Skip to content
2000
Volume 31, Issue 39
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Long non-coding RNAs (lncRNAs) are RNA molecules exceeding 200 nucleotides in length with minimal or no protein-coding potential. However, a large number of lncRNAs have been discovered as research has progressed, and the traditional view of these noncoding RNAs does not appear to be entirely correct. Recent research has also unveiled their significant roles in various biological processes, spotlighting lncRNAs' importance. The oncogenic lncRNA, Colorectal tumor Differentially Expressed (CRNDE), is prominently studied in cancer contexts. One study found that the modulation of CRNDE expression led to an improvement in the median survival of cancer patients, extending it from 19.2 months to 32.5 months. Nonetheless, CRNDE also exhibits deregulated expression in non-malignant diseases, influencing their pathologies and serving as a potential biomarker and therapeutic target. For example, in the context of COVID-19, with CRNDE serving as a diagnostic indicator, its diagnostic accuracy attains a value as high as 0.889. This review examines CRNDE's expression in specific human diseases, including non-cancerous and cancerous conditions, its impact on disease progression, the underlying mechanisms, and recent therapeutic approaches.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128339697250306072647
2025-03-26
2025-09-28
Loading full text...

Full text loading...

References

  1. FerrerJ. DimitrovaN. Transcription regulation by long non-coding RNAs: Mechanisms and disease relevance.Nat. Rev. Mol. Cell Biol.202425539641510.1038/s41580‑023‑00694‑938242953
    [Google Scholar]
  2. PeltierD.C. RobertsA. ReddyP. Lncing RNA to immunity.Trends Immunol.202243647849510.1016/j.it.2022.04.00235501219
    [Google Scholar]
  3. ZhangF. PengW. WangT. ZhangJ. DongW. WangC. XieZ. LuoH. LiuG. Lnc tmem235 promotes repair of early steroid-induced osteonecrosis of the femoral head by inhibiting hypoxia-induced apoptosis of bmscs.Exp. Mol. Med.202254111991200610.1038/s12276‑022‑00875‑036380019
    [Google Scholar]
  4. XieS.C. ZhangJ.Q. JiangX.L. HuaY.Y. XieS.W. QinY.A. YangY.J. LncRNA crnde facilitates epigenetic suppression of celf2 and lats2 to promote proliferation, migration and chemoresistance in hepatocellular carcinoma.Cell Death Dis.202011867610.1038/s41419‑020‑02853‑832826865
    [Google Scholar]
  5. RichartL. Picod-ChedotelM.L. WassefM. MacarioM. AflakiS. SalvadorM.A. HéryT. DauphinA. WicinskiJ. ChevrierV. PastorS. GuittardG. Le CamS. KamhawiH. CastellanoR. GuaschG. Charafe-JauffretE. HeardE. MargueronR. GinestierC. Xist loss impairs mammary stem cell differentiation and increases tumorigenicity through mediator hyperactivation.cell20221851221642183.e2510.1016/j.cell.2022.04.03435597241
    [Google Scholar]
  6. TollisP. VitielloE. MigliaccioF. D’AmbraE. RocchegianiA. GaroneM.G. BozzoniI. RosaA. CarissimoA. LaneveP. CaffarelliE. The long noncoding RNA nhotairm1 is necessary for differentiation and activity of ipsc-derived spinal motor neurons.Cell Death Dis.2023141174110.1038/s41419‑023‑06196‑y37963881
    [Google Scholar]
