Skip to content
2000
image of Revolutionizing Antibiotic Delivery: Harnessing 3D-Printing Technology to Combat Bacterial Resistance

Abstract

Antibiotic resistance poses a significant threat to public health, rendering many life-saving medications ineffective as pathogenic microorganisms develop resistance spontaneously. This results in infections that are difficult to treat, with limited or no treatment options. Traditionally, addressing this challenge involves developing new pharmaceuticals, a lengthy and costly process. However, a more efficient approach lies in improving drug delivery methods, which can be quicker and more economical. In recent years, 3D printing technology has emerged as a groundbreaking, industry-accepted technique that enables the affordable, simple, and rapid manufacturing of pharmaceuticals. This technology supports iterative design-build-test cycles, facilitating the development of a wide range of products, from simple 3D-printed tablets to complex medical devices, tailored for diverse applications. This article explores innovative strategies in the search for novel antibiotics, the development of more effective preventative measures, and, crucially, a deeper understanding of the ecology of antibiotics and antibiotic resistance. It provides an overview of these issues' historical and current status, emphasizing the potential of 3D printing to address antibiotic resistance. Additionally, it discusses how to expand conceptual frameworks in response to recent advancements in chemotherapy, antimicrobials, and antibiotic resistance. The article highlights various notable efforts in utilizing 3D printing to develop antimicrobial dosage forms and medical devices, offering insights into future possibilities.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128365632250524160128
2025-06-04
2025-09-10
Loading full text...

Full text loading...

