Skip to content
2000
Volume 31, Issue 39
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Cancer continues to pose a significant global health challenge, demanding innovative therapeutic approaches to overcome the limitations of conventional treatments like chemotherapy and radiotherapy. Nanoparticles (NPs) have emerged as promising tools for cancer therapy due to their unique physicochemical properties that enable targeted drug delivery, reduced systemic toxicity, and enhanced therapeutic efficacy. This comprehensive review delves into the mechanisms of NP-based drug delivery, highlighting both passive and active targeting strategies. It categorizes and discusses diverse NP types, including polymeric, lipid-based, and metallic nanoparticles, emphasizing their applications in enhancing the bioavailability and specificity of anticancer agents. This review also explores the integration of advanced technologies, such as theranostics and artificial intelligence, to optimize NP design and functionality for personalized medicine. However, challenges remain, including issues related to toxicity, drug resistance, and manufacturing scalability. Addressing these barriers requires interdisciplinary research focused on developing stimuli-responsive NPs, improving biocompatibility, and incorporating multimodal therapeutic platforms. Although substantial progress has been made, this review is limited by the paucity of clinical trials validating NP efficacy and safety in diverse patient populations. Future endeavors should prioritize translational research to bridge the gap between preclinical innovations and clinical applications, ensuring that these transformative technologies benefit a broader spectrum of cancer patients. The review underscores the immense potential of NPs in redefining cancer treatment while advocating for sustained research to address existing limitations and unlock their full therapeutic promise.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128368718250320060346
2025-04-16
2025-10-25
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. XiaoT. ZhongH. XiaoR. ChenT. LiL. ChenX. Profiles of financial toxicity and influencing factors among cancer patients: A latent profile analysis.Res. Social Adm. Pharm.202420213714410.1016/j.sapharm.2023.10.01037949721
    [Google Scholar]
  3. ThunM.J. DeLanceyJ.O. CenterM.M. JemalA. WardE.M. The global burden of cancer: Priorities for prevention.Carcinogenesis201031110011010.1093/carcin/bgp26319934210
    [Google Scholar]
  4. LiuB. ZhouH. TanL. SiuK.T.H. GuanX.Y. Exploring treatment options in cancer: Tumor treatment strategies.Signal Transduct. Target. Ther.20249117510.1038/s41392‑024‑01856‑739013849
    [Google Scholar]
  5. HsuC.Y. RheimaA.M. KadhimM.M. AhmedN.N. MohammedS.H. AbbasF.H. AbedZ.T. MahdiZ.M. AbbasZ.S. HachimS.K. AliF.K. MahmoudZ.H. KianfarE. An overview of nanoparticles in drug delivery: Properties and applications.S. Afr. J. Chem. Eng.20234623327010.1016/j.sajce.2023.08.009
    [Google Scholar]
  6. CharmsazS. PrencipeM. KielyM. PidgeonG.P. CollinsD.M. Innovative technologies changing cancer treatment.Cancers201810620810.3390/cancers1006020829921753
    [Google Scholar]
  7. MaciejkoL. SmalleyM. GoldmanA. Cancer immunotherapy and personalized medicine: Emerging technologies and biomarker based approaches.J. Mol. Biomark. Diagn.201785810.4172/2155‑9929.100035029285416
    [Google Scholar]
  8. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomedical Technology2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  9. GhazalH. WaqarA. YaseenF. ShahidM. SultanaM. TariqM. BashirM.K. TahseenH. RazaT. AhmadF. Role of nanoparticles in enhancing chemotherapy efficacy for cancer treatment.Next Materials2024210012810.1016/j.nxmate.2024.100128