  7. XiaoT. WangP. WuM. ChengC. YangY. BianQ. LiuQ. MEttl3-regulated m6a modification of lncRNA e230001n04rik is involved in myofibroblast differentiation in arsenic-induced pulmonary fibrosis through promoting senescence of lung epithelial cells.J. Hazard. Mater.202448013609410.1016/j.jhazmat.2024.13609439405678
    [Google Scholar]
  8. WuN. JiangM. LiuH. ChuY. WangD. CaoJ. WangZ. XieX. HanY. XuB. LINC00941 promotes crc metastasis through preventing smad4 protein degradation and activating the tgf-β/smad2/3 signaling pathway.Cell. Death. Differ.202128121923210.1038/s41418‑020‑0596‑y32737443
    [Google Scholar]
  9. SokoutiB. The identification of biomarkers for Alzheimer’s disease using a systems biology approach based on lncRNA-circrna-miRNA-mRNA cerna networks.Comput. Biol. Med.202417910886010.1016/j.compbiomed.2024.10886038996555
    [Google Scholar]
  10. WangL. BitarM. LuX. JacquelinS. NairS. SivakumaranH. HillmanK.M. KaufmannS. ZiegmanR. CascielloF. GowdaH. RosenbluhJ. EdwardsS.L. FrenchJ.D. Crispr-cas13d screens identify kilr, A breast cancer risk-associated lncRNA that regulates DNA replication and repair.Mol. Cancer202423110110.1186/s12943‑024‑02021‑y38745269
    [Google Scholar]
  11. Ghafouri-FardS. SafarzadehA. HussenB.M. TaheriM. MokhtariM. Contribution of CRNDE lncRNA in the development of cancer and the underlying mechanisms.Pathol. Res. Pract.202324415438710.1016/j.prp.2023.15438736893710
    [Google Scholar]
  12. EllisB.C. MolloyP.L. GrahamL.D. Crnde: A long non-coding RNA involved in cancer, neurobiology, and development.Front. Genet.2012327010.3389/fgene.2012.0027023226159
    [Google Scholar]
  13. ShahinDHH SultanaR. PrabhuA. PavanSR MohantoS Biomedicine and pharmacotherapeutic effectiveness of combinatorial atorvastatin and quercetin on diabetic nephropathy: An in vitro study.Biomed. Pharmacother.202417411653310.1016/j.biopha.2024.11653338574626
    [Google Scholar]
  14. van Raalte DH, Bjornstad P, Cherney DZI, et al. Combination therapy for kidney disease in people with diabetes mellitus.Nat. Rev. Nephrol.202420743344610.1038/s41581‑024‑00827‑z
    [Google Scholar]
  15. WangG. WuH. ZhaiX. ZhangL. ZhangC. ChengC. XuX. GaoE. XiongX. ZhangJ. LiuZ. Kidney organoid modeling of wt1 mutations reveals key regulatory paths underlying podocyte development.Adv. Sci. (Weinh.)20241129230855610.1002/advs.20230855638810140
    [Google Scholar]
  16. LiX. ZhangY. XingX. LiM. LiuY. XuA. ZhangJ. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects.Biomed. Pharmacother.202316811567010.1016/j.biopha.2023.11567037837883
    [Google Scholar]
  17. LinK. YueQ. LanD. ZhouS. JunH. QinS. FengH. Long non-coding RNA CRNDE promotes podocyte indury in diabetic nephropathy by regulating nphs1 expression.J New Med202152641542010.3969/j.issn.0253‑9802.2021.06.006
    [Google Scholar]
  18. ZhangX. ChenJ. LinR. HuangY. WangZ. XuS. WangL. ChenF. ZhangJ. PanK. YinZ. Lactate drives epithelial-mesenchymal transition in diabetic kidney disease via the H3K14la/KLF5 pathway.Redox Biol.20247510324610.1016/j.redox.2024.10324638925041
    [Google Scholar]
  19. ZhaoM. LiN. WanC. ZhangQ. WangH. JiangC. LncRNA CRNDE is involved in the pathogenesis of renal fibrosis by regulating renal epithelial cell mesenchymal-epithelial transition via targeting miR-29a-3p.Mutat. Res.202382611181710.1016/j.mrfmmm.2023.11181737178498
