Skip to content
2000
image of Recent Advancements in Stimuli-Responsive Polymeric Implants Fabricated via Additive Manufacturing: A Review

Abstract

This review discusses the latest progress in using smart polymeric materials for making medical implants with advanced three-dimensional (3D) and four-dimensional (4D) printing techniques. These smart polymers, also known as stimuli-responsive polymers, can change their properties when exposed to external triggers like temperature, pH, light, or magnetic fields. Integrating these materials with 3D/4D printing allows the creation of highly customizable and functional implants that can adapt to the body's environment. This means implants can now perform additional tasks, such as releasing drugs or changing shape when needed. The review covers different 3D/4D printing methods, the types of smart polymers available, and the benefits of using these materials in medical implants. It also addresses the challenges faced in developing these advanced implants, such as finding suitable materials that are safe for the body and ensuring precise manufacturing. The future prospects of these innovative implants are promising, with potential applications in personalized medicine and non-invasive treatments. This review aims to provide a detailed analysis of recent advancements in stimuli-responsive polymeric materials utilized in additive manufacturing of medical implants. The objective is to explore these materials' clinical implications, address the unique challenges in their development and fabrication, and outline their future potential in enhancing personalized and non-invasive medical treatments.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128368347250515073105
2025-05-27
2025-09-03
Loading full text...

Full text loading...

References

  1. Vyas J. Raytthatha N. Singh S. Prajapati B. Next-Generation Computational Automation-Based Additive Manufacturing of Pharmaceuticals: An Approach to Fabricate Precise Medicine. In: Handbook of 3D Printing in Pharmaceutics. 1st Ed Boca Raton, FL CRC Press 2024 153 175
    [Google Scholar]
  2. Shah S.R. Modi C.D. Singh S. Mori D.D. Soniwala M.M. Prajapati B.G. Recent advances in additive manufacturing of polycaprolactone-based scaffolds for tissue engineering applications: A comprehensive review. Regen. Eng. Transl. Med. 2024 3 1 20 10.1007/s40883‑024‑00351‑3
    [Google Scholar]
  3. Singh A. Mandal P. Maheshwari S. Akhtar J. Prajapati B.G. Singh S. Processing of Sustainable Biomaterials by Additive Manufacturing Methods. In: Advances in Sustainable Biomaterials. 1st Ed Boca Raton, FL CRC Press 2024 141 162 10.1201/9781003434313‑8
    [Google Scholar]
  4. Vyas J. Raytthatha N. Singh S. Prajapati B.G. Mohite P. Munde S. Sustainable sources of raw materials as substituting biomaterials for additive manufacturing of dental implants: A review. Period Impl Res 2024 8 1 3 10.1007/s41894‑024‑00130‑x
    [Google Scholar]
  5. Vyas J. Singh S. Shah I. Prajapati B.G. Potential applications and additive manufacturing technology-based considerations of mesoporous silica: A review. AAPS PharmSciTech 2023 25 1 6 10.1208/s12249‑023‑02720‑7 38129697
    [Google Scholar]
  6. Vyas J. Shah I. Singh S. Prajapati B.G. Biomaterials-based additive manufacturing for customized bioengineering in management of otolaryngology: A comprehensive review. Front. Bioeng. Biotechnol. 2023 11 1234340 10.3389/fbioe.2023.1234340 37744247
    [Google Scholar]
  7. Rather H.A. Vya J. Singh S. Biomaterials for 3D printing of patient-specific organ models. Biosens Nanotheranost 2023 2 1 1 12 10.25163/biosensors.217333
    [Google Scholar]
  8. Jadhav A. Jadhav V.S. A review on 3D printing: An additive manufacturing technology. Mater. Today Proc. 2022 62 2094 2099 10.1016/j.matpr.2022.02.558
