Skip to content
2000
Volume 32, Issue 1
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

This review discusses the latest progress in using smart polymeric materials for making medical implants with advanced three-dimensional (3D) and four-dimensional (4D) printing techniques. These smart polymers, also known as stimuli-responsive polymers, can change their properties when exposed to external triggers like temperature, pH, light, or magnetic fields. Integrating these materials with 3D/4D printing allows the creation of highly customizable and functional implants that can adapt to the body's environment. This means implants can now perform additional tasks, such as releasing drugs or changing shape when needed. The review covers different 3D/4D printing methods, the types of smart polymers available, and the benefits of using these materials in medical implants. It also addresses the challenges faced in developing these advanced implants, such as finding suitable materials that are safe for the body and ensuring precise manufacturing. The future prospects of these innovative implants are promising, with potential applications in personalized medicine and non-invasive treatments. This review aims to provide a detailed analysis of recent advancements in stimuli-responsive polymeric materials utilized in additive manufacturing of medical implants. The objective is to explore these materials' clinical implications, address the unique challenges in their development and fabrication, and outline their future potential in enhancing personalized and non-invasive medical treatments.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128368347250515073105
2025-05-27
2025-12-10
Loading full text...

Full text loading...

References

  1. VyasJ. RaytthathaN. SinghS. PrajapatiB. Next-generation computational automation-based additive manufacturing of pharmaceuticals: An approach to fabricate precise medicine.In:Handbook of 3D printing in pharmaceutics.1st edBoca Raton, FLCRC Press2024153175
    [Google Scholar]
  2. ShahS.R. ModiC.D. SinghS. MoriD.D. SoniwalaM.M. PrajapatiB.G. Recent advances in additive manufacturing of polycaprolactone-based scaffolds for tissue engineering applications: A comprehensive review.Regen. Eng. Transl. Med.2024312010.1007/s40883‑024‑00351‑3
    [Google Scholar]
  3. SinghA. MandalP. MaheshwariS. AkhtarJ. PrajapatiB.G. SinghS. Processing of sustainable biomaterials by additive manufacturing methods.In:Advances in sustainable biomaterials.1st edBoca Raton, FLCRC Press202414116210.1201/9781003434313‑8
    [Google Scholar]
  4. VyasJ. RaytthathaN. SinghS. PrajapatiB.G. MohiteP. MundeS. Sustainable sources of raw materials as substituting biomaterials for additive manufacturing of dental implants: A review.Period Impl Res202481310.1007/s41894‑024‑00130‑x
    [Google Scholar]
  5. VyasJ. SinghS. ShahI. PrajapatiB.G. Potential applications and additive manufacturing technology-based considerations of mesoporous silica: A review.AAPS PharmSciTech2023251610.1208/s12249‑023‑02720‑7 38129697
    [Google Scholar]
  6. VyasJ. ShahI. SinghS. PrajapatiB.G. Biomaterials-based additive manufacturing for customized bioengineering in management of otolaryngology: A comprehensive review.Front. Bioeng. Biotechnol.202311123434010.3389/fbioe.2023.1234340 37744247
    [Google Scholar]
  7. RatherH.A. VyaJ. SinghS. Biomaterials for 3D printing of patient-specific organ models.Biosens Nanotheranost20232111210.25163/biosensors.217333
    [Google Scholar]
  8. JadhavA. JadhavV.S. A review on 3D printing: An additive manufacturing technology.Mater. Today Proc.2022622094209910.1016/j.matpr.2022.02.558