    [Google Scholar]
  20. LiY. DuY. LiuY. ChenX. LiX. DuanY. QinY. LiuH. MaX. NieS. ZhangH. Cardiomyocyte-derived small extracellular vesicle: A new mechanism driving diabetic cardiac fibrosis and cardiomyopathy.Theranostics202414155926594410.7150/thno.9950739346544
    [Google Scholar]
  21. ZhangY. CaoY. ZhengR. XiongZ. ZhuZ. GaoF. ManW. DuanY. LinJ. ZhangX. WuD. JiangM. ZhangX. LiC. GuX. FanY. SunD. Fibroblast-specific activation of Rnd3 protects against cardiac remodeling in diabetic cardiomyopathy via suppression of Notch and TGF-β signaling.Theranostics202212177250726610.7150/thno.7704336438502
    [Google Scholar]
  22. LiuB. WeiY. HeJ. FengB. ChenY. GuoR. GriffinM.D. HynesS.O. ShenS. LiuY. CuiH. MaJ. O’BrienT. Human umbilical cord-derived mesenchymal stromal cells improve myocardial fibrosis and restore miRNA-133a expression in diabetic cardiomyopathy.Stem Cell Res. Ther.202415112010.1186/s13287‑024‑03715‑238659015
    [Google Scholar]
  23. ZhengD. ZhangY. HuY. GuanJ. XuL. XiaoW. ZhongQ. RenC. LuJ. LiangJ. HouJ. Long noncoding RNA CRNDE attenuates cardiac fibrosis via smad3-crnde negative feedback in diabetic cardiomyopathy.FEBS J.201928691645165510.1111/febs.1478030748104
    [Google Scholar]
  24. ZhangM. LiuQ. MengH. DuanH. LiuX. WuJ. GaoF. WangS. TanR. YuanJ. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets.Signal Transduct. Target. Ther.2024911210.1038/s41392‑023‑01688‑x38185705
    [Google Scholar]
  25. BarileL. MarbánE. Injury minimization after myocardial infarction: Focus on extracellular vesicles.Eur. Heart J.202445181602160910.1093/eurheartj/ehae08938366191
    [Google Scholar]
  26. ChenQ.M. Nrf2 for cardiac protection: Pharmacological options against oxidative stress.Trends Pharmacol. Sci.202142972974410.1016/j.tips.2021.06.00534332753
    [Google Scholar]
  27. ChenW. YeQ. DongY. Long term exercise-derived exosomal lncRNA CRNDE mitigates myocardial infarction injury through miR-489-3p/Nrf2 signaling axis.Nanomedicine20245510271710.1016/j.nano.2023.10271737940009
    [Google Scholar]
  28. LiC. ZhangY. TangY. XiaoJ. GaoF. OuyangY. ChengX. LncRNA CRNDE modulates cardiac progenitor cells’ proliferation and migration via the miR-181a/LYRN1 axis in hypoxia.J. Thorac. Dis.20201252614262410.21037/jtd.2020.03.2232642169
    [Google Scholar]
  29. SavareseG. BecherP.M. LundL.H. SeferovicP. RosanoG.M.C. CoatsA.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology.Cardiovasc. Res.2023118173272328710.1093/cvr/cvac01335150240
    [Google Scholar]
  30. KhanM.S. ShahidI. BennisA. RakishevaA. MetraM. ButlerJ. Global epidemiology of heart failure.Nat. Rev. Cardiol.2024211071773410.1038/s41569‑024‑01046‑638926611
    [Google Scholar]
  31. WangY. LeY. WuJ. ZhaoW. ZhangQ. XuG. GongZ. XuM. MaY. YuC. CaiS. ZhaoH. Inhibition of xanthine oxidase by allopurinol suppresses HMGB1 secretion and ameliorates experimental asthma.Redox Biol.20247010302110.1016/j.redox.2023.10302138219573
    [Google Scholar]
  32. ChenH. LiuJ. WangB. LiY. Protective effect of lncRNA CRNDE on myocardial cell apoptosis in heart failure by regulating HMGB1 cytoplasm translocation through PARP-1.Arch. Pharm. Res.202043121325133410.1007/s12272‑020‑01290‑733249529
    [Google Scholar]