References

  1. Hutchings M.I. Truman A.W. Wilkinson B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019 51 72 80 10.1016/j.mib.2019.10.008 31733401
    [Google Scholar]
  2. Levy S.B. The challenge of antibiotic resistance. Sci. Am. 1998 278 3 46 53 10.1038/scientificamerican0398‑46 9487702
    [Google Scholar]
  3. Oates J.A. Wood A.J.J. Donowitz G.R. Mandell G.L. Beta-lactam antibiotics. N. Engl. J. Med. 1988 318 7 419 426 10.1056/NEJM198802183180706 3277053
    [Google Scholar]
  4. Weledji E.P. Weledji E.K. Assob J.C. Nsagha D.S. Pros, cons and future of antibiotics. New Horiz. Transl. Med. 2017 4 1-4 9 14 10.1016/j.nhtm.2017.08.001
    [Google Scholar]
  5. Wu L. Wang X. Xu W. Farzaneh F. Xu R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem. 2009 16 32 4236 4260 10.2174/092986709789578187 19754420
    [Google Scholar]
  6. Jinadasa R.N. Bloom S.E. Weiss R.S. Duhamel G.E. Cytolethal distending toxin: A conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology 2011 157 7 1851 1875 10.1099/mic.0.049536‑0 21565933
    [Google Scholar]
  7. Pankey G.A. Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004 38 6 864 870 10.1086/381972 14999632
    [Google Scholar]
  8. Allahverdiyev A.M. Abamor E.S. Bagirova M. Rafailovich M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2011 6 8 933 940 10.2217/fmb.11.78 21861623
    [Google Scholar]
  9. Taylor M.J. Voronin D. Johnston K.L. Ford L. Wolbachia filarial interactions. Cell. Microbiol. 2013 15 4 520 526 10.1111/cmi.12084 23210448
    [Google Scholar]
  10. Kaufman H.E. Treatment of viral diseases of the cornea and external eye. Prog. Retin. Eye Res. 2000 19 1 69 85 10.1016/S1350‑9462(99)00004‑X 10614681
    [Google Scholar]
  11. Wise R. Hart T. Cars O. Antimicrobial resistance. BMJ 1998 317 7159 609 610 10.1136/bmj.317.7159.609 9727981
    [Google Scholar]
  12. Khan S.N. Khan A.U. Breaking the spell: Combating multidrug resistant ‘superbugs.’. Front. Microbiol. 2016 7 174 10.3389/fmicb.2016.00174 26925046
    [Google Scholar]
  13. Nicolaou K.C. Rigol S. A brief history of antibiotics and select advances in their synthesis. J. Antibiot. 2018 71 2 153 184 10.1038/ja.2017.62 28676714
    [Google Scholar]
  14. Aslam B. Wang W. Arshad M.I. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018 11 1645 1658 10.2147/IDR.S173867 30349322
    [Google Scholar]
  15. Morrison L. Zembower T.R. Antimicrobial Resistance. Gastrointest. Endosc. Clin. N. Am. 2020 30 4 619 635 10.1016/j.giec.2020.06.004 32891221
    [Google Scholar]
  16. Kumar S. Kumar A. Evaluation of restricted antibiotics utilisation in a tertiary care teaching hospital. Indian J Pharm Pract 2021 14 3 198 204 10.5530/ijopp.14.3.39
    [Google Scholar]
  17. Aslam B. Khurshid M. Arshad M.I. Antibiotic resistance: One health one world outlook. Front. Cell. Infect. Microbiol. 2021 11 771510 10.3389/fcimb.2021.771510 34900756
    [Google Scholar]
  18. Gardan J. Additive manufacturing technologies: State of the art and trends. 2017 149 68
    [Google Scholar]
  19. Nandini V. 3D printing technology in dentistry-an overview. J Prosthet Implant Dent 2022 5 3 9 10 10.55231/jpid.2022.v05.i03.04
    [Google Scholar]
  20. Regassa Hunde B. Debebe Woldeyohannes A. Future prospects of computer-aided design (CAD) - A review from the perspective of artificial intelligence (AI), extended reality, and 3D printing. Results in Engineering 2022 14 100478 10.1016/j.rineng.2022.100478
    [Google Scholar]
  21. Kantaros A. 3D printing in regenerative medicine: Technologies and resources utilized. Int. J. Mol. Sci. 2022 23 23 14621 10.3390/ijms232314621 36498949
    [Google Scholar]
  22. Mussatto A. Research progress in multi-material laser-powder bed fusion additive manufacturing: A review of the state-of-the-art techniques for depositing multiple powders with spatial selectivity in a single layer. Results in Engineering 2022 16 100769 10.1016/j.rineng.2022.100769
    [Google Scholar]
  23. Zhu A.X. Kang Y.K. Yen C.J. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019 20 2 282 296 10.1016/S1470‑2045(18)30937‑9 30665869
    [Google Scholar]
  24. Sikder P. Bhaduri S.B. Antibacterial hydroxyapatite: An effective approach to cure infections in orthopedics In: Racing for the Surface. 2020 583 612 10.1007/978‑3‑030‑34475‑7_24
    [Google Scholar]
  25. Park J.H. Kang S.H. Kim J.S. Moon H.S. Sung J.K. Jeong H.Y. Contribution of sex and gender roles to the incidence of post-infectious irritable bowel syndrome in a prospective study. Sci. Rep. 2023 13 1 19467 10.1038/s41598‑023‑45300‑2 37945663
    [Google Scholar]
  26. Kong L. Mei J. Ge W. Application of 3D printing‐assisted articulating spacer in two‐stage revision surgery for periprosthetic infection after total knee arthroplasty: A retrospective observational study. BioMed Res. Int. 2021 2021 1 3948638 10.1155/2021/3948638 33628779
    [Google Scholar]
  27. Doganay M.T. John Chelliah C. Tozluyurt A. 3D printed materials for combating antimicrobial resistance. Mater. Today 2023 67 371 398 10.1016/j.mattod.2023.05.030 37790286
    [Google Scholar]
  28. Mace M.A.M. Reginatto C.L. Soares R.M.D. Fuentefria A.M. Three-dimensional printing of medical devices and biomaterials with antimicrobial activity: A systematic review. Bioprinting 2024 38 e00334 10.1016/j.bprint.2024.e00334
    [Google Scholar]
  29. Kourkouta L. Koukourikos K. Iliadis C. Plati P. Dimitriadou A. History of antibiotics. Sumer J Med Healthc 2018 1 51 55
    [Google Scholar]
  30. Huang Y. Gu J. Zhang M. Knowledge, attitude and practice of antibiotics: A questionnaire study among 2500 Chinese students. BMC Med. Educ. 2013 13 1 163 10.1186/1472‑6920‑13‑163 24321449
    [Google Scholar]
  31. Tyldesley J. Daughters of Isis: Women of ancient Egypt. 1995
    [Google Scholar]
  32. Dichman M-L. Rosenstock S.J. Shabanzadeh D.M. Antibiotics for uncomplicated diverticulitis. Cochrane Database Syst. Rev. 2022 6 6 CD009092 35731704
    [Google Scholar]
  33. Fancher C.A. Thames H.T. Colvin M.G. Prevalence and molecular characteristics of avian pathogenic Escherichia coli in “no antibiotics ever” broiler farms. Microbiol. Spectr. 2021 9 3 e00834 e21 10.1128/Spectrum.00834‑21 34878309
    [Google Scholar]
  34. Haider R. Penicillin and the antibiotics revolution global history. Int J Heal Syst Med Sci 2022 1 31 40
    [Google Scholar]
  35. Cotton M.F. Sharland M. Antimicrobial stewardship and infection prevention and control in low- and middle-income countries: Current status and best practices. Pediatr. Infect. Dis. J. 2022 41 3S S1 S2 10.1097/INF.0000000000003355 35134033
    [Google Scholar]
  36. Pierantoni L. Lo Vecchio A. Lenzi J. Parents’ perspective of antibiotic usage in children: A Nationwide survey in Italy. Pediatr. Infect. Dis. J. 2021 40 10 906 911 10.1097/INF.0000000000003221 34437339
    [Google Scholar]
  37. Mudry A. Otorhinolaryngology as “Made in Germany” since 1921: An international perspective. HNO 2021 69 5 366 384 10.1007/s00106‑021‑01047‑8 33860814
    [Google Scholar]
  38. Kazanjian P.H. Efforts to regulate antibiotic misuse in hospitals: A history. Infect. Control Hosp. Epidemiol. 2022 43 9 1119 1122 10.1017/ice.2021.330 34325759
    [Google Scholar]
  39. Neves J.V. Editorial for special issue “alternatives to antibiotics: Bacteriocins and antimicