Skip to content
2000
image of Nutraceutical Synergy: Unraveling the Protective Effects of Methyl Gallate and Chia Seed Oil in Doxorubicin-induced Hepatic Injury and Bax/Bcl2 Imbalance

Abstract

Background

Nutraceuticals like methyl gallate and chia seed oil are gaining global attention for their therapeutic potential. This study investigates their effects on hepatocyte apoptosis and liver architecture in a doxorubicin-induced hepatotoxicity model, utilizing techniques such as TUNEL assay, immunohistochemistry (Bax & Bcl2), H&E staining, and scanning electron microscopy.

Methodology

Thirty female Wistar rats were divided into five groups (n=6): Group I (Normal healthy control), Group II (Doxorubicin-intoxicated control), Group III (Doxorubicin-intoxicated + methyl gallate), Group IV (Doxorubicin-intoxicated + chia seed oil), and Group V (Doxorubicin-intoxicated + both). Liver function tests, histology, and cell apoptosis analysis were performed to assess the effects.

Results

Doxorubicin-intoxicated rats (Group II) exhibited significantly elevated ALT, AST, and ALP levels ( < 0.001) and severe hepatic damage compared to controls. Group III and Group IV showed significant reductions in liver enzyme levels ( < 0.05 and < 0.01, respectively), while Group V demonstrated the most significant decrease ( < 0.001). Immunohistochemistry revealed increased Bax and decreased Bcl2 expression in Group II ( < 0.001), which improved significantly with methyl gallate, chia seed oil, and their combination ( < 0.05 to < 0.001). TUNEL assay showed reduced apoptotic index in treatment groups, with Group V showing the most significant reduction ( < 0.001). Scanning electron microscope (SEM) analysis confirmed restoration of hepatocyte architecture, especially in Group V.

Conclusion

Methyl gallate and chia seed oil, individually and in combination, demonstrated significant hepatoprotective effects against doxorubicin-induced hepatotoxicity, with the combination showing the greatest efficacy. These nutraceuticals hold promise as adjunct therapies to reduce doxorubicin-induced liver injury.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128366802250413160625
2025-05-07
2025-10-25
Loading full text...

Full text loading...

References

  1. ShobaS. PatilP. VivekV. Hepatoprotective activity of daucus carota L. aqueous extract against paracetamol, isoniazid and alcohol induced hepatotoxicity in male wistar rats.Pharmacologyonline20083776787
    [Google Scholar]
  2. KalligerosM. Vassilopoulos A. Vassilopoulos S. Prevalence of steatotic liver disease (MASLD, MetALD, and ALD) in the united states: NHANES 2017–2020.Clin. Gastroent. Hepatol.202422613301332.e410.1016/j.cgh.2023.11.003
    [Google Scholar]
  3. MiaoL. TargherG. ByrneC.D. CaoY.Y. ZhengM.H. Current status and future trends of the global burden of MASLD.Trends Endocrinol. Metab.202435869770710.1016/j.tem.2024.02.00738429161
    [Google Scholar]
  4. PerazzoH. PachecoA.G. GriepR.H. GracindoR. GoulartA.C. FonsecaM.J.M. Collaborators Changing from NAFLD through MAFLD to MASLD: Similar prevalence and risk factors in a large Brazilian cohort.J. Hepatol.2024802e72e7410.1016/j.jhep.2023.08.02537678721
    [Google Scholar]
  5. LeM.H. 2019 Global NAFLD prevalence: A systematic review and meta-analysis.Clin. Gastroenterol. Hepatol.2022201228092817.e2810.1016/j.cgh.2021.12.002
    [Google Scholar]
  6. MuthiahM.D. SanyalA.J. Current management of non-alcoholic steatohepatitis.Liver Int.202040Suppl. 1899510.1111/liv.1435532077609
    [Google Scholar]
  7. TargherG. ByrneC.D. TilgH. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications.Gut2024734gutjnl-2023-33059510.1136/gutjnl‑2023‑33059538228377
    [Google Scholar]
  8. KimG.A. MoonJ.H. KimW. Critical appraisal of metabolic dysfunction-associated steatotic liver disease: Implication of Janus- faced modernity.Clin. Mol. Hepatol.202329483184310.3350/cmh.2023.027737634892
    [Google Scholar]
  9. HuJ. ShaoY. GuiC. XiaoY. LiL. LiZ. Prevalence and risk of nonalcoholic fatty liver disease among adult psoriatic patients: A systematic review, meta-analysis, and trial sequential analysis.Medicine202410318e3800710.1097/MD.000000000003800738701269
    [Google Scholar]
  10. EslamM. SanyalA.J. GeorgeJ. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease.Gastroenterology2020158719992014.e110.1053/j.gastro.2019.11.312
    [Google Scholar]
  11. RinellaM.E. LazarusJ.V. RatziuV. FrancqueS.M. SanyalA.J. KanwalF. RomeroD. AbdelmalekM.F. AnsteeQ.M. ArabJ.P. ArreseM. BatallerR. BeuersU. BoursierJ. BugianesiE. ByrneC.D. NarroC.G.E. ChowdhuryA. Cortez-PintoH. CryerD.R. CusiK. El-KassasM. KleinS. EskridgeW. FanJ. GawriehS. GuyC.D. HarrisonS.A. KimS.U. KootB.G. KorenjakM. KowdleyK.V. LacailleF. LoombaR. Mitchell-ThainR. MorganT.R. PowellE.E. RodenM. Romero-GómezM. SilvaM. SinghS.P. SookoianS.C. SpearmanC.W. TiniakosD. ValentiL. VosM.B. WongV.W.S. XanthakosS. YilmazY. YounossiZ. HobbsA. Villota-RivasM. NewsomeP.N. A multisociety Delphi consensus statement on new fatty liver disease nomenclature.Hepatology20237861966198610.1097/HEP.000000000000052037363821
    [Google Scholar]
  12. HuangX. YuR. TanX. GuoM. XiaY. ZouH. LiuX. QinC. Comparison of NAFLD, MAFLD, and MASLD prevalence and clinical characteristics in asia adults.J. Clin. Exp. Hepatol.202515110242010.1016/j.jceh.2024.10242039564428
    [Google Scholar]
  13. FakuraziS. SharifudinS.A. ArulselvanP. Moringa oleifera hydroethanolic extracts effectively alleviate acetaminophen-induced hepatotoxicity in experimental rats through their antioxidant nature.Molecules20121778334835010.3390/molecules1707833422781444
    [Google Scholar]
  14. HeL. HeT. FarrarS. JiL. LiuT. MaX. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species.Cell. Physiol. Biochem.201744253255310.1159/00048508929145191
    [Google Scholar]
  15. BucareyJ.L. Trujillo-GonzálezI. PaulesE.M. EspinosaA. Myokines and their potential protective role against oxidative stress in metabolic dysfunction-associated steatotic liver disease (MASLD).Antioxidants20241311136310.3390/antiox1311136339594505
    [Google Scholar]
  16. CarvalhoC. SantosR. CardosoS. CorreiaS. OliveiraP. SantosM. MoreiraP. Doxorubicin: The good, the bad and the ugly effect.Curr. Med. Chem.200916253267328510.2174/09298670978880331219548866