    [Google Scholar]
  10. YangF. HeQ. DaiX. ZhangX. SongD. The potential role of nanomedicine in the treatment of breast cancer to overcome the obstacles of current therapies.Front. Pharmacol.202314114310210.3389/fphar.2023.114310236909177
    [Google Scholar]
  11. GuptaD. RoyP. SharmaR. KasanaR. RathoreP. GuptaT.K. Recent nanotheranostic approaches in cancer research.Clin. Exp. Med.2024241810.1007/s10238‑023‑01262‑338240834
    [Google Scholar]
  12. BaiX. SmithZ. WangY. ButterworthS. TirellaA. Sustained drug release from smart nanoparticles in cancer therapy: A comprehensive review.Micromachines20221310162310.3390/mi1310162336295976
    [Google Scholar]
  13. YangC. MerlinD. Can naturally occurring nanoparticle-based targeted drug delivery effectively treat inflammatory bowel disease?Expert Opin. Drug Deliv.20201711410.1080/17425247.2020.169854331770040
    [Google Scholar]
  14. NiculescuA.G. GrumezescuA.M. Novel tumor-targeting nanoparticles for cancer treatment: A review.Int. J. Mol. Sci.2022239525310.3390/ijms2309525335563645
    [Google Scholar]
  15. NieY. FuG. LengY. Nuclear delivery of nanoparticle-based drug delivery systems by nuclear localization signals.Cells20231212163710.3390/cells1212163737371107
    [Google Scholar]
  16. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  17. ZhaoY. ChenG. MengZ. GongG. ZhaoW. WangK. LiuT. A novel nanoparticle drug delivery system based on PEGylated hemoglobin for cancer therapy.Drug Deliv.201926171772310.1080/10717544.2019.163984631293178
    [Google Scholar]
  18. ChenF. ShiY. ZhangJ. LiuQ. Nanoparticle-based drug delivery systems for targeted epigenetics cancer therapy.Curr. Drug Targets202021111084109810.2174/138945012166620051422290032410563
    [Google Scholar]
  19. GencerA. DuralogluC. OzbayS. CiftciT.T. Yabanoglu-CiftciS. AricaB. Recent advances in treatment of lung cancer: Nanoparticle-based drug and siRNA delivery systems.Curr. Drug Deliv.202118210312010.2174/156720181799920073021171832748745
    [Google Scholar]
  20. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  21. JainA. BhattacharyaS. Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: A critical review.Front. Oncol.202313121160310.3389/fonc.2023.121160337427139
    [Google Scholar]
  22. HerdianaY. WathoniN. ShamsuddinS. MuchtaridiM. Drug release study of the chitosan-based nanoparticles.Heliyon202281e0867410.1016/j.heliyon.2021.e0867435028457
    [Google Scholar]
  23. BhardwajH. JangdeR.K. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications.Next Nanotechnol2023210001310.1016/j.nxnano.2023.100013
    [Google Scholar]
  24. KaramM. FahsD. MaatoukB. SafiB. JaffaA.A. MhannaR. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects.Mater. Today Bio20221410024910.1016/j.mtbio.2022.10024935434594
    [Google Scholar]
  25. Espinosa-Cano E, Palao-Suay R, Aguilar MR, Vázquez B, Román JS. Polymeric nanoparticles for cancer therapy and bioimaging. In: Nanooncology: Engineering nanomaterials for cancer therapy and diagnosis. Gonçalves G, Tobias G, Eds. Cham: Springer International Publishing 2018; pp. 137-7210.1007/978‑3‑319‑89878‑0_4
  26. kapoorD. GargR. GaurM. PrajapatiB.G. AgrawalG. BhattacharyaS. ElossailyG.M. Polymeric nanoparticles approach and identification and characterization of novel biomarkers for colon cancer.Results Chem.2023610116710.1016/j.rechem.2023.101167
    [Google Scholar]