    [Google Scholar]
  9. Gibson I. Rosen D. Stucker B. Design for additive manufacturing. In: Additive Manufacturing Technologies. Cham Springer 2021 555 607 10.1007/978‑3‑030‑56127‑7_19
    [Google Scholar]
  10. Li C. Pisignano D. Zhao Y. Xue J. Advances in medical applications of additive manufacturing. Engineering (Beijing) 2020 6 11 1222 1231 10.1016/j.eng.2020.02.018
    [Google Scholar]
  11. Javaid M. Haleem A. Singh R.P. Suman R. Rab S. Role of additive manufacturing applications towards environmental sustainability. Adv Indust Enginee Poly Res 2021 4 4 312 322 10.1016/j.aiepr.2021.07.005
    [Google Scholar]
  12. Colorado H.A. Velásquez E.I.G. Monteiro S.N. Sustainability of additive manufacturing: The circular economy of materials and environmental perspectives. J. Mater. Res. Technol. 2020 9 4 8221 8234 10.1016/j.jmrt.2020.04.062
    [Google Scholar]
  13. Thakur J. Parlani S. Shivakumar S. Jajoo K. Accuracy of marginal fit of an implant-supported framework fabricated by 3D printing versus subtractive manufacturing technique: A systematic review and meta-analysis. J. Prosthet. Dent. 2023 129 2 301 309 10.1016/j.prosdent.2021.05.010 34147238
    [Google Scholar]
  14. Mobarak M.H. Islam M.A. Hossain N. Recent advances of additive manufacturing in implant fabrication – A review. Appl Surf Sci Adv 2023 18 100462 10.1016/j.apsadv.2023.100462
    [Google Scholar]
  15. Morouço P. Azimi B. Milazzo M. Four-dimensional (bio-) printing: A review on stimuli-responsive mechanisms and their biomedical suitability. Appl. Sci. (Basel) 2020 10 24 9143 10.3390/app10249143
    [Google Scholar]
  16. Singh J. Nayak P. pH ‐responsive polymers for drug delivery: Trends and opportunities. J Polym Sci 2023 61 22 2828 2850 10.1002/pol.20230403
    [Google Scholar]
  17. Saleh Alghamdi S. John S. Roy Choudhury N. Dutta N.K. Additive manufacturing of polymer materials: Progress, promise and challenges. Polymers (Basel) 2021 13 5 753 10.3390/polym13050753 33670934
    [Google Scholar]
  18. Van Gheluwe L. Chourpa I. Gaigne C. Munnier E. Polymer-based smart drug delivery systems for skin application and demonstration of stimuli-responsiveness. Polymers (Basel) 2021 13 8 1285 10.3390/polym13081285 33920816
    [Google Scholar]
  19. Quanjin M. Rejab M.R.M. Idris M.S. Kumar N.M. Abdullah M.H. Reddy G.R. Recent 3D and 4D intelligent printing technologies: A comparative review and future perspective. Proced Comput. Sci. 2020 167 1210 1219 10.1016/j.procs.2020.03.434
    [Google Scholar]
  20. Imrie P. Jin J. Polymer 4D printing: Advanced shape‐change and beyond. J Polym Sci 2022 60 2 149 174 10.1002/pol.20210718
    [Google Scholar]
  21. Acierno D. Patti A. Fused deposition modelling (FDM) of thermoplastic-based filaments: Process and rheological properties—an overview. Materials (Basel) 2023 16 24 7664 10.3390/ma16247664 38138805
    [Google Scholar]
  22. Mallakpour S. Tabesh F. Hussain C.M. A new trend of using poly(vinyl alcohol) in 3D and 4D printing technologies: Process and applications. Adv. Coll Interf Sci. 2022 301 102605 10.1016/j.cis.2022.102605 35144173
    [Google Scholar]
  23. Haleem A. Javaid M. Singh R.P. Suman R. Significant roles of 4D printing using smart materials in the field of manufacturing. Adv Indust Enginee Poly Res 2021 4 4 301 311 10.1016/j.aiepr.2021.05.001
    [Google Scholar]
  24. Deshmukh K. Houkan M.T. AlMaadeed M.A. Sadasivuni K.K. Chapter 1 - Introduction to 3D and 4D printing technology: State of the art and recent trends. In: 3D and 4D Printing of Polymer Nanocomposite Materials. Amsterdam, Netherlands Elsevier 2020 1 24 10.1016/B978‑0‑12‑816805‑9.00001‑6
    [Google Scholar]
  25. Wang Y. Cui H. Esworthy T. Mei D. Wang Y. Zhang L.G. Emerging 4D printing strategies for next‐generation tissue regeneration and medical devices. Adv. Mater. 2022 34 20 2109198 10.1002/adma.202109198 34951494
    [Google Scholar]
  26. Sahafnejad-Mohammadi I. Karamimoghadam M. Zolfagharian A. Akrami M. Bodaghi M. 4D printing technology in medical engineering: A narrative review. J. Braz. Soc. Mech. Sci. Eng. 2022 44 6 233 10.1007/s40430‑022‑03514‑x
    [Google Scholar]
  27. Moroni S. Casettari L. Lamprou D.A. 3D and 4D printing in the fight against breast cancer. Biosensors (Basel) 2022 12 8 568 10.3390/bios12080568 35892465
    [Google Scholar]
  28. Kumar S. Kumar R. Overview of 3D and 4D printing techniques and their emerging applications in medical sectors. Recent Pat. Mater. Sci. 2023 16 2 143 170
    [Google Scholar]
  29. Pourmasoumi P. Moghaddam A. Nemati Mahand S. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. J. Biomater. Sci. Polym. Ed. 2023 34 1 108 146 10.1080/09205063.2022.2110480 35924585
    [Google Scholar]
  30. Noroozi R. Arif Z.U. Taghvaei H. 3D and 4D bioprinting technologies: A game changer for the biomedical sector? Ann. Biomed. Eng. 2023 51 8 1683 1712 10.1007/s10439‑023‑03243‑9 37261588
    [Google Scholar]
  31. Bratek-Skicki A. Towards a new class of stimuli-responsive polymer-based materials – Recent advances and challenges. Appl Surf Sci Adv 2021 4 100068 10.1016/j.apsadv.2021.100068
    [Google Scholar]
  32. Ma S. Zhang Y. Wang M. Liang Y. Ren L. Ren L. Recent progress in 4D printing of stimuli-responsive polymeric materials. Sci. China Technol. Sci. 2020 63 4 532 544 10.1007/s11431‑019‑1443‑1
    [Google Scholar]
  33. Wurm F.R. Boyer C. Sumerlin B.S. Progress on stimuli-responsive polymers. Macromol. Rapid Commun. 2021 42 18 2100512 10.1002/marc.202100512 34545982
    [Google Scholar]
  34. Revilla-León M. Sadeghpour M. Özcan M. A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry. J. Prosthodont. 2020 29 7 579 593 10.1111/jopr.13212 32548890
    [Google Scholar]
  35. Vignesh M. Ranjith Kumar G. Sathishkumar M. Development of biomedical implants through additive manufacturing: A review. J. Mater. Eng. Perform. 2021 30 7 4735 4744 10.1007/s11665‑021‑05578‑7
    [Google Scholar]
  36. Mahmood A. Akram T. Chen H. Chen S. On the evolution of additive manufacturing (3D/4D Printing) technologies: Materials, applications, and challenges. Polymers (Basel) 2022 14 21 4698 10.3390/polym14214698 36365695
    [Google Scholar]
  37. Ahmed A. Arya S. Gupta V. Furukawa H. Khosla A. 4D printing: Fundamentals, materials, applications and challenges. Polymer (Guildf.) 2021 228 123926 10.1016/j.polymer.2021.123926
    [Google Scholar]
  38. Awasthi A. Saxena K.K. Dwivedi R.K. An investigation on classification and characterization of bio materials and additive manufacturing techniques for bioimplants. Mater. Today Proc. 2021 44 2061 2068 10.1016/j.matpr.2020.12.176
    [Google Scholar]
  39. Al-Tamimi A.A. Almeida H. Bartolo P. Structural optimisation for medical implants through additive manufacturing. Prog Addit Manufact 2020 5 2 95 110 10.1007/s40964‑020‑00109‑7
    [Google Scholar]
  40. v K, Kumar B N, Kumar S S, M V. Magnesium role in additive manufacturing of biomedical implants – Challenges and opportunities. Addit. Manuf. 2022 55 102802 10.1016/j.addma.2022.102802
    [Google Scholar]
  41. Shymborska Y. Budkowski A. Raczkowska J. Switching it Up: The promise of stimuli‐responsive polymer systems in biomedical science. Chem. Rec. 2024 24 2 e202300217 10.1002/tcr.202300217 37668274
    [Google Scholar]
  42. López Ruiz A. Ramirez A. McEnnis K. Single and multiple stimuli-responsive polymer particles for controlled drug delivery. Pharmaceutics 2022 14 2 421 10.3390/pharmaceutics14020421 35214153