    [Google Scholar]
  9. GibsonI. RosenD. StuckerB. Design for additive manufacturing.In:Additive Manufacturing Technologies.ChamSpringer202155560710.1007/978‑3‑030‑56127‑7_19
    [Google Scholar]
  10. LiC. PisignanoD. ZhaoY. XueJ. Advances in medical applications of additive manufacturing.Engineering (Beijing)20206111222123110.1016/j.eng.2020.02.018
    [Google Scholar]
  11. JavaidM. HaleemA. SinghR.P. SumanR. RabS. Role of additive manufacturing applications towards environmental sustainability.Adv Indust Enginee Poly Res20214431232210.1016/j.aiepr.2021.07.005
    [Google Scholar]
  12. ColoradoH.A. VelásquezE.I.G. MonteiroS.N. Sustainability of additive manufacturing: The circular economy of materials and environmental perspectives.J. Mater. Res. Technol.2020948221823410.1016/j.jmrt.2020.04.062
    [Google Scholar]
  13. ThakurJ. ParlaniS. ShivakumarS. JajooK. Accuracy of marginal fit of an implant-supported framework fabricated by 3D printing versus subtractive manufacturing technique: A systematic review and meta-analysis.J. Prosthet. Dent.2023129230130910.1016/j.prosdent.2021.05.010 34147238
    [Google Scholar]
  14. MobarakM.H. IslamM.A. HossainN. Recent advances of additive manufacturing in implant fabrication – A review.Appl Surf Sci Adv20231810046210.1016/j.apsadv.2023.100462
    [Google Scholar]
  15. MorouçoP. AzimiB. MilazzoM. Four-dimensional (bio-) printing: A review on stimuli-responsive mechanisms and their biomedical suitability.Appl. Sci. (Basel)20201024914310.3390/app10249143
    [Google Scholar]
  16. SinghJ. NayakP. pH‐responsive polymers for drug delivery: Trends and opportunities.J Polym Sci202361222828285010.1002/pol.20230403
    [Google Scholar]
  17. AlghamdiS.S. JohnS. ChoudhuryN.R. DuttaN.K. Additive manufacturing of polymer materials: Progress, promise and challenges.Polymers (Basel)202113575310.3390/polym13050753 33670934
    [Google Scholar]
  18. Van GheluweL. ChourpaI. GaigneC. MunnierE. Polymer-based smart drug delivery systems for skin application and demonstration of stimuli-responsiveness.Polymers (Basel)2021138128510.3390/polym13081285 33920816
    [Google Scholar]
  19. QuanjinM. RejabM.R.M. IdrisM.S. KumarN.M. AbdullahM.H. ReddyG.R. Recent 3D and 4D intelligent printing technologies: A comparative review and future perspective.Procedia Comput. Sci.20201671210121910.1016/j.procs.2020.03.434
    [Google Scholar]
  20. ImrieP. JinJ. Polymer 4D printing: Advanced shape‐change and beyond.J Polym Sci202260214917410.1002/pol.20210718
    [Google Scholar]
  21. AciernoD. PattiA. Fused deposition modelling (FDM) of thermoplastic-based filaments: Process and rheological properties—an overview.Materials (Basel)20231624766410.3390/ma16247664 38138805
    [Google Scholar]
  22. MallakpourS. TabeshF. HussainC.M. A new trend of using poly(vinyl alcohol) in 3D and 4D printing technologies: Process and applications.Adv. Coll Interf Sci.202230110260510.1016/j.cis.2022.102605 35144173
    [Google Scholar]
  23. HaleemA. JavaidM. SinghR.P. SumanR. Significant roles of 4D printing using smart materials in the field of manufacturing.Adv Indust Enginee Poly Res20214430131110.1016/j.aiepr.2021.05.001
    [Google Scholar]
  24. DeshmukhK. HoukanM.T. AlMaadeedM.A. SadasivuniK.K. Chapter 1-Introduction to 3D and 4D printing technology: State of the art and recent trends. In: 3D and 4D Printing of Polymer Nanocomposite Materials.Chapter 1Amsterdam, NetherlandsElsevier202012410.1016/B978‑0‑12‑816805‑9.00001‑6
    [Google Scholar]