  27. OsmanE.E.A. ShemisM.A. Abdel-HameedE.S.S. GoudaA.E. HassanH. AtefN. MamdouhS. Phytoconstituent analysis, anti-inflammatory, antimicrobial and anticancer effects of nano encapsulated Convolvulus arvensis L. extracts.BMC Complemen. Med. Therap.202424112210.1186/s12906‑024‑04420‑638486187
    [Google Scholar]
  28. QanashH. BazaidA. AldarhamiA. AlharbiB. AlmashjaryM. HazzaziM. FelembanH. AbdelghanyT. Phytochemical characterization and efficacy of Artemisia judaica extract loaded chitosan nanoparticles as inhibitors of cancer proliferation and microbial growth.Polymers202315239110.3390/polym1502039136679271
    [Google Scholar]
  29. MostafaM.M. AminM.M. ZakariaM.Y. HusseinM.A. ShamaaM.M. Abd El-HalimS.M. Chitosan surface-modified plga nanoparticles loaded with cranberry powder extract as a potential oral delivery platform for targeting colon cancer cells.Pharmaceutics202315260610.3390/pharmaceutics1502060636839928
    [Google Scholar]
  30. BhattacharyaS. AnjumM.M. PatelK.K. Gemcitabine cationic polymeric nanoparticles against ovarian cancer: Formulation, characterization, and targeted drug delivery.Drug Deliv.20222911060107410.1080/10717544.2022.205864535363113
    [Google Scholar]
  31. SakhiM. KhanA. IqbalZ. KhanI. RazaA. UllahA. NasirF. KhanS.A. Design and characterization of paclitaxel-loaded polymeric nanoparticles decorated with trastuzumab for the effective treatment of breast cancer.Front. Pharmacol.20221385529410.3389/fphar.2022.85529435359855
    [Google Scholar]
  32. AkbariE. MousazadehH. SabetZ. FattahiT. DehnadA. AkbarzadehA. AlizadehE. Dual drug delivery of trapoxin A and methotrexate from biocompatible PLGA-PEG polymeric nanoparticles enhanced antitumor activity in breast cancer cell line.J. Drug Deliv. Sci. Technol.20216110229410.1016/j.jddst.2020.102294
    [Google Scholar]
  33. BanoS. AhmedF. KhanF. ChaudharyS.C. SamimM. Targeted delivery of thermoresponsive polymeric nanoparticle-encapsulated lycopene: In vitro anticancer activity and chemopreventive effect on murine skin inflammation and tumorigenesis.RSC Advances20201028166371664910.1039/C9RA10686C35498841
    [Google Scholar]
  34. KhalediS. JafariS. HamidiS. MolaviO. DavaranS. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-fluorouracil and chrysin.J. Biomater. Sci. Polym. Ed.20203191107112610.1080/09205063.2020.174394632249693
    [Google Scholar]
  35. Ilkar ErdagiS. YildizU. Diosgenin-conjugated PCL–MPEG polymeric nanoparticles for the co-delivery of anticancer drugs: Design, optimization, in vitro drug release and evaluation of anticancer activity.New J. Chem.201943176622663510.1039/C9NJ00659A
    [Google Scholar]
  36. ZuM. MaL. ZhangX. XieD. KangY. XiaoB. Chondroitin sulfate-functionalized polymeric nanoparticles for colon cancer-targeted chemotherapy.Colloids Surf. B Biointerfaces201917739940610.1016/j.colsurfb.2019.02.03130785037
    [Google Scholar]
  37. PieperS. OnafuyeH. MulacD. CinatlJ.Jr WassM.N. MichaelisM. LangerK. Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity.Beilstein J. Nanotechnol.2019102062207210.3762/bjnano.10.20131728254
    [Google Scholar]
  38. BaksiR. SinghD.P. BorseS.P. RanaR. SharmaV. NivsarkarM. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles.Biomed. Pharmacother.20181061513152610.1016/j.biopha.2018.07.10630119227
    [Google Scholar]
  39. SheoranS. AroraS. SamsonrajR. GovindaiahP. VureeS. Lipid-based nanoparticles for treatment of cancer.Heliyon202285e0940310.1016/j.heliyon.2022.e0940335663739
    [Google Scholar]
  40. YaghmurA. ØstergaardJ. MuH. Lipid nanoparticles for targeted delivery of anticancer therapeutics: Recent advances in development of siRNA and lipoprotein-mimicking nanocarriers.Adv. Drug Deliv. Rev.202320311513610.1016/j.addr.2023.11513637944644