    [Google Scholar]
  43. Stetsyshyn Y. Raczkowska J. Harhay K. Temperature-responsive and multi-responsive grafted polymer brushes with transitions based on critical solution temperature: Synthesis, properties, and applications. Colloid Polym. Sci. 2021 299 3 363 383 10.1007/s00396‑020‑04750‑0
    [Google Scholar]
  44. Zhang Q. Zhang Y. Wan Y. Carvalho W. Hu L. Serpe M.J. Stimuli-responsive polymers for sensing and reacting to environmental conditions. Prog. Polym. Sci. 2021 116 101386 10.1016/j.progpolymsci.2021.101386
    [Google Scholar]
  45. Gayathri V. Jaisankar S.N. Samanta D. Temperature and pH responsive polymers: Sensing applications. J. Macromol. Sci. Part A Pure Appl. Chem. 2022 59 2 98 126 10.1080/10601325.2021.1988636
    [Google Scholar]
  46. Aundhia C. Parmar G. Talele C. kardani S, Maheshwari R. Light-responsive polymers: Developments in drug delivery systems. Curr. Org. Chem. 2024 28 15 1179 1189 10.2174/0113852728307241240430055059
    [Google Scholar]
  47. Cao J. Zhang D. Zhou Y. Zhang Q. Wu S. Controlling properties and functions of polymer gels using photochemical reactions. Macromol. Rapid Commun. 2022 43 4 2100703 10.1002/marc.202100703 35038195
    [Google Scholar]
  48. Namathoti S.P.S.R.S. A review on progress in magnetic, microwave, ultrasonic responsive Shape-memory polymer composites. Mater. Today Proc. 2022 56 1182 1191 10.1016/j.matpr.2021.11.151
    [Google Scholar]
  49. Pacifici N. Bolandparvaz A. Lewis J.S. Stimuli‐responsive biomaterials for vaccines and immunotherapeutic applications. Adv. Ther. (Weinh.) 2020 3 11 2000129 10.1002/adtp.202000129 32838028
    [Google Scholar]
  50. Hiruta Y. Poly(N-isopropylacrylamide)-based temperature- and pH-responsive polymer materials for application in biomedical fields. Polym. J. 2022 54 12 1419 1430 10.1038/s41428‑022‑00687‑z
    [Google Scholar]
  51. Ofridam F. Tarhini M. Lebaz N. Gagnière É. Mangin D. Elaissari A. pH ‐sensitive polymers: Classification and some fine potential applications. Polym. Adv. Technol. 2021 32 4 1455 1484 10.1002/pat.5230
    [Google Scholar]
  52. Ebrahimi M. Norouzi P. Aazami H. Moosavi-Movahedi A.A. Review on oxidative stress relation on COVID-19: Biomolecular and bioanalytical approach. Int. J. Biol. Macromol. 2021 189 802 818 10.1016/j.ijbiomac.2021.08.095 34418419
    [Google Scholar]
  53. Lacroce E. Rossi F. Polymer-based thermoresponsive hydrogels for controlled drug delivery. Expert Opin. Drug Deliv. 2022 19 10 1203 1215 10.1080/17425247.2022.2078806 35575265
    [Google Scholar]
  54. Tian J. Huang B. Nawaz M.H. Zhang W. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord. Chem. Rev. 2020 420 213410 10.1016/j.ccr.2020.213410
    [Google Scholar]
  55. Hogan K.J. Mikos A.G. Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer (Guildf.) 2020 211 123063 10.1016/j.polymer.2020.123063
    [Google Scholar]
  56. Jia R. Teng L. Gao L. Advances in multiple stimuli-responsive drug-delivery systems for cancer therapy. Int. J. Nanomedicine 2021 16 1525 1551 10.2147/IJN.S293427 33658782
    [Google Scholar]
  57. Patil A.S. Gadad A.P. Dandagi P.M. Chapter 11 - Mono and multi‐stimuli responsive polymers: Application as intelligent nano‐drug delivery systems. In: Nanopharmaceutical Advanced Delivery Systems. Austin, Texas Wiley Scrivener Publishing 2021 698 10.1002/9781119711698.ch11
    [Google Scholar]
  58. Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm. J. 2020 28 3 255 265 10.1016/j.jsps.2020.01.004 32194326
    [Google Scholar]
  59. Das S.S. Bharadwaj P. Bilal M. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers (Basel) 2020 12 6 1397 10.3390/polym12061397 32580366
    [Google Scholar]