    [Google Scholar]
  17. Dragojević-SimićV. DobrićS. JaćevićV. Efficacy of amifostine in protection against doxorubicin-induced acute cardiotoxic effects in rats.Vojnosanit. Pregl.2013701384510.2298/VSP110905041D
    [Google Scholar]
  18. ThornC.F. OshiroC. MarshS. Hernandez-BoussardT. McLeodH. KleinT.E. AltmanR.B. Doxorubicin pathways.Pharmacogenet. Genomics201121744044610.1097/FPC.0b013e32833ffb5621048526
    [Google Scholar]
  19. ReddyA.G. AnjaneyuluY. ShivakumarP. RaniM.U. A study on the toxic effects of doxorubicin on the histology of certain organs.Toxicol. Int.201219324124410.4103/0971‑6580.10365623293460
    [Google Scholar]
  20. PrasannaP.L. RenuK. GopalakrishnanC.A. New molecular and biochemical insights of doxorubicin-induced hepatotoxicity.Life Sci.202025011759910.1016/j.lfs.2020.11759932234491
    [Google Scholar]
  21. TacarO. SriamornsakP. DassC.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems.J. Pharm. Pharmacol.201365215717010.1111/j.2042‑7158.2012.01567.x23278683
    [Google Scholar]
  22. HermanE.H. ZhangJ. ChadwickD.P. FerransV.J. Comparison of the protective effects of amifostine and dexrazoxane against the toxicity of doxorubicin in spontaneously hypertensive rats.Cancer Chemother. Pharmacol.200045432933410.1007/s00280005004810755322
    [Google Scholar]
  23. Mihailović-StanojevićN. JovovicD. MiloradovicZ. Grujic-MilanovicJ. JerkicM. Markovic-LipkovskiJ. Reduced progression of adriamycin nephropathy in spontaneously hypertensive rats treated by losartan.Nephrol. Dial. Transplant.20082441142115010.1093/ndt/gfn59618987260
    [Google Scholar]
  24. PugazhendhiA. EdisonT.N.J.I. VelmuruganB.K. JacobJ.A. KaruppusamyI. Toxicity of Doxorubicin (Dox) to different experimental organ systems.Life Sci.2018200263010.1016/j.lfs.2018.03.02329534993
    [Google Scholar]
  25. RoomiM.W. KalinovskyT. RoomiN.W. RathM. NiedzwieckiA. Prevention of Adriamycin-induced hepatic and renal toxicity in male BALB/c mice by a nutrient mixture.Exp. Ther. Med.2014741040104410.3892/etm.2014.153524669274
    [Google Scholar]
  26. SaadS.Y. NajjarT.A. Al-RikabiA.C. The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats.Pharmacol. Res.200143321121810.1006/phrs.2000.076911401411
    [Google Scholar]
  27. AngsutararuxP. LuanpitpongS. IssaragrisilS. Chemotherapy-induced cardiotoxicity: Overview of the roles of oxidative stress.Oxid. Med. Cell. Longev.20152015111310.1155/2015/79560226491536
    [Google Scholar]
  28. MorsiM.I. HusseinA.E. MostafaM. El-AbdE. Abd El-MoneimN.A. Evaluation of tumour necrosis factor-α, soluble P-selectin, γ-glutamyl transferase, glutathione S-transferase-π and α-fetoprotein in patients with hepatocellular carcinoma before and during chemotherapy.Br. J. Biomed. Sci.2006632747810.1080/09674845.2006.1173272416871999
    [Google Scholar]
  29. MukherjeeS. BanerjeeS.K. MaulikM. DindaA.K. TalwarK.K. MaulikS.K. Protection against acute adriamycin-induced cardiotoxicity by garlic: Role of endogenous antioxidants and inhibition of TNF-α expression.BMC Pharmacol.2003311610.1186/1471‑2210‑3‑1614687418
    [Google Scholar]
  30. KamathamS. KumarN. GudipalliP. Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells.Toxicol. Rep.2015252052910.1016/j.toxrep.2015.03.00128962387
    [Google Scholar]
  31. KangM.S. JangH.S. OhJ.S. YangK.H. ChoiN.K. LimH.S. KimS.M. Effects of methyl gallate and gallic acid on the production of inflammatory mediators interleukin-6 and interleukin-8 by oral epithelial cells stimulated with Fusobacterium nucleatum.J. Microbiol.200947676076710.1007/s12275‑009‑0097‑720127471
    [Google Scholar]
  32. DagliaM. LorenzoA. NabaviS. TalasZ. NabaviS. Polyphenols: Well beyond the antioxidant capacity: Gallic acid and related compounds as neuroprotective agents: You are what you eat!Curr. Pharm. Biotechnol.201415436237210.2174/13892010150414082512073724938889
    [Google Scholar]
  33. DhimanS. MukherjeeG. Gallic Acid (GA): A multifaceted biomolecule transmuting the biotechnology era.Recent Developments in Microbial Technologies. Environmental and Microbial Biotechnology. PrasadR. KumarV. SinghJ. SingaporeSpringer2021163202
    [Google Scholar]
  34. PolissiouM. DafereraD. Major dietary antioxidants and their food sources.Antioxidants in Health and DiseaseCRC Press201510.1201/b18539‑4
    [Google Scholar]
  35. Sheibani E. Effects of water chemistry and panning on flavor volatiles and catechins in teas (Camellia sinensis). Thesis, Doctoral Dissertation, Virginia Polytechnic Institute and State University, 2014.
  36. HsiehT.J. LiuT.Z. ChiaY.C. ChernC.L. LuF.J. ChuangM. MauS.Y. ChenS.H. SyuY.H. ChenC.H. Protective effect of methyl gallate from Toona sinensis (Meliaceae) against hydrogen peroxide-induced oxidative stress and DNA damage in MDCK cells.Food Chem. Toxicol.200442584385010.1016/j.fct.2004.01.00815046831
    [Google Scholar]
  37. LeeH. LeeH. KwonY. LeeJ.H. KimJ. ShinM.K. KimS.H. BaeH. Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells.J. Immunol.2010185116698670510.4049/jimmunol.100137321048105
    [Google Scholar]
  38. AhmedA.Z. SatyamS.M. ShettyP. D’SouzaM.R. Methyl gallate attenuates doxorubicin-induced cardiotoxicity in rats by suppressing oxidative stress.Scientifica20212021111210.1155/2021/669434033510932
    [Google Scholar]
  39. AhmedA.Z. MumbrekarK.D. SatyamS.M. ShettyP. D’SouzaM.R. SinghV.K. Chia seed oil ameliorates doxorubicin-induced cardiotoxicity in female wistar rats: An electrocardiographic, biochemical and histopathological approach.Cardiovasc. Toxicol.202121753354210.1007/s12012‑021‑09644‑333740233
    [Google Scholar]
  40. CoatesW. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.).Ind. Crops Prod.20113421366137110.1016/j.indcrop.2010.12.007
    [Google Scholar]
  41. CoatesW. AyerzaR. Chia (Salvia hispanica L.) seed as an n-3 fatty acid source for finishing pigs: Effects on fatty acid composition and fat stability of the meat and internal fat, growth performance, and meat sensory characteristics1.J. Anim. Sci.200987113798380410.2527/jas.2009‑198719648503
    [Google Scholar]
  42. ErdinestN. ShmueliO. GrossmanY. OvadiaH. SolomonA. Anti-inflammatory effects of alpha linolenic acid on human corneal epithelial cells.Invest. Ophthalmol. Vis. Sci.20125384396440610.1167/iovs.12‑972422669722
    [Google Scholar]
  43. PoudyalH. PanchalS.K. WaandersJ. WardL. BrownL. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl- CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats.J. Nutr. Biochem.201223215316210.1016/j.jnutbio.2010.11.01121429727
    [Google Scholar]
  44. FernandesS.S. PrenticeC. Salas-MelladoM.d.l.M. Chia seed (Salvia hispanica).Oilseeds: Health Attributes and Food ApplicationsChamSpringer2021285303
    [Google Scholar]
  45. KhalidW. ArshadM.S. AzizA. RahimM.A. QaisraniT.B. AfzalF. AliA. RanjhaM.M.A.N. KhalidM.Z. AnjumF.M. Chia seeds (Salvia hispanica L.): A therapeutic weapon in metabolic disorders.Food Sci. Nutr.202311131610.1002/fsn3.303536655089
    [Google Scholar]
  46. RahmanN. JeonM. KimY.S. Methyl gallate, a potent antioxidant inhibits mouse and human adipocyte differentiation and oxidative stress in adipocytes through impairment of mitotic clonal expansion.Biofactors201642671672610.1002/biof.131027412172
    [Google Scholar]
  47. YarmohammadiF. RezaeeR. KarimiG. Natural compounds against doxorubicin-induced cardiotoxicity: A review on the involvement of Nrf2/ ARE signaling pathway.Phytother. Res.20213531163117510.1002/ptr.688232985744
    [Google Scholar]
  48. YuX. CuiL. ZhangZ. ZhaoQ. LiS. α-Linolenic acid attenuates doxorubicin-induced cardiotoxicity in rats through suppression of oxidative stress and apoptosis.Acta Biochim. Biophys. Sin.2013451081782610.1093/abbs/gmt08223896563
    [Google Scholar]
  49. HajraS. PatraA.R. BasuA. BhattacharyaS. Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation.Biomed. Pharmacother.201810122824310.1016/j.biopha.2018.02.08829494960
    [Google Scholar]