    [Google Scholar]
  41. ZhangZ. YaoS. HuY. ZhaoX. LeeR.J. Application of lipid-based nanoparticles in cancer immunotherapy.Front. Immunol.20221396750510.3389/fimmu.2022.96750536003395
    [Google Scholar]
  42. MohiteP. RajputT. PandhareR. SangaleA. SinghS. PrajapatiB.G. Nanoemulsion in management of colorectal cancer: Challenges and future prospects.Nanomanufacturing20233213916610.3390/nanomanufacturing3020010
    [Google Scholar]
  43. MuH. HolmR. Solid lipid nanocarriers in drug delivery: Characterization and design.Expert Opin. Drug Deliv.201815877178510.1080/17425247.2018.150401830064267
    [Google Scholar]
  44. LiQ. CaiT. HuangY. XiaX. ColeS. CaiY. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs.Nanomaterials20177612210.3390/nano706012228554993
    [Google Scholar]
  45. ViegasC. PatrícioA.B. PrataJ.M. NadhmanA. ChintamaneniP.K. FonteP. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review.Pharmaceutics2023156159310.3390/pharmaceutics1506159337376042
    [Google Scholar]
  46. GajbhiyeK.R. SalveR. NarwadeM. SheikhA. KesharwaniP. GajbhiyeV. Lipid polymer hybrid nanoparticles: A custom-tailored next-generation approach for cancer therapeutics.Mol. Cancer202322116010.1186/s12943‑023‑01849‑037784179
    [Google Scholar]
  47. WaheedI. AliA. TabassumH. KhatoonN. LaiW.F. ZhouX. Lipid-based nanoparticles as drug delivery carriers for cancer therapy.Front. Oncol.202414129609110.3389/fonc.2024.129609138660132
    [Google Scholar]
  48. AkandaM. MithuM.D.S.H. DouroumisD. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment.J. Drug Deliv. Sci. Technol.20238610470910.1016/j.jddst.2023.104709
    [Google Scholar]
  49. PaunR.A. JurchukS. TabrizianM. A landscape of recent advances in lipid nanoparticles and their translational potential for the treatment of solid tumors.Bioeng. Transl. Med.202492e1060110.1002/btm2.1060138435821
    [Google Scholar]
  50. HanJ. LimJ. WangC.P.J. HanJ.H. ShinH.E. KimS.N. JeongD. LeeS.H. ChunB.H. ParkC.G. ParkW. Lipid nanoparticle-based mRNA delivery systems for cancer immunotherapy.Nano Converg.20231013610.1186/s40580‑023‑00385‑337550567
    [Google Scholar]
  51. AlotaibiH.F. Development and evaluation of an Acyclovir-loaded cod liver oil nanoemulsion for enhanced anticancer activity.J. Taibah Univ. Sci.2024181238788310.1080/16583655.2024.2387883
    [Google Scholar]
  52. ShehabeldineA.M. DoghishA.S. El-DakrouryW.A. HassaninM.M.H. Al-AskarA.A. AbdElgawadH. HashemA.H. Antimicrobial, antibiofilm, and anticancer activities of Syzygium aromaticum essential oil nanoemulsion.Molecules20232815581210.3390/molecules2815581237570781
    [Google Scholar]
  53. YeoS. KimM.J. ShimY.K. YoonI. LeeW.K. Solid lipid nanoparticles of curcumin designed for enhanced bioavailability and anticancer efficiency.ACS Omega2022740358753588410.1021/acsomega.2c0440736249382
    [Google Scholar]
  54. AhmedK.S. ChanglingS. ShanX. MaoJ. QiuL. ChenJ. Liposome-based codelivery of celecoxib and doxorubicin hydrochloride as a synergistic dual-drug delivery system for enhancing the anticancer effect.J. Liposome Res.202030328529610.1080/08982104.2019.163472431223044
    [Google Scholar]
  55. SmithT. AfframK. NottinghamE.L. HanB. AmissahF. KrishnanS. TrevinoJ. AgyareE. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer.Sci. Rep.20201011698910.1038/s41598‑020‑73218‑633046724
    [Google Scholar]
  56. MahoutforoushA. SoloukA. HamishehkarH. NazarpakMH Abbaspour-RavasjaniS. Novel decorated nanostructured lipid carrier for simultaneous active targeting of three anti-cancer agents.Life Sci.202127911957610.1016/j.lfs.2021.11957633965376
    [Google Scholar]