  25. WangY. CuiH. EsworthyT. MeiD. WangY. ZhangL.G. Emerging 4D printing strategies for next‐generation tissue regeneration and medical devices.Adv. Mater.20223420210919810.1002/adma.202109198 34951494
    [Google Scholar]
  26. Sahafnejad-MohammadiI. KaramimoghadamM. ZolfagharianA. AkramiM. BodaghiM. 4D printing technology in medical engineering: A narrative review.J. Braz. Soc. Mech. Sci. Eng.202244623310.1007/s40430‑022‑03514‑x
    [Google Scholar]
  27. MoroniS. CasettariL. LamprouD.A. 3D and 4D printing in the fight against breast cancer.Biosensors (Basel)202212856810.3390/bios12080568 35892465
    [Google Scholar]
  28. KumarS. KumarR. Overview of 3D and 4D printing techniques and their emerging applications in medical sectors.Recent Pat. Mater. Sci.2023162143170
    [Google Scholar]
  29. PourmasoumiP. MoghaddamA. MahandS.N. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine.J. Biomater. Sci. Polym. Ed.202334110814610.1080/09205063.2022.2110480 35924585
    [Google Scholar]
  30. NorooziR. ArifZ.U. TaghvaeiH. 3D and 4D bioprinting technologies: A game changer for the biomedical sector?Ann. Biomed. Eng.20235181683171210.1007/s10439‑023‑03243‑9 37261588
    [Google Scholar]
  31. Bratek-SkickiA. Towards a new class of stimuli-responsive polymer-based materials – Recent advances and challenges.Appl Surf Sci Adv2021410006810.1016/j.apsadv.2021.100068
    [Google Scholar]
  32. MaS. ZhangY. WangM. LiangY. RenL. RenL. Recent progress in 4D printing of stimuli-responsive polymeric materials.Sci. China Technol. Sci.202063453254410.1007/s11431‑019‑1443‑1
    [Google Scholar]
  33. WurmF.R. BoyerC. SumerlinB.S. Progress on stimuli-responsive polymers.Macromol. Rapid Commun.20214218210051210.1002/marc.202100512 34545982
    [Google Scholar]
  34. Revilla-LeónM. SadeghpourM. ÖzcanM. A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry.J. Prosthodont.202029757959310.1111/jopr.13212 32548890
    [Google Scholar]
  35. VigneshM. KumarG.R. SathishkumarM. Development of biomedical implants through additive manufacturing: A review.J. Mater. Eng. Perform.20213074735474410.1007/s11665‑021‑05578‑7
    [Google Scholar]
  36. MahmoodA. AkramT. ChenH. ChenS. On the evolution of additive manufacturing (3D/4D Printing) technologies: Materials, applications, and challenges.Polymers (Basel)20221421469810.3390/polym14214698 36365695
    [Google Scholar]
  37. AhmedA. AryaS. GuptaV. FurukawaH. KhoslaA. 4D printing: Fundamentals, materials, applications and challenges.Polymer (Guildf.)202122812392610.1016/j.polymer.2021.123926
    [Google Scholar]
  38. AwasthiA. SaxenaK.K. DwivediR.K. An investigation on classification and characterization of bio materials and additive manufacturing techniques for bioimplants.Mater. Today Proc.2021442061206810.1016/j.matpr.2020.12.176
    [Google Scholar]
  39. Al-TamimiA.A. AlmeidaH. BartoloP. Structural optimisation for medical implants through additive manufacturing.Prog Addit Manufact2020529511010.1007/s40964‑020‑00109‑7
    [Google Scholar]
  40. KaushikV. KumarB.N. KumarS.S. VigneshM. Magnesium role in additive manufacturing of biomedical implants - Challenges and opportunities.Addit. Manuf.20225510280210.1016/j.addma.2022.102802
    [Google Scholar]
  41. ShymborskaY. BudkowskiA. RaczkowskaJ. Switching it up: The promise of stimuli‐responsive polymer systems in biomedical science.Chem. Rec.2024242e20230021710.1002/tcr.202300217 37668274
    [Google Scholar]
  42. López RuizA. RamirezA. McEnnisK. Single and multiple stimuli-responsive polymer particles for controlled drug delivery.Pharmaceutics202214242110.3390/pharmaceutics14020421 35214153
    [Google Scholar]