  60. Mazidi Z. Javanmardi S. Naghib S.M. Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem. Eng. J. 2022 433 134569 10.1016/j.cej.2022.134569
    [Google Scholar]
  61. Aflori M. Smart nanomaterials for biomedical applications-a review. Nanomaterials (Basel) 2021 11 2 396 10.3390/nano11020396 33557177
    [Google Scholar]
  62. Sobczak M. Enzyme-responsive hydrogels as potential drug delivery systems—state of knowledge and future prospects. Int. J. Mol. Sci. 2022 23 8 4421 10.3390/ijms23084421 35457239
    [Google Scholar]
  63. Tao Y. Chan H.F. Shi B. Li M. Leong K.W. Light: A magical tool for controlled drug delivery. Adv. Funct. Mater. 2020 30 49 2005029 10.1002/adfm.202005029 34483808
    [Google Scholar]
  64. Municoy S. Álvarez Echazú M.I. Antezana P.E. Stimuli-responsive materials for tissue engineering and drug delivery. Int. J. Mol. Sci. 2020 21 13 4724 10.3390/ijms21134724 32630690
    [Google Scholar]
  65. Sanadgol N. Wackerlig J. Developments of smart drug-delivery systems based on magnetic molecularly imprinted polymers for targeted cancer therapy: A short review. Pharmaceutics 2020 12 9 831 10.3390/pharmaceutics12090831 32878127
    [Google Scholar]
  66. Fu X. Tian L. Fan Y. Stimuli-responsive self-healing anticorrosion coatings: From single triggering behavior to synergetic multiple protections. Mater. Today Chem. 2021 22 100575 10.1016/j.mtchem.2021.100575
    [Google Scholar]
  67. Jain K.K. Kadam A.Y. Tomar Y. Singhvi G. Stimuli-Sensitive Polymeric Micelles for Biomedical Applications. In: Singh SK, Gulati M, Mutalik S, Dhanasekaran M, Dua K, Eds. Polymeric Micelles: Principles, Perspectives and Practices. Singh S.K. Gulati M. Mutalik S. Dhanasekaran M. Dua K. Singapore Springer 2023 125 154 10.1007/978‑981‑99‑0361‑0_7
    [Google Scholar]
  68. Kuperkar K. Tiwari S. Bahadur P. Chapter 15 - Self-Assembled Block Copolymer Nanoaggregates for Drug Delivery Applications. In: Applications of Polymers in Drug Delivery. Chapter 15 2nd ed Amsterdam, Netherlands Elsevier 2021 423 447 10.1016/B978‑0‑12‑819659‑5.00015‑X
    [Google Scholar]
  69. El-Husseiny H.M. Mady E.A. Hamabe L. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater. Today Bio 2022 13 100186 10.1016/j.mtbio.2021.100186 34917924
    [Google Scholar]
  70. Khadem E. Kharaziha M. Bakhsheshi-Rad H.R. Das O. Berto F. Cutting-edge progress in stimuli-responsive bioadhesives: From synthesis to clinical applications. Polymers (Basel) 2022 14 9 1709 10.3390/polym14091709 35566878
    [Google Scholar]
  71. Gheysoori P. Paydayesh A. Jafari M. Peidayesh H. Thermoresponsive nanocomposite hydrogels based on Gelatin/poly (N–isopropylacrylamide) (PNIPAM) for controlled drug delivery. Eur. Polym. J. 2023 186 111846 10.1016/j.eurpolymj.2023.111846
    [Google Scholar]
  72. Arroub K. Gessner I. Fischer T. Mathur S. Thermoresponsive poly (N‐isopropylacrylamide)/polycaprolacton nanofibrous scaffolds for controlled release of antibiotics. Adv. Eng. Mater. 2021 23 9 2100221 10.1002/adem.202100221
    [Google Scholar]
  73. Mundel R Thakur T Chatterjee M. Emerging uses of PLA-PEG copolymer in cancer drug delivery. 3 Biotech 2022 12 2 41 10.1007/s13205‑021‑03105‑y 35070631
    [Google Scholar]
  74. Rasool A. Rizwan M. Islam A. Chitosan‐based smart polymeric hydrogels and their prospective applications in biomedicine. Stärke 2024 76 1-2 2100150 10.1002/star.202100150
    [Google Scholar]
  75. Thirupathi K. Raorane C.J. Ramkumar V. Update on chitosan-based hydrogels: Preparation, characterization, and its antimicrobial and antibiofilm applications. Gels 2022 9 1 35 10.3390/gels9010035 36661802
    [Google Scholar]
  76. Sana B. Finne-Wistrand A. Pappalardo D. Recent development in near infrared light-responsive polymeric materials for smart drug-delivery systems. Mater. Today Chem. 2022 25 100963 10.1016/j.mtchem.2022.100963