  50. BarakatB.M. AhmedH.I. BahrH.I. ElbahaieA.M. Protective effect of boswellic acids against doxorubicin-induced hepatotoxicity: Impact on Nrf2/Ho-1 defense pathway.Oxid. Med. Cell. Longev.201820181829645110.1155/2018/829645129541348
    [Google Scholar]
  51. BagchiD. BagchiM. HassounE.A. KellyJ. StohsS.J. Adriamycin-induced hepatic and myocardial lipid peroxidation and DNA damage, and enhanced excretion of urinary lipid metabolites in rats.Toxicology1995951-31910.1016/0300‑483X(94)02867‑T7825176
    [Google Scholar]
  52. ChenX. ZhangY. ZhuZ. LiuH. GuoH. XiongC. XieK. ZhangX. SuS. Protective effect of berberine on doxorubicin-induced acute hepatorenal toxicity in rats.Mol. Med. Rep.20161353953396010.3892/mmr.2016.501727035423
    [Google Scholar]
  53. InjacR. PerseM. CerneM. PotocnikN. RadicN. GovedaricaB. DjordjevicA. CerarA. StrukeljB. Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer.Biomaterials20093061184119610.1016/j.biomaterials.2008.10.06019046599
    [Google Scholar]
  54. KassnerN. HuseK. MartinH.J. Gödtel-ArmbrustU. MetzgerA. MeinekeI. BrockmöllerJ. KleinK. ZangerU.M. MaserE. WojnowskiL. Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver.Drug Metab. Dispos.200836102113212010.1124/dmd.108.02225118635746
    [Google Scholar]
  55. LiuX. QiuY. LiuY. HuangN. HuaC. WangQ. WuZ. LuJ. SongP. XuJ. LiP. YinY. Citronellal ameliorates doxorubicin-induced hepatotoxicity via antioxidative stress, antiapoptosis, and proangiogenesis in rats.J. Biochem. Mol. Toxicol.2021352e2263910.1002/jbt.2263933051984
    [Google Scholar]
  56. NagaiK. OdaA. KonishiH. Theanine prevents doxorubicin-induced acute hepatotoxicity by reducing intrinsic apoptotic response.Food Chem. Toxicol.20157814715210.1016/j.fct.2015.02.00925680506
    [Google Scholar]
  57. AlAsmariA.F. AlharbiM. AlqahtaniF. AlasmariF. AlSwayyedM. AlzareaS.I. Al-AlallahI.A. AlghamdiA. HakamiH.M. AlyousefM.K. SariY. AliN. Diosmin alleviates doxorubicin-induced liver injury via modulation of oxidative stress-mediated hepatic inflammation and apoptosis via NfkB and MAPK pathway: A preclinical study.Antioxidants20211012199810.3390/antiox1012199834943101
    [Google Scholar]
  58. GökçeA.B. ErenB. SağırD. YılmazD.B. A histopathological and stereological study of the effects of acetylsalicylic acid on doxorubicin-induced hepatotoxicity in mice.Biotech. Histochem.202196425125610.1080/10520295.2020.178872432643434
    [Google Scholar]
  59. KalenderY. YelM. KalenderS. Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats.Toxicology20052091394510.1016/j.tox.2004.12.00315725512
    [Google Scholar]
  60. KandilE. OkdahY. MoselhyA. Effect of thyme oil on doxorubicin-induced hepatotoxicity in female albino rats: Histological, ultrastructural, and biochemical studies.Egyptian Journal of Zoology202100010.21608/ejz.2021.84202.1062
    [Google Scholar]
  61. LamasD.J.M. NicoudM.B. SterleH.A. CarabajalE. TesanF. PerazzoJ.C. CremaschiG.A. RiveraE.S. MedinaV.A. Selective cytoprotective effect of histamine on doxorubicin-induced hepatic and cardiac toxicity in animal models.Cell Death Discov.2015111505910.1038/cddiscovery.2015.5927551485
    [Google Scholar]
  62. BaiZ. WangZ. Genistein protects against doxorubicin-induced cardiotoxicity through Nrf-2/HO-1 signaling in mice model.Environ. Toxicol.201934564565110.1002/tox.2273030734460
    [Google Scholar]
  63. RyuB.I. KimK.T. Antioxidant activity and protective effect of methyl gallate against t-BHP induced oxidative stress through inhibiting ROS production.Food Sci. Biotechnol.20223181063107210.1007/s10068‑022‑01120‑035873375
    [Google Scholar]
  64. AslamA. Comprehensive review of structural components of salvia hispanica & its biological applications.Inter. J. Biochem. Biophy. Mol. Biol.2020511
    [Google Scholar]
  65. SilvaL.A. VernequeB.J.F. MotaA.P.L. DuarteC.K. Chia seed (Salvia hispanica L.) consumption and lipid profile: A systematic review and meta-analysis.Food Funct.202112198835884910.1039/D1FO01287H34378609
    [Google Scholar]