  43. StetsyshynY. RaczkowskaJ. HarhayK. Temperature-responsive and multi-responsive grafted polymer brushes with transitions based on critical solution temperature: Synthesis, properties, and applications.Colloid Polym. Sci.2021299336338310.1007/s00396‑020‑04750‑0
    [Google Scholar]
  44. ZhangQ. ZhangY. WanY. CarvalhoW. HuL. SerpeM.J. Stimuli-responsive polymers for sensing and reacting to environmental conditions.Prog. Polym. Sci.202111610138610.1016/j.progpolymsci.2021.101386
    [Google Scholar]
  45. GayathriV. JaisankarS.N. SamantaD. Temperature and pH responsive polymers: Sensing applications.J. Macromol. Sci. Part A Pure Appl. Chem.20225929812610.1080/10601325.2021.1988636
    [Google Scholar]
  46. AundhiaC. ParmarG. TaleleC. kardani S, Maheshwari R. Light-responsive polymers: Developments in drug delivery systems.Curr. Org. Chem.202428151179118910.2174/0113852728307241240430055059
    [Google Scholar]
  47. CaoJ. ZhangD. ZhouY. ZhangQ. WuS. Controlling properties and functions of polymer gels using photochemical reactions.Macromol. Rapid Commun.2022434210070310.1002/marc.202100703 35038195
    [Google Scholar]
  48. NamathotiS. Sreekanth PSR, Kumar VMR. A review on progress in magnetic, microwave, ultrasonic responsive shape-memory polymer composites.Mater. Today Proc.20225631182119110.1016/j.matpr.2021.11.151
    [Google Scholar]
  49. PacificiN. BolandparvazA. LewisJ.S. Stimuli‐responsive biomaterials for vaccines and immunotherapeutic applications.Adv. Ther. (Weinh.)2020311200012910.1002/adtp.202000129 32838028
    [Google Scholar]
  50. HirutaY. Poly(N-isopropylacrylamide)-based temperature- and pH-responsive polymer materials for application in biomedical fields.Polym. J.202254121419143010.1038/s41428‑022‑00687‑z
    [Google Scholar]
  51. OfridamF. TarhiniM. LebazN. GagnièreÉ. ManginD. ElaissariA. pH‐sensitive polymers: Classification and some fine potential applications.Polym. Adv. Technol.20213241455148410.1002/pat.5230
    [Google Scholar]
  52. EbrahimiM. NorouziP. AazamiH. Moosavi-MovahediA.A. Review on oxidative stress relation on COVID-19: Biomolecular and bioanalytical approach.Int. J. Biol. Macromol.202118980281810.1016/j.ijbiomac.2021.08.095 34418419
    [Google Scholar]
  53. LacroceE. RossiF. Polymer-based thermoresponsive hydrogels for controlled drug delivery.Expert Opin. Drug Deliv.202219101203121510.1080/17425247.2022.2078806 35575265
    [Google Scholar]
  54. TianJ. HuangB. NawazM.H. ZhangW. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy.Coord. Chem. Rev.202042021341010.1016/j.ccr.2020.213410
    [Google Scholar]
  55. HoganK.J. MikosA.G. Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering.Polymer (Guildf.)202021112306310.1016/j.polymer.2020.123063
    [Google Scholar]
  56. JiaR. TengL. GaoL. Advances in multiple stimuli-responsive drug-delivery systems for cancer therapy.Int. J. Nanomedicine2021161525155110.2147/IJN.S293427 33658782
    [Google Scholar]
  57. PatilA.S. GadadA.P. DandagiP.M. Mono and multi‐stimuli responsive polymers: Application as intelligent nano‐drug delivery systems.In:Nanopharmaceutical Advanced Delivery Systems.Austin, TexasWiley Scrivener Publishing202169810.1002/9781119711698.ch11
    [Google Scholar]
  58. AlsehliM. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery.Saudi Pharm. J.202028325526510.1016/j.jsps.2020.01.004 32194326
    [Google Scholar]
  59. DasS.S. BharadwajP. BilalM. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis.Polymers (Basel)2020126139710.3390/polym12061397 32580366
    [Google Scholar]
  60. MazidiZ. JavanmardiS. NaghibS.M. MohammadpourZ. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials.Chem. Eng. J.202243313456910.1016/j.cej.2022.134569
    [Google Scholar]
  61. AfloriM. Smart nanomaterials for biomedical applications-a review.Nanomaterials (Basel)202111239610.3390/nano11020396 33557177
    [Google Scholar]
  62. SobczakM. Enzyme-responsive hydrogels as potential drug delivery systems—state of knowledge and future prospects.Int. J. Mol. Sci.2022238442110.3390/ijms23084421 35457239
    [Google Scholar]
  63. TaoY. ChanH.F. ShiB. LiM. LeongK.W. Light: A magical tool for controlled drug delivery.Adv. Funct. Mater.20203049200502910.1002/adfm.202005029 34483808
    [Google Scholar]
  64. MunicoyS. Álvarez EchazúM.I. AntezanaP.E. Stimuli-responsive materials for tissue engineering and drug delivery.Int. J. Mol. Sci.20202113472410.3390/ijms21134724 32630690
    [Google Scholar]
  65. SanadgolN. WackerligJ. Developments of smart drug-delivery systems based on magnetic molecularly imprinted polymers for targeted cancer therapy: A short review.Pharmaceutics202012983110.3390/pharmaceutics12090831 32878127
    [Google Scholar]
  66. FuX. TianL. FanY. Stimuli-responsive self-healing anticorrosion coatings: From single triggering behavior to synergetic multiple protections.Mater. Today Chem.20212210057510.1016/j.mtchem.2021.100575
    [Google Scholar]
  67. JainK.K. KadamA.Y. TomarY. SinghviG. Stimuli-sensitive polymeric micelles for biomedical applications.In: Singh SK, Gulati M, Mutalik S, Dhanasekaran M, Dua K, Eds.Polymeric micelles:Principles, perspectives and practices SinghS.K. GulatiM. MutalikS. DhanasekaranM. DuaK. SingaporeSpringer202312515410.1007/978‑981‑99‑0361‑0_7
    [Google Scholar]
  68. KuperkarK. TiwariS. BahadurP. Self-assembled block copolymer nanoaggregates for drug delivery applications.In: Applications of polymers in drug delivery.2nd edAmsterdam, NetherlandsElsevier202142344710.1016/B978‑0‑12‑819659‑5.00015‑X
    [Google Scholar]
  69. El-HusseinyH.M. MadyE.A. HamabeL. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications.Mater. Today Bio20221310018610.1016/j.mtbio.2021.100186 34917924
    [Google Scholar]
  70. KhademE. KharazihaM. Bakhsheshi-RadH.R. DasO. BertoF. Cutting-edge progress in stimuli-responsive bioadhesives: From synthesis to clinical applications.Polymers (Basel)2022149170910.3390/polym14091709 35566878
    [Google Scholar]
  71. GheysooriP. PaydayeshA. JafariM. PeidayeshH. Thermoresponsive nanocomposite hydrogels based on Gelatin/poly (N-isopropylacrylamide) (PNIPAM) for controlled drug delivery.Eur. Polym. J.202318611184610.1016/j.eurpolymj.2023.111846
    [Google Scholar]
  72. ArroubK. GessnerI. FischerT. MathurS. Thermoresponsive poly (N‐isopropylacrylamide)/polycaprolacton nanofibrous scaffolds for controlled release of antibiotics.Adv. Eng. Mater.2021239210022110.1002/adem.202100221
    [Google Scholar]
  73. MundelR ThakurT ChatterjeeM. Emerging uses of PLA-PEG copolymer in cancer drug delivery.3 Biotech202212(2)4110.1007/s13205‑021‑03105‑y 35070631
    [Google Scholar]
  74. RasoolA. RizwanM. IslamA. Chitosan‐based smart polymeric hydrogels and their prospective applications in biomedicine.Stärke2024761-2210015010.1002/star.202100150
    [Google Scholar]
  75. ThirupathiK. RaoraneC.J. RamkumarV. Update on chitosan-based hydrogels: Preparation, characterization, and its antimicrobial and antibiofilm applications.Gels2022913510.3390/gels9010035 36661802
    [Google Scholar]
  76. SanaB. Finne-WistrandA. PappalardoD. Recent development in near infrared light-responsive polymeric materials for smart drug-delivery systems.Mater. Today Chem.20222510096310.1016/j.mtchem.2022.100963