  33. YuZ. XiaY. LiJ. JiangJ. LiY. LiY. WangL. Mettl3 mediates m6a modification of lncRNA CRNDE to promote atg10 expression and improve brain ischemia/reperfusion injury through YTHDC1.Biol. Direct20241919210.1186/s13062‑024‑00536‑439407279
    [Google Scholar]
  34. SunT.T. LiX.M. ZhuJ.Y. YaoW. YangT.J. MengX.R. YaoJ. JiangQ. Regulatory effect of long-stranded non-coding RNA-CRNDE on neurodegeneration during retinal ischemia-reperfusion.Heliyon2022810e1099410.1016/j.heliyon.2022.e1099436276743
    [Google Scholar]
  35. LiuY. LinZ. WangY. ChenL. WangY. LuoC. Nanotechnology in inflammation: Cutting-edge advances in diagnostics, therapeutics and theranostics.Theranostics20241462490252510.7150/thno.9139438646646
    [Google Scholar]
  36. YaoQ. WuX. TaoC. GongW. ChenM. QuM. ZhongY. HeT. ChenS. XiaoG. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets.Signal Transduct. Target. Ther.2023815610.1038/s41392‑023‑01330‑w36737426
    [Google Scholar]
  37. FengJ. ZhangQ. PuF. ZhuZ. LuK. LuW.W. TongL. YuH. ChenD. Signalling interaction between β- catenin and other signalling molecules during osteoarthritis development.Cell Prolif.2024576e1360010.1111/cpr.1360038199244
    [Google Scholar]
  38. ZhangZ. YangP. WangC. TianR. LncRNA CRNDE hinders the progression of osteoarthritis by epigenetic regulation of DACT1.Cell. Mol. Life Sci.202279840510.1007/s00018‑022‑04427‑735802196
    [Google Scholar]
  39. HartA.L. RubinD.T. Entering the era of disease modification in inflammatory bowel disease.Gastroenterology202216251367136910.1053/j.gastro.2022.02.01335202593
    [Google Scholar]
  40. BirchR.J. BurrN. SubramanianV. TiernanJ.P. HullM.A. FinanP. RoseA. RutterM. ValoriR. DowningA. MorrisE.J.A. Inflammatory bowel disease-associated colorectal cancer epidemiology and outcomes: An english population-based study.Am. J. Gastroenterol.2022117111858187010.14309/ajg.000000000000194136327438
    [Google Scholar]
  41. El-BoghdadyN.A. El-HakkS.A. Abd-ElmawlaM.A. The lncRNAs UCA1 and CRNDE target miR-145/TLR4/NF-қB/TNF-α axis in acetic acid-induced ulcerative colitis model: The beneficial role of 3,3-diindolylmethane.Int. Immunopharmacol.202312111054110.1016/j.intimp.2023.11054137390564
    [Google Scholar]
  42. GuoQ. JinY. ChenX. YeX. ShenX. LinM. ZengC. ZhouT. ZhangJ. NF-κB in biology and targeted therapy: New insights and translational implications.Signal Transduct. Target. Ther.2024915310.1038/s41392‑024‑01757‑938433280
    [Google Scholar]
  43. KazemifardN. FarmaniM. Baradaran GhavamiS. KazemiM. ShahrokhS. Asadzadeh AghdaeiH. ZaliM. A prediction of the CRNDE role by modulating nf-κb pathway in inflammatory bowel disease (IBD).Biochem. Biophys. Rep.20243810173110.1016/j.bbrep.2024.10173138766384
    [Google Scholar]
  44. BoboltzA. KumarS. DuncanG.A. Inhaled drug delivery for the targeted treatment of asthma.Adv. Drug Deliv. Rev.202319811485810.1016/j.addr.2023.11485837178928
    [Google Scholar]
  45. VarricchiG. BrightlingC.E. GraingeC. LambrechtB.N. ChanezP. Airway remodelling in asthma and the epithelium: On the edge of a new era.Eur. Respir. J.2024634230161910.1183/13993003.01619‑202338609094
    [Google Scholar]
  46. ZhangX.Y. ChenZ.C. LiN. WangZ.H. GuoY.L. TianC.J. ChengD.J. TangX.Y. ZhangL.X. Exosomal transfer of activated neutrophil-derived lncRNA CRNDE promotes proliferation and migration of airway smooth muscle cells in asthma.Hum. Mol. Genet.202231463865010.1093/hmg/ddab28334590683
    [Google Scholar]
  47. HeydariR. TavassolifarM.J. FayazzadehS. SadatpourO. MeyfourA. Long non-coding RNAs in biomarking covid-19: A machine learning-based approach.Virol. J.202421113410.1186/s12985‑024‑02408‑938849961
    [Google Scholar]
  48. ZhangW. JiangH. WuG. HuangP. WangH. AnH. LiuS. ZhangW. The pathogenesis and potential therapeutic targets in sepsis.MedComm (2020).202346e41810.1002/mco2.41838020710
    [Google Scholar]
  49. LiY. SongJ. XieZ. LiuM. SunK. Long noncoding RNA colorectal neoplasia differentially expressed alleviates sepsis-induced liver injury via regulating miR-126-5p.IUBMB. Life.202072344045110.1002/iub.223032031750
    [Google Scholar]
  50. WangY. XuZ. YueD. ZengZ. YuanW. XuK. Linkage of lncRNA CRNDE sponging miR-181a-5p with aggravated inflammation underlying sepsis.Innate Immun.202026215216110.1177/175342591988094631604377
    [Google Scholar]
  51. XiaP. ZhangH. LuH. XuK. JiangX. JiangY. GongyeX. ChenZ. LiuJ. ChenX. MaW. ZhangZ. YuanY. METTL5 stabilizes c-Myc by facilitating USP5 translation to reprogram glucose metabolism and promote hepatocellular carcinoma progression.Cancer Commun. (Lond.)202343333836410.1002/cac2.1240336602428
    [Google Scholar]
  52. YangW. WangY. TaoC. LiY. CaoS. YangX. Crnde silencing promotes apoptosis and enhances cisplatin sensitivity of colorectal carcinoma cells by inhibiting the akt/mtorc1-mediated warburg effect.Oncol. Lett.20222327010.3892/ol.2022.1319035069879
    [Google Scholar]
  53. LuY. ZouR. GuQ. WangX. ZhangJ. MaR. WangT. WuJ. FengJ. ZhangY. CRNDE mediated hnRNPA2B1 stability facilitates nuclear export and translation of KRAS in colorectal cancer.Cell Death Dis.202314961110.1038/s41419‑023‑06137‑937716979
    [Google Scholar]
  54. WeiY. XuY. SunQ. HongY. LiangS. JiangH. ZhangX. ZhangS. ChenQ. Targeting ferroptosis opens new avenues in gliomas.Int. J. Biol. Sci.202420124674469010.7150/ijbs.9647639309434
    [Google Scholar]
  55. ZhaoZ. LiuM. LongW. YuanJ. LiH. ZhangC. TangG. JiangW. YuanX. WuM. LiuQ. Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma.Cancer Cell Int.202121145610.1186/s12935‑021‑02153‑x34454479
    [Google Scholar]
  56. YadavB. YadavP. YadavS. PandeyA.K. Role of long noncoding RNAs in the regulation of alternative splicing in glioblastoma.Drug Discov. Today2024291010414010.1016/j.drudis.2024.10414039168403
    [Google Scholar]
  57. GuanW.L. HeY. XuR.H. Gastric cancer treatment: Recent progress and future perspectives.J. Hematol. Oncol.20231615710.1186/s13045‑023‑01451‑337245017
    [Google Scholar]
  58. LuoM. YeL. ChangR. YeY. ZhangZ. LiuC. LiS. JingY. RuanH. ZhangG. HeY. LiuY. XueY. ChenX. GuoA.Y. LiuH. HanL. Multi-omics characterization of autophagy-related molecular features for therapeutic targeting of autophagy.Nat. Commun.2022131634510.1038/s41467‑022‑33946‑x36289218
    [Google Scholar]
  59. ZhangF. WangH. YuJ. YaoX. YangS. LiW. XuL. ZhaoL. LncRNA CRNDE attenuates chemoresistance in gastric cancer via srsf6-regulated alternative splicing of picalm.Mol. Cancer2021201610.1186/s12943‑020‑01299‑y33397371
    [Google Scholar]