  57. MakeenH.A. MohanS. Al-KasimM.A. SultanM.H. AlbarraqA.A. AhmedR.A. AlhazmiH.A. AlamM.I. Preparation, characterization, and anti-cancer activity of nanostructured lipid carriers containing Imatinib.Pharmaceutics2021137108610.3390/pharmaceutics1307108634371776
    [Google Scholar]
  58. ValizadehA. KhaleghiA.A. RoozitalabG. OsanlooM. High anticancer efficacy of solid lipid nanoparticles containing Zataria multiflora essential oil against breast cancer and melanoma cell lines.BMC Pharmacol. Toxicol.20212215210.1186/s40360‑021‑00523‑934587996
    [Google Scholar]
  59. LakshmiB.A. ReddyA.S. SangubotlaR. HongJ.W. KimS. Ruthenium(II)-curcumin liposome nanoparticles: Synthesis, characterization, and their effects against cervical cancer.Colloids Surf. B Biointerfaces202120411177310.1016/j.colsurfb.2021.11177333933878
    [Google Scholar]
  60. NirmalaM.J. DuraiL. GopakumarV. NagarajanR. Preparation of celery essential oil-based nanoemulsion by ultrasonication and evaluation of its potential anticancer and antibacterial activity.Int. J. Nanomedicine2020157651766610.2147/IJN.S25264033116493
    [Google Scholar]
  61. QuagliarielloV. MasaroneM. ArmeniaE. GiudiceA. BarbarisiM. CaragliaM. BarbarisiA. PersicoM. Chitosan-coated liposomes loaded with butyric acid demonstrate anticancer and anti-inflammatory activity in human hepatoma HepG2 cells.Oncol. Rep.20194131476148630569138
    [Google Scholar]
  62. JainA. SharmaG. ThakurK. RazaK. ShivhareU.S. GhoshalG. KatareO.P. Beta-carotene-Encapsulated Solid Lipid Nanoparticles (BC-SLNs) as promising vehicle for cancer: An investigative assessment.AAPS PharmSciTech201920310010.1208/s12249‑019‑1301‑730721373
    [Google Scholar]
  63. TruongT.T. MondalS. DoanV.H.M. TakS. ChoiJ. OhH. NguyenT.D. MisraM. LeeB. OhJ. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications.Adv. Colloid Interface Sci.202433210326310.1016/j.cis.2024.10326339121830
    [Google Scholar]
  64. Ahmad MZ, Ahmad J, Warsi MH, Abdel-Wahab BA, Akhter S. Metallic nanoparticulate delivery systems. In: Nanoengineered Biomaterials for Advanced Drug Delivery. Mozafari M, Ed. Elsevier 2020; pp. 279-32810.1016/B978‑0‑08‑102985‑5.00013‑9
  65. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems.Emergent Mater2022561593161510.1007/s42247‑021‑00335‑x35005431
    [Google Scholar]
  66. RoshaniM. Rezaian-IsfahniA. LotfalizadehM.H. KhassafiN. AbadiM.H.J.N. NejatiM. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: A comprehensive review.Cancer Cell Int.202323128010.1186/s12935‑023‑03115‑137981671
    [Google Scholar]
  67. PasparakisG. Recent developments in the use of gold and silver nanoparticles in biomedicine.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022145e181710.1002/wnan.181735775611
    [Google Scholar]
  68. HuynhK.H. PhamX.H. KimJ. LeeS.H. ChangH. RhoW.Y. JunB.H. Synthesis, properties, and biological applications of metallic alloy nanoparticles.Int. J. Mol. Sci.20202114517410.3390/ijms2114517432708351
    [Google Scholar]
  69. SharmaG. KumarA. SharmaS. NaushadM. Prakash DwivediR. ALOthmanZ.A. MolaG.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review.J. King Saud Univ. Sci.201931225726910.1016/j.jksus.2017.06.012
    [Google Scholar]
  70. XuJ.J. ZhangW.C. GuoY.W. ChenX.Y. ZhangY.N. Metal nanoparticles as a promising technology in targeted cancer treatment.Drug Deliv.202229166467810.1080/10717544.2022.203980435209786
    [Google Scholar]