    [Google Scholar]
  77. Di MartinoM. SessaL. DianaR. PiottoS. ConcilioS. Recent progress in photoresponsive biomaterials.Molecules2023289371210.3390/molecules28093712 37175122
    [Google Scholar]
  78. RadI. EsmaeiliE. JahromiB.B. Application of thermo-responsive polymers as smart biomaterials in wound dressing.Polym. Bull.20248113113991142010.1007/s00289‑024‑05276‑z
    [Google Scholar]
  79. Al-AhmedZ.A. SnariR.M. AlsoliemyA. Preparation of thermochromic and vapochromic cotton fibers finished with poly(N-vinylcaprolactam-co-hydrazone).Cellulose202229158457847210.1007/s10570‑022‑04776‑3
    [Google Scholar]
  80. LoriM.S. OhadiM. EstabraghM.A.R. AfsharipourS. BanatI.M. DehghannoudehG. pH-sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: A review.Protein Pept. Lett.202128111230123710.2174/0929866528666210720142841 34303327
    [Google Scholar]
  81. PruthiV. AkaeY. ThéatoP. Photoresponsive spiropyran and DEGMA-based copolymers with photo‐switchable glass transition temperatures.Macromol. Rapid Commun.20234419230027010.1002/marc.202300270 37358931
    [Google Scholar]
  82. AbedH.F. AbuwatfaW.H. HusseiniG.A. Redox-responsive drug delivery systems: A chemical perspective.Nanomaterials (Basel)20221218318310.3390/nano12183183 36144971
    [Google Scholar]
  83. YuC. LiL. HuP. Recent advances in stimulus-responsive nanocarriers for gene therapy.Adv. Sci. (Weinh.)2021814210054010.1002/advs.202100540 34306980
    [Google Scholar]
  84. GhoshP. YeasminS. Polymer-grafted magnetic nanoparticles toward intelligent designing of drug delivery: Recent advances and future perspectives. In: Industrial Applications.Berlin/Boston Walter de Gruyter GmbH 2022; 2: pp. 73-96 10.1515/9783110782165‑003
    [Google Scholar]
  85. GuoF. DuY. WangY. Targeted drug delivery systems for matrix metalloproteinase-responsive anoparticles in tumor cells: A review.Int. J. Biol. Macromol.2024257Pt 112865810.1016/j.ijbiomac.2023.128658 38065446
    [Google Scholar]
  86. KrsticM. Rogic MiladinovicZ. BarudzijaT. MladenovicA. SuljovrujicE. Stimuli-responsive copolymeric hydrogels based on oligo(ethylene glycol) dimethacrylate for biomedical applications: An optimisation study of pH and thermoresponsive behaviour.React. Funct. Polym.202217010514010.1016/j.reactfunctpolym.2021.105140
    [Google Scholar]
  87. PasbanS. RaissiH. PNIPAM/Hexakis as a thermosensitive drug delivery system for biomedical and pharmaceutical applications.Sci. Rep.20221211436310.1038/s41598‑022‑18459‑3 35999242
    [Google Scholar]
  88. ValizadehA. AsghariS. AbbaspoorS. JafariA. RaeisiM. PilehvarY. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023156e190910.1002/wnan.1909 37258422
    [Google Scholar]
  89. BrilM. FredrichS. KurniawanN.A. Stimuli-responsive materials: A smart way to study dynamic cell responses.Smart Mater. Med.2022325727310.1016/j.smaim.2022.01.010
    [Google Scholar]
  90. BandyopadhyayA. MitraI. GoodmanS.B. KumarM. BoseS. Improving biocompatibility for next generation of metallic implants.Prog. Mater. Sci.202313310105310.1016/j.pmatsci.2022.101053 36686623
    [Google Scholar]
  91. RyanK.R. DownM.P. BanksC.E. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications.Chem. Eng. J.202140312616210.1016/j.cej.2020.126162
    [Google Scholar]
  92. IntravaiaJ.T. GrahamT. KimH.S. NandaH.S. KumbarS.G. NukavarapuS.P. Smart orthopedic biomaterials and implants.Curr. Opin. Biomed. Eng.20232510043910.1016/j.cobme.2022.100439 36642994
    [Google Scholar]
