. Yuan J. Clinical characteristics and treatment effects of astragalus injection in non-pediatric patients with acute fulminant myocarditis. Medicine 2020 99 48 23062 10.1097/MD.0000000000023062 33235067
    [Google Scholar]
  81. Zhou Z. Yang L. Hu C. Gao R. Zhang X. Shen T. The combination of astragalus injection and ambroxol hydrochloride in the adjuvant treatment of COPD: A systematic review and meta-analysis. Sci. Rep. 2023 13 1 22077 10.1038/s41598‑023‑49421‑6 38087032
    [Google Scholar]
  82. Sun Q. Shi P. Lin C. Ma J. Effects of astragalus polysaccharides nanoparticles on cerebral thrombosis in SD rats. Front. Bioeng. Biotechnol. 2020 8 616759 10.3389/fbioe.2020.616759 33425879
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128374420250707120128
Loading
/content/journals/cpd/10.2174/0113816128374420250707120128
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Arecoline ; network pharmacology ; VEGFA ; collagen metabolism ; Oral mucosal fibroblasts ; EGFR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test