  71. SchuemannJ. BagleyA.F. BerbecoR. BrommaK. ButterworthK.T. ByrneH.L. ChithraniB.D. ChoS.H. CookJ.R. FavaudonV. GholamiY.H. GargioniE. HainfeldJ.F. HespeelsF. HeuskinA.C. IbehU.M. KuncicZ. KunjachanS. LacombeS. LucasS. LuxF. McMahonS. NevozhayD. NgwaW. PayneJ.D. PenninckxS. PorcelE. PriseK.M. RabusH. RidwanS.M. RudekB. SancheL. SinghB. SmilowitzH.M. SokolovK.V. SridharS. StanishevskiyY. SungW. TillementO. ViraniN. YantaseeW. KrishnanS. Roadmap for metal nanoparticles in radiation therapy: Current status, translational challenges, and future directions.Phys. Med. Biol.2020652121RM0210.1088/1361‑6560/ab915932380492
    [Google Scholar]
  72. AdnanW.G. MohammedA.M. Green synthesis of chromium oxide nanoparticles for anticancer, antioxidant and antibacterial activities.Inorg. Chem. Commun.202415911168310.1016/j.inoche.2023.111683
    [Google Scholar]
  73. PerumalP. SathakkathullaN.A. KumaranK. RavikumarR. SelvarajJ.J. NagendranV. GurusamyM. ShaikN. Gnanavadivel PrabhakaranS. Suruli PalanichamyV. GanesanV. ThiraviamP.P. GunalanS. RathinasamyS. Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells.Sci. Rep.2024141220410.1038/s41598‑024‑52217‑x38273022
    [Google Scholar]
  74. AlinaghiM. MokarramP. AhmadiM. Bozorg-ghalatiF. Biosynthesis of palladium, platinum, and their bimetallic nanoparticles using rosemary and ginseng herbal plants: Evaluation of anticancer activity.Sci. Rep.2024141579810.1038/s41598‑024‑56275‑z38461314
    [Google Scholar]
  75. ViswanathanS. PalaniyandiT. ShanmugamR. KarunakaranS. PandiM. WahabM.R.A. BaskarG. RajendranB.K. SivajiA. MoovendhanM. Synthesis, characterization, cytotoxicity, and antimicrobial studies of green synthesized silver nanoparticles using red seaweed Champia parvula.Biomass Convers. Biorefin.20241467387740010.1007/s13399‑023‑03775‑z
    [Google Scholar]
  76. ParamasivamV. PaulpandianP. VenkatachalamK. HussainS. KangalA. Al FarrajD.A. ElshikhM.S. BalajiP. Cytotoxicity and antimicrobial efficiency of gold (Au) nanoparticles formulated by green approach using Andrographis paniculata leaf extract.J. King Saud Univ. Sci.202335510268710.1016/j.jksus.2023.102687
    [Google Scholar]
  77. AygunA. GulbagcaF. AltunerE.E. BekmezciM. GurT. Karimi-MalehH. KarimiF. VasseghianY. SenF. Highly active PdPt bimetallic nanoparticles synthesized by one-step bioreduction method: Characterizations, anticancer, antibacterial activities and evaluation of their catalytic effect for hydrogen generation.Int. J. Hydrogen Energy202348176666667910.1016/j.ijhydene.2021.12.144
    [Google Scholar]
  78. NaveedM. BatoolH. RehmanS. JavedA. MakhdoomS.I. AzizT. MohamedA.A. SameehM.Y. AlruwaysM.W. DabloolA.S. AlmalkiA.A. AlamriA.S. AlhomraniM. Characterization and evaluation of the antioxidant, antidiabetic, anti-inflammatory, and cytotoxic activities of silver nanoparticles synthesized using Brachychiton populneus leaf extract.Processes2022108152110.3390/pr10081521
    [Google Scholar]
  79. Shirzadi-AhodashtiM. Mortazavi-DerazkolaS. EbrahimzadehM.A. Biosynthesis of noble metal nanoparticles using Crataegus monogyna leaf extract (CML@X-NPs, X= Ag, Au): Antibacterial and cytotoxic activities against breast and gastric cancer cell lines.Surf. Interfaces20202110069710.1016/j.surfin.2020.100697
    [Google Scholar]
  80. SelimY.A. AzbM.A. RagabI. Abd El-AzimMHM Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities.Sci. Rep.2020101344510.1038/s41598‑020‑60541‑132103090
    [Google Scholar]
  81. ThambirajS. ShruthiS. VijayalakshmiR. Ravi ShankaranD. Evaluation of cytotoxic activity of docetaxel loaded gold nanoparticles for lung cancer drug delivery.Cancer Treat. Res. Commun.20192110015710.1016/j.ctarc.2019.10015731310876
    [Google Scholar]
  82. DingJ. ChenG. ChenG. GuoM. One-Pot synthesis of epirubicin-capped silver nanoparticles and their anticancer activity against Hep G2 Cells.Pharmaceutics201911312310.3390/pharmaceutics1103012330884757