  93. JiangP. ZhangY. HuR. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation.Bioact. Mater.202327155710.1016/j.bioactmat.2023.03.006 37035422
    [Google Scholar]
  94. KumarP. SuryavanshiP. DwivedyS.K. BanerjeeS. Stimuli-responsive materials for 4D printing: Mechanical, manufacturing, and biomedical applications.J. Mol. Liq.202441012555310.1016/j.molliq.2024.125553
    [Google Scholar]
  95. CookM.T. HaddowP. KirtonS.B. McAuleyW.J. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare.Adv. Funct. Mater.2021318200812310.1002/adfm.202008123
    [Google Scholar]
  96. AntezanaP.E. MunicoyS. OstapchukG. 4D printing: The development of responsive materials using 3D-printing technology.Pharmaceutics20231512274310.3390/pharmaceutics15122743 38140084
    [Google Scholar]
  97. WangJ. ZhangY. AghdaN.H. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective.Adv. Drug Deliv. Rev.202117429431610.1016/j.addr.2021.04.019 33895212
    [Google Scholar]
  98. ChoiS. LeeH. HongR. JoB. JoS. Application of multi-layered temperature-responsive polymer brushes coating on titanium surface to inhibit biofilm associated infection in orthopedic surgery.Polymers (Basel)202215116310.3390/polym15010163 36616511
    [Google Scholar]
  99. NastyshynS. StetsyshynY. RaczkowskaJ. Temperature-responsive polymer brush coatings for advanced biomedical applications.Polymers (Basel)20221419424510.3390/polym14194245 36236192
    [Google Scholar]
  100. OwV. LohX.J. Recent developments of temperature‐responsive polymers for ophthalmic applications.J Polym Sci20226091429144710.1002/pol.20210907
    [Google Scholar]
  101. JoshiM.U. KulkarniS.P. ChoppadandiM. KeerthanaM. KapusettiG. Current state of art smart coatings for orthopedic implants: A comprehensive review.Smart Mater. Med.2023466167910.1016/j.smaim.2023.06.005
    [Google Scholar]
  102. Martín GiménezV.M. AryaG. ZucchiI.A. GalanteM.J. ManuchaW. Photo-responsive polymeric nanocarriers for target-specific and controlled drug delivery.Soft Matter202117388577858410.1039/D1SM00999K 34580698
    [Google Scholar]
  103. LeistnerA.L. PianowskiZ.L. Smart photochromic materials triggered with visible light.Eur. J. Org. Chem.2022202219e20210127110.1002/ejoc.202101271
    [Google Scholar]
  104. LimK.S. GalarragaJ.H. CuiX. LindbergG.C.J. BurdickJ.A. WoodfieldT.B.F. Fundamentals and applications of photo-cross-linking in bioprinting.Chem. Rev.202012019106621069410.1021/acs.chemrev.9b00812 32302091
    [Google Scholar]
  105. SantosN. Fuentes-LemusE. AhumadaM. Use of photosensitive molecules in the crosslinking of biopolymers: Applications and considerations in biomaterials development.J. Mater. Chem. B Mater. Biol. Med.202412276550656210.1039/D4TB00299G 38913025
    [Google Scholar]
  106. AmirthalingamS. RajendranA.K. MoonY.G. HwangN.S. Stimuli-responsive dynamic hydrogels: Design, properties and tissue engineering applications.Mater. Horiz.20231093325335010.1039/D3MH00399J 37387121
    [Google Scholar]
  107. YadavD. SharmaP.K. MalviyaR. Stimuli-responsive biomaterials for tissue engineering applications.Curr. Pharm. Biotechnol.202425898199910.2174/1389201024666230818121821 37594093
    [Google Scholar]
  108. YaraliE. BaniasadiM. ZolfagharianA. Magneto‐/electro‐responsive polymers toward manufacturing, characterization, and biomedical/soft robotic applications.Appl. Mater. Today20222610130610.1016/j.apmt.2021.101306
    [Google Scholar]
  109. SharifianjaziF. IraniM. EsmaeilkhanianA. Polymer incorporated magnetic nanoparticles: Applications for magnetoresponsive targeted drug delivery.Mater. Sci. Eng. B202127211535810.1016/j.mseb.2021.115358
    [Google Scholar]
  110. KopylS. SurmenevR. SurmenevaM. FetisovY. KholkinA. Magnetoelectric effect: Principles and applications in biology and medicine- A review.Mater. Today Bio20211210014910.1016/j.mtbio.2021.100149 34746734
    [Google Scholar]
  111. SoaresP.I.P. RomãoJ. MatosR. SilvaJ.C. BorgesJ.P. Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective.Prog. Mater. Sci.202111610074210.1016/j.pmatsci.2020.100742
    [Google Scholar]
  112. GonçalvesA.I. GomesM.E. Outlook in tissue-engineered magnetic systems and biomagnetic control.Curr. Opin. Biomed. Eng.20232510043110.1016/j.cobme.2022.100431
    [Google Scholar]
  113. KanaanA.F. PinhoA.C. PiedadeA.P. Electroactive polymers obtained by conventional and non-conventional technologies.Polymers (Basel)20211316271310.3390/polym13162713 34451256
    [Google Scholar]
  114. BiswalD.K. Application of electroactive polymer actuator: A brief review.In: Biomimicry materials and applicationsAustin, Texas:Wiley Scrivener Publishing202304310.1002/9781394167043.ch5
    [Google Scholar]
  115. WeiH. CuiJ. LinK. XieJ. WangX. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration.Bone Res.20221011710.1038/s41413‑021‑00180‑y 35197462
    [Google Scholar]
  116. GelmiA. SchuttC.E. Stimuli‐responsive biomaterials: Scaffolds for stem cell control.Adv. Healthc. Mater.2021101200112510.1002/adhm.202001125 32996270
    [Google Scholar]
  117. AbdollahiyanP. BaradaranB. de la GuardiaM. OroojalianF. MokhtarzadehA. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today.J. Cont Rel202032851453110.1016/j.jconrel.2020.09.030 32956710
    [Google Scholar]
  118. ArifZ.U. KhalidM.Y. ZolfagharianA. BodaghiM. 4D bioprinting of smart polymers for biomedical applications: Recent progress, challenges, and future perspectives.React. Funct. Polym.202217910537410.1016/j.reactfunctpolym.2022.105374
    [Google Scholar]
  119. SajjadR. ChauhdaryS.T. AnwarM.T. A review of 4D printing - Technologies, shape shifting, smart polymer based materials, and biomedical applications.Adv Indust Enginee Poly Res202471203610.1016/j.aiepr.2023.08.002
    [Google Scholar]
  120. LiY. ZhangF. LiuY. LengJ. 4D printed shape memory polymers and their structures for biomedical applications.Sci. China Technol. Sci.202063454556010.1007/s11431‑019‑1494‑0
    [Google Scholar]
  121. OlivaN. AlmquistB.D. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials.Adv. Drug Deliv. Rev.2020161-162224110.1016/j.addr.2020.07.021 32745497
    [Google Scholar]
  122. TrovatoV. SfameniS. RandoG. A review of stimuli-responsive smart materials for wearable technology in healthcare: Retrospective, perspective, and prospective.Molecules20222717570910.3390/molecules27175709 36080476
    [Google Scholar]
  123. XuX. ShiJ. FarokhzadO.C. Stimuli-responsive nanoparticles for biomedical applications.United States Patent US20220226510A12022
    [Google Scholar]
  124. LeeC.U. GoetzA.E. AshikariY. BoydstonA.J. GanterM.A. StortiD.W. Additive manufacturing using stimuli-responsive high-performance polymers. United States Patent US 104273532019
    [Google Scholar]
  125. AzizT. UllahA. AliA. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field.J. Appl. Polym. Sci.202213929e5262410.1002/app.52624
    [Google Scholar]
  126. KalirajanC. DukleA. NathanaelA.J. OhT.H. ManivasagamG. A critical review on polymeric biomaterials for biomedical applications.Polymers (Basel)20211317301510.3390/polym13173015 34503054
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128368347250515073105
Loading
/content/journals/cpd/10.2174/0113816128368347250515073105
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test