  66. GrancieriM. MartinoH.S.D. Gonzalez de MejiaE. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: A review.Compr. Rev. Food Sci. Food Saf.201918248049910.1111/1541‑4337.1242333336944
    [Google Scholar]
  67. HrnčičK.M. IvanovskiM. CörD. KnezŽ. Chia Seeds (Salvia hispanica L.): An overview-Phytochemical profile, isolation methods, and application.Molecules20192511110.3390/molecules2501001131861466
    [Google Scholar]
  68. MotykaS. KocK. EkiertH. BlicharskaE. CzarnekK. SzopaA. The current state of knowledge on Salvia hispanica and Salviae hispanicae semen (chia seeds).Molecules2022274120710.3390/molecules2704120735208997
    [Google Scholar]
  69. NadeemM. ImranM. Chia (Salvia hispanica) oil.Fruit oils: Chemistry and functionalitychamSpringer2019303316
    [Google Scholar]
  70. UllahR. NadeemM. KhaliqueA. ImranM. MehmoodS. JavidA. HussainJ. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review.J. Food Sci. Technol.20165341750175810.1007/s13197‑015‑1967‑027413203
    [Google Scholar]
  71. CisternasC. FaríasC. ValenzuelaR. CalderonH. CaicedoA. AlejandraE. MuñozL.A. Impact of dietary fiber fraction of chia seed supplementation on hepatic steatosis and other metabolic disturbances in a high-fat diet model.J. Funct. Foods202411910632910.1016/j.jff.2024.106329
    [Google Scholar]
  72. MarineliR.S. LenquisteS.A. MoraesÉ.A. MarósticaM.R.Jr Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats.Food Res. Int.201576Pt 366667410.1016/j.foodres.2015.07.03928455051
    [Google Scholar]
  73. de Paula Dias MoreiraL. EnesB.N. de São JoséV.P.B. ToledoR.C.L. LadeiraL.C.M. CardosoR.R. da Silva DuarteV. HermsdorffH.H.M. BarrosD.F.A.R. MartinoH.S.D. Chia (Salvia hispanica L.) flour and oil ameliorate metabolic disorders in the liver of rats fed a high-fat and high fructose diet.Foods202211328510.3390/foods1103028535159437
    [Google Scholar]
  74. HaqueR. IslamK. PaulS. ChowdhuryF.I. BaryM.A. NayanS.I. RafiaS. IslamM.D. HassanS.M.H. ChowdhuryA.K. SharminN. DinaS.S. RaihanS.Z. Supplementation of Salvia hispanica L. seed ameliorated liver function enzymes, hyperlipidemia, and oxidative stress in high fat diet fed Swiss albino mice.Phytomedicine Plus20244310057610.1016/j.phyplu.2024.100576
    [Google Scholar]
  75. MahfouzZ Using pan bread enriched with chia seeds to reduce some side effects of fatty liver induced with fructose in male rats.Home Econom. Magaz.202036116720410.21608/jhe.2020.141765
    [Google Scholar]
  76. SatyamS.M. BairyL.K. Neuronutraceuticals combating neuroinflammaging: Molecular insights and translational challenges—a systematic review.Nutrients20221415302910.3390/nu1415302935893883
    [Google Scholar]
  77. SatyamS.M. BairyL.K. PirasanthanR. Influence of grape seed extract and zinc containing multivitamin-mineral nutritional food supplement on lipid profile in normal and diet-induced hypercholesterolemic rats.J. Clin. Diagn. Res.2014812HC12HC1510.7860/JCDR/2014/10095.528225653967
    [Google Scholar]
  78. SatyamS.M. Grape seed extract and zinc containing nutritional food supplement decreases the oxidative stress induced by carbon tetrachloride in rats.Int. J. Pharm. Pharm. Sci.201354626631
    [Google Scholar]
  79. SatyamS.M. BairyL.K. RehmanA. AttiaM. AhmedL. EmadK. JaaferY. BahaaeldinA. Unlocking synergistic hepatoprotection: Dapagliflozin and silymarin combination therapy modulates nuclear erythroid 2-related factor 2/heme oxygenase-1 pathway in carbon tetrachloride-induced hepatotoxicity in wistar rats.Biology (Basel)202413747310.3390/biology1307047339056668
    [Google Scholar]
  80. SatyamS.M. BairyL.K. RehmanA. FarookM. KhanS. NairA.A. BinuN.N. YehyaM. KhanM.M. Dapagliflozin: A promising strategy to combat cisplatin-induced hepatotoxicity in wistar rats.Biology202413967210.3390/biology1309067239336099
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128366802250413160625
Loading
/content/journals/cpd/10.2174/0113816128366802250413160625
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test