    [Google Scholar]
  83. ChenW. YangW. ChenP. HuangY. LiF. Disulfiram copper nanoparticles prepared with a stabilized metal ion ligand complex method for treating drug-resistant prostate cancers.ACS Appl. Mater. Interfaces20181048411184112810.1021/acsami.8b1494030444340
    [Google Scholar]
  84. SharmaS. ParveenR. ChatterjiB.P. Toxicology of nanoparticles in drug delivery.Curr. Pathobiol. Rep.20219413314410.1007/s40139‑021‑00227‑z34840918
    [Google Scholar]
  85. LiY. DengG. HuX. LiC. WangX. ZhuQ. ZhengK. XiongW. WuH. Recent advances in mesoporous silica nanoparticle-based targeted drug-delivery systems for cancer therapy.Nanomedicine (Lond.)202217181253127910.2217/nnm‑2022‑002336250937
    [Google Scholar]
  86. SouriM. GolzaryanA. SoltaniM. Charge-switchable nanoparticles to enhance tumor penetration and accumulation.Eur. J. Pharm. Biopharm.202419911431010.1016/j.ejpb.2024.11431038705311
    [Google Scholar]
  87. VyasK. RathodM. PatelM.M. Insight on nano drug delivery systems with targeted therapy in treatment of oral cancer.Nanomedicine20234910266210.1016/j.nano.2023.10266236746272
    [Google Scholar]
  88. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.90982224813223
    [Google Scholar]
  89. LinM. TengL. WangY. ZhangJ. SunX. Curcumin-guided nanotherapy: A lipid-based nanomedicine for targeted drug delivery in breast cancer therapy.Drug Deliv.20162341420142510.3109/10717544.2015.106690226203688
    [Google Scholar]
  90. HiraniA. GroverA. LeeY.W. PathakY. SutariyaV. Triamcinolone acetonide nanoparticles incorporated in thermoreversible gels for age-related macular degeneration.Pharm. Dev. Technol.2016211616710.3109/10837450.2014.96532625259682
    [Google Scholar]
  91. PanQ. XuQ. BoylanN.J. LambN.W. EmmertD.G. YangJ.C. TangL. HeflinT. AlwadaniS. EberhartC.G. StarkW.J. HanesJ. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats.J. Control. Release2015201324010.1016/j.jconrel.2015.01.00925576786
    [Google Scholar]
  92. Imtiyaz Z, He J, Leng Q, Agrawal AK, Mixson AJ. pH-Sensitive targeting of tumors with chemotherapy-laden nanoparticles: Progress and challenges. Pharmaceutics 2022; 14(11): 2427.10.3390/pharmaceutics14112427
  93. MichalakM. KurcokP. HakkarainenM. Polyhydroxyalkanoate-based drug delivery systems.Polym. Int.201766561762210.1002/pi.5282
    [Google Scholar]
  94. Al-ThaniA.N. JanA.G. AbbasM. GeethaM. SadasivuniK.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review.Life Sci.202435212289910.1016/j.lfs.2024.12289938992574
    [Google Scholar]
  95. SunL. LiuH. YeY. LeiY. IslamR. TanS. TongR. MiaoY.B. CaiL. Smart nanoparticles for cancer therapy.Signal Transduct. Target. Ther.20238141810.1038/s41392‑023‑01642‑x37919282
    [Google Scholar]
  96. GagliardiA. GiulianoE. VenkateswararaoE. FrestaM. BulottaS. AwasthiV. CoscoD. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.60162633613290
    [Google Scholar]
  97. TanP. ChenX. ZhangH. WeiQ. LuoK. Artificial intelligence aids in development of nanomedicines for cancer management.Semin. Cancer Biol.202389617510.1016/j.semcancer.2023.01.00536682438
    [Google Scholar]
  98. AdirO. PoleyM. ChenG. FroimS. KrinskyN. ShkloverJ. Shainsky-RoitmanJ. LammersT. SchroederA. Integrating artificial intelligence and nanotechnology for precision cancer medicine.Adv. Mater.20203213190198910.1002/adma.20190198931286573
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128368718250320060346
Loading
/content/journals/cpd/10.2174/0113816128368718250320060346
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test