  60. XinL. ZhouL.Q. LiuC. ZengF. YuanY.W. ZhouQ. LiS.H. WuY. WangJ.L. WuD.Z. LuH. Transfer of lncRNA CRNDE in tam-derived exosomes is linked with cisplatin resistance in gastric cancer.EMBO Rep.20212212e5212410.15252/embr.20205212434647680
    [Google Scholar]
  61. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑333479224
    [Google Scholar]
  62. ChanY.T. ZhangC. WuJ. LuP. XuL. YuanH. FengY. ChenZ.S. WangN. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma.Mol. Cancer202423118910.1186/s12943‑024‑02101‑z39242496
    [Google Scholar]
  63. SunL. KeX. GuanA. JinB. QuJ. WangY. XuX. LiC. SunH. XuH. XuG. SangX. FengY. SunY. YangH. MaoY. Intratumoural microbiome can predict the prognosis of hepatocellular carcinoma after surgery.Clin. Transl. Med.2023137e133110.1002/ctm2.133137462602
    [Google Scholar]
  64. LiX. LiangS. FeiM. MaK. SunL. LiuY. LiuL. WangJ. LncRNA CRNDE drives the progression of hepatocellular carcinoma by inducing the immunosuppressive niche.Int. J. Biol. Sci.202420271873210.7150/ijbs.8547138169579
    [Google Scholar]
  65. ChenL. SunL. DaiX. LiT. YanX. ZhangY. XiaoH. ShenX. HuangG. XiangW. ZhangY. TanD. YangS. NieY. HuangX. LianJ. HeF. LncRNA CRNDE promotes atg4b-mediated autophagy and alleviates the sensitivity of sorafenib in hepatocellular carcinoma cells.Front. Cell Dev. Biol.2021968752410.3389/fcell.2021.68752434409031
    [Google Scholar]
  66. YinC. TianY. YuY. LiD. MiaoZ. SuP. ZhaoY. WangX. PeiJ. ZhangK. QianA. Long noncoding RNA ak039312 and ak079370 inhibits bone formation via mir-199b-5p.Pharmacol. Res.202116310523010.1016/j.phrs.2020.10523033031910
    [Google Scholar]
  67. SunY.Y. ZhuH.J. ZhaoR.Y. ZhouS.Y. WangM.Q. YangY. GuoZ.N. Remote ischemic conditioning attenuates oxidative stress and inflammation via the NRF2/HO-1 pathway in mcao mice.Redox Biol.20236610285210.1016/j.redox.2023.10285237598463
    [Google Scholar]
  68. FatimaS. AlfrayhR. AlrashedM. AlsobaieS. AhmadR. MahmoodA. Selenium nanoparticles by moderating oxidative stress promote differentiation of mesenchymal stem cells to osteoblasts.Int. J. Nanomedicine20211633134310.2147/IJN.S28523333488075
    [Google Scholar]
  69. ZhuZ. WangX. WangZ. ZhaoZ. ZhouP. GaoX. Neobavaisoflavone protects osteoblasts from dexamethasone-induced oxidative stress by upregulating the CRNDE-mediated NRF2/HO-1 signaling pathway.Drug Dev. Res.20218271044105410.1002/ddr.2181133713471
    [Google Scholar]
  70. ZhangR. MuX. LiuD. ChenC. MengB. QuY. LiuJ. WangR. LiC. MaoX. WangQ. ZhangQ. Apoptotic vesicles rescue impaired mesenchymal stem cells and their therapeutic capacity for osteoporosis by restoring miR-145a-5p deficiency.J. Nanobiotechnology202422158010.1186/s12951‑024‑02829‑239304875
    [Google Scholar]
  71. MulatiM. KobayashiY. TakahashiA. NumataH. SaitoM. HiraokaY. OchiH. SatoS. EzuraY. YuasaM. HiraiT. YoshiiT. OkawaA. InoseH. The long noncoding RNA CRNDE regulates osteoblast proliferation through the Wnt/β- catenin signaling pathway in mice.Bone202013011507610.1016/j.bone.2019.11507631622775
    [Google Scholar]
  72. LiuZ.L. BianM. PangL. LncRNA CRNDE deteriorates delayed encephalopathy after acute carbon monoxide poisoning to inactivate akt/gsk3β/β-catenin pathway via mir-212-5p.Neurotox. Res.20224051208122210.1007/s12640‑022‑00518‑235852716