    [Google Scholar]
  77. Di Martino M. Sessa L. Diana R. Piotto S. Concilio S. Recent progress in photoresponsive biomaterials. Molecules 2023 28 9 3712 10.3390/molecules28093712 37175122
    [Google Scholar]
  78. Rad I. Esmaeili E. Jahromi B.B. Application of thermo-responsive polymers as smart biomaterials in wound dressing. Polym. Bull. 2024 81 13 11399 11420 10.1007/s00289‑024‑05276‑z
    [Google Scholar]
  79. Al-Ahmed Z.A. Snari R.M. Alsoliemy A. Preparation of thermochromic and vapochromic cotton fibers finished with poly(N-vinylcaprolactam-co-hydrazone). Cellulose 2022 29 15 8457 8472 10.1007/s10570‑022‑04776‑3
    [Google Scholar]
  80. Lori M.S. Ohadi M. Estabragh M.A.R. Afsharipour S. Banat I.M. Dehghannoudeh G. pH-sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: A review. Protein Pept. Lett. 2021 28 11 1230 1237 10.2174/0929866528666210720142841 34303327
    [Google Scholar]
  81. Pruthi V. Akae Y. Théato P. Photoresponsive spiropyran and DEGMA‐based copolymers with photo‐switchable glass transition temperatures. Macromol. Rapid Commun. 2023 44 19 2300270 10.1002/marc.202300270 37358931
    [Google Scholar]
  82. Abed H.F. Abuwatfa W.H. Husseini G.A. Redox-responsive drug delivery systems: A chemical perspective. Nanomaterials (Basel) 2022 12 18 3183 10.3390/nano12183183 36144971
    [Google Scholar]
  83. Yu C. Li L. Hu P. Recent advances in stimulus‐responsive nanocarriers for gene therapy. Adv. Sci. (Weinh.) 2021 8 14 2100540 10.1002/advs.202100540 34306980
    [Google Scholar]
  84. Ghosh P. Yeasmin S. Chapter 3 - Polymer-grafted magnetic nanoparticles toward intelligent designing of drug delivery: Recent advances and future perspectives. In: Industrial Applications Berlin/Boston: Walter de Gruyter GmbH 2022 2 73 96 10.1515/9783110782165‑003
    [Google Scholar]
  85. Guo F. Du Y. Wang Y. Targeted drug delivery systems for matrix metalloproteinase-responsive anoparticles in tumor cells: A review. Int. J. Biol. Macromol. 2024 257 Pt 1 128658 10.1016/j.ijbiomac.2023.128658 38065446
    [Google Scholar]
  86. Krstic M. Rogic Miladinovic Z. Barudzija T. Mladenovic A. Suljovrujic E. Stimuli-responsive copolymeric hydrogels based on oligo(ethylene glycol) dimethacrylate for biomedical applications: An optimisation study of pH and thermoresponsive behaviour. React. Funct. Polym. 2022 170 105140 10.1016/j.reactfunctpolym.2021.105140
    [Google Scholar]
  87. Pasban S. Raissi H. PNIPAM/Hexakis as a thermosensitive drug delivery system for biomedical and pharmaceutical applications. Sci. Rep. 2022 12 1 14363 10.1038/s41598‑022‑18459‑3 35999242
    [Google Scholar]
  88. Valizadeh A. Asghari S. Abbaspoor S. Jafari A. Raeisi M. Pilehvar Y. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 6 e1909 10.1002/wnan.1909 37258422
    [Google Scholar]
  89. Bril M. Fredrich S. Kurniawan N.A. Stimuli-responsive materials: A smart way to study dynamic cell responses. Smart Mater. Med. 2022 3 257 273 10.1016/j.smaim.2022.01.010
    [Google Scholar]
  90. Bandyopadhyay A. Mitra I. Goodman S.B. Kumar M. Bose S. Improving biocompatibility for next generation of metallic implants. Prog. Mater. Sci. 2023 133 101053 10.1016/j.pmatsci.2022.101053 36686623
    [Google Scholar]
  91. Ryan K.R. Down M.P. Banks C.E. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chem. Eng. J. 2021 403 126162 10.1016/j.cej.2020.126162
    [Google Scholar]
  92. Intravaia J.T. Graham T. Kim H.S. Nanda H.S. Kumbar S.G. Nukavarapu S.P. Smart orthopedic biomaterials and implants. Curr. Opin. Biomed. Eng. 2023 25 100439 10.1016/j.cobme.2022.100439 36642994
    [Google Scholar]
  93. Jiang P. Zhang Y. Hu R. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact. Mater. 2023 27 15 57 10.1016/j.bioactmat.2023.03.006 37035422
    [Google Scholar]
  94. Kumar P. Suryavanshi P. Kumar Dwivedy S. Banerjee S. Stimuli-responsive materials for 4D printing: Mechanical, manufacturing, and biomedical applications. J. Mol. Liq. 2024 410 125553 10.1016/j.molliq.2024.125553
    [Google Scholar]
  95. Cook M.T. Haddow P. Kirton S.B. McAuley W.J. Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare. Adv. Funct. Mater. 2021 31 8 2008123 10.1002/adfm.202008123
    [Google Scholar]
  96. Antezana P.E. Municoy S. Ostapchuk G. 4D printing: The development of responsive materials using 3D-printing technology. Pharmaceutics 2023 15 12 2743 10.3390/pharmaceutics15122743 38140084
    [Google Scholar]
  97. Wang J. Zhang Y. Aghda N.H. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv. Drug Deliv. Rev. 2021 174 294 316 10.1016/j.addr.2021.04.019 33895212
    [Google Scholar]
  98. Choi S. Lee H. Hong R. Jo B. Jo S. Application of multi-layered temperature-responsive polymer brushes coating on titanium surface to inhibit biofilm associated infection in orthopedic surgery. Polymers (Basel) 2022 15 1 163 10.3390/polym15010163 36616511
    [Google Scholar]
  99. Nastyshyn S. Stetsyshyn Y. Raczkowska J. Temperature-responsive polymer brush coatings for advanced biomedical applications. Polymers (Basel) 2022 14 19 4245 10.3390/polym14194245 36236192
    [Google Scholar]
  100. Ow V. Loh X.J. Recent developments of temperature‐responsive polymers for ophthalmic applications. J Polym Sci 2022 60 9 1429 1447 10.1002/pol.20210907
    [Google Scholar]
  101. Joshi M.U. Kulkarni S.P. Choppadandi M. Keerthana M. Kapusetti G. Current state of art smart coatings for orthopedic implants: A comprehensive review. Smart Mater. Med. 2023 4 661 679 10.1016/j.smaim.2023.06.005
    [Google Scholar]
  102. Martín Giménez V.M. Arya G. Zucchi I.A. Galante M.J. Manucha W. Photo-responsive polymeric nanocarriers for target-specific and controlled drug delivery. Soft Matter 2021 17 38 8577 8584 10.1039/D1SM00999K 34580698
    [Google Scholar]
  103. Leistner A.L. Pianowski Z.L. Smart photochromic materials triggered with visible light. Eur. J. Org. Chem. 2022 2022 19 e202101271 10.1002/ejoc.202101271
    [Google Scholar]
  104. Lim K.S. Galarraga J.H. Cui X. Lindberg G.C.J. Burdick J.A. Woodfield T.B.F. Fundamentals and applications of photo-cross-linking in bioprinting. Chem. Rev. 2020 120 19 10662 10694 10.1021/acs.chemrev.9b00812 32302091
    [Google Scholar]
  105. Santos N. Fuentes-Lemus E. Ahumada M. Use of photosensitive molecules in the crosslinking of biopolymers: Applications and considerations in biomaterials development. J. Mater. Chem. B Mater. Biol. Med. 2024 12 27 6550 6562 10.1039/D4TB00299G 38913025
    [Google Scholar]
  106. Amirthalingam S. Rajendran A.K. Moon Y.G. Hwang N.S. Stimuli-responsive dynamic hydrogels: Design, properties and tissue engineering applications. Mater. Horiz. 2023 10 9 3325 3350 10.1039/D3MH00399J 37387121
    [Google Scholar]
  107. Yadav D. Sharma P.K. Malviya R. Stimuli-responsive Biomaterials for Tissue Engineering Applications. Curr. Pharm. Biotechnol. 2024 25 8 981 999 10.2174/1389201024666230818121821 37594093
    [Google Scholar]
  108. Yarali E. Baniasadi M. Zolfagharian A. Magneto‐/electro‐responsive polymers toward manufacturing, characterization, and biomedical/soft robotic applications. Appl. Mater. Today 2022 26 101306 10.1016/j.apmt.2021.101306
    [Google Scholar]
  109. Sharifianjazi F. Irani M. Esmaeilkhanian A. Polymer incorporated magnetic nanoparticles: Applications for magnetoresponsive targeted drug delivery. Mater. Sci. Eng. B 2021 272 115358 10.1016/j.mseb.2021.115358