    [Google Scholar]
  73. LiuZ. BianM. PangL. LncRNA CRNDE binds hnRNPA1 to facilitate carbon monoxide poisoning-induced delayed encephalopathy via inhibiting UCHL5-mediated SMO deubiquitination.Metab. Brain Dis.20233831097111310.1007/s11011‑022‑01157‑436648699
    [Google Scholar]
  74. BanfiC. AmadioP. ZaràM. BrioschiM. SandriniL. BarbieriS.S. Prenylcysteine oxidase 1 (pcyox1), a new player in thrombosis.Int. J. Mol. Sci.2022235283110.3390/ijms2305283135269975
    [Google Scholar]
  75. KondreddyV. KeshavaS. DasK. MagisettyJ. RaoL.V.M. PendurthiU.R. The gab2–malt1 axis regulates thromboinflammation and deep vein thrombosis.Blood2022140131549156410.1182/blood.202201642435895897
    [Google Scholar]
  76. HeX. LiuY. LiY. WuK. Long non-coding RNA CRNDE promotes deep vein thrombosis by sequestering mir-181a-5p away from thrombogenic pcyox1l.Thromb. J.20232114410.1186/s12959‑023‑00480‑937076891
    [Google Scholar]
  77. MoazzamM. ZhangM. HussainA. YuX. HuangJ. HuangY. The landscape of nanoparticle-based sirna delivery and therapeutic development.Mol. Ther.202432228431210.1016/j.ymthe.2024.01.00538204162
    [Google Scholar]
  78. MiaoY. FuC. YuZ. YuL. TangY. WeiM. Current status and trends in small nucleic acid drug development: Leading the future.Acta Pharm. Sin. B20241493802381710.1016/j.apsb.2024.05.00839309508
    [Google Scholar]
  79. Pérez-CarriónM.D. PosadasI. CeñaV. Nanoparticles and siRNA: A new era in therapeutics?Pharmacol. Res.202420110710210.1016/j.phrs.2024.10710238331236
    [Google Scholar]
  80. JadhavV. VaishnawA. FitzgeraldK. MaierM.A. RNA interference in the era of nucleic acid therapeutics.Nat. Biotechnol.202442339440510.1038/s41587‑023‑02105‑y38409587
    [Google Scholar]
  81. LiD. LiuJ. YangC. TianY. YinC. HuL. ChenZ. ZhaoF. ZhangR. LuA. ZhangG. QianA. Targeting long noncoding RNA PMIF facilitates osteoprogenitor cells migrating to bone formation surface to promote bone formation during aging.Theranostics202111115585560410.7150/thno.5447733859765
    [Google Scholar]
  82. O’DonoghueM.L. RosensonR.S. LópezJ.A.G. LeporN.E. BaumS.J. StoutE. GaudetD. KnuselB. KuderJ.F. MurphyS.A. WangH. WuY. ShahT. WangJ. WilmanskiT. SohnW. KassahunH. SabatineM.S. OCEAN(a)-DOSE Trial Investigators The off-treatment effects of olpasiran on lipoprotein(a) lowering.J. Am. Coll. Cardiol.202484979079710.1016/j.jacc.2024.05.05839168564
    [Google Scholar]
  83. ChenY. ChenH. WangY. LiuF. FanX. ShiC. SuX. TanM. YangY. LinB. LeiK. QuL. YangJ. ZhuZ. YuanZ. XieS. SunQ. NeculaiD. LiuW. YanQ. WangX. ShaoJ. LiuJ. LinA. LncRNA link- a remodels tissue inflammatory microenvironments to promote obesity.Adv. Sci. (Weinh.)20241110230334110.1002/advs.20230334138145352
    [Google Scholar]
  84. AdamsD. AlgalarrondoV. Echaniz-LagunaA. Hereditary transthyretin amyloidosis in the era of RNA interference, antisense oligonucleotide, and crispr-cas9 treatments.Blood2023142191600161210.1182/blood.202301988437624911
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128339697250306072647
Loading
/content/journals/cpd/10.2174/0113816128339697250306072647
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarker; control mechanism; CRNDE; human diseases; LncRNA; therapeutic target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test