    [Google Scholar]
  110. Kopyl S. Surmenev R. Surmeneva M. Fetisov Y. Kholkin A. Magnetoelectric effect: Principles and applications in biology and medicine– a review. Mater. Today Bio 2021 12 100149 10.1016/j.mtbio.2021.100149 34746734
    [Google Scholar]
  111. Soares P.I.P. Romão J. Matos R. Silva J.C. Borges J.P. Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective. Prog. Mater. Sci. 2021 116 100742 10.1016/j.pmatsci.2020.100742
    [Google Scholar]
  112. Gonçalves A.I. Gomes M.E. Outlook in tissue-engineered magnetic systems and biomagnetic control. Curr. Opin. Biomed. Eng. 2023 25 100431 10.1016/j.cobme.2022.100431
    [Google Scholar]
  113. Kanaan A.F. Pinho A.C. Piedade A.P. Electroactive polymers obtained by conventional and non-conventional technologies. Polymers (Basel) 2021 13 16 2713 10.3390/polym13162713 34451256
    [Google Scholar]
  114. Biswal D.K. Application of Electroactive Polymer Actuator: A Brief Review. In: Biomimicry Materials and Applications. 2023 Austin, Texas: Wiley Scrivener Publishing 10.1002/9781394167043.ch5 043
    [Google Scholar]
  115. Wei H. Cui J. Lin K. Xie J. Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022 10 1 17 10.1038/s41413‑021‑00180‑y 35197462
    [Google Scholar]
  116. Gelmi A. Schutt C.E. Stimuli‐responsive biomaterials: Scaffolds for stem cell control. Adv. Healthc. Mater. 2021 10 1 2001125 10.1002/adhm.202001125 32996270
    [Google Scholar]
  117. Abdollahiyan P. Baradaran B. de la Guardia M. Oroojalian F. Mokhtarzadeh A. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. J. Cont Rel 2020 328 514 531 10.1016/j.jconrel.2020.09.030 32956710
    [Google Scholar]
  118. Arif Z.U. Khalid M.Y. Zolfagharian A. Bodaghi M. 4D bioprinting of smart polymers for biomedical applications: Recent progress, challenges, and future perspectives. React. Funct. Polym. 2022 179 105374 10.1016/j.reactfunctpolym.2022.105374
    [Google Scholar]
  119. Sajjad R. Chauhdary S.T. Anwar M.T. A review of 4D printing - Technologies, shape shifting, smart polymer based materials, and biomedical applications. Adv Indust Enginee Poly Res 2024 7 1 20 36 10.1016/j.aiepr.2023.08.002
    [Google Scholar]
  120. Li Y. Zhang F. Liu Y. Leng J. 4D printed shape memory polymers and their structures for biomedical applications. Sci. China Technol. Sci. 2020 63 4 545 560 10.1007/s11431‑019‑1494‑0
    [Google Scholar]
  121. Oliva N. Almquist B.D. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv. Drug Deliv. Rev. 2020 161-162 22 41 10.1016/j.addr.2020.07.021 32745497
    [Google Scholar]
  122. Trovato V. Sfameni S. Rando G. A review of stimuli-responsive smart materials for wearable Technology in Healthcare: Retrospective, perspective, and prospective. Molecules 2022 27 17 5709 10.3390/molecules27175709 36080476
    [Google Scholar]
  123. Xu X. Shi J. Farokhzad O.C. Stimuli-responsive nanoparticles for biomedical applications. United States Patent Application US 17/585,118 2022
  124. Lee C.U. Goetz A.E. Ashikari Y. Boydston A.J. Ganter M.A. Storti D.W. Additive manufacturing using stimuli-responsive high-performance polymers. United States Patent US 10427353 2019
    [Google Scholar]
  125. Aziz T. Ullah A. Ali A. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J. Appl. Polym. Sci. 2022 139 29 e52624 10.1002/app.52624
    [Google Scholar]
  126. Kalirajan C. Dukle A. Nathanael A.J. Oh T.H. Manivasagam G. A critical review on polymeric biomaterials for biomedical applications. Polymers (Basel) 2021 13 17 3015 10.3390/polym13173015 34503054
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128368347250515073105
Loading
/content/journals/cpd/10.2174/0113816128368347250515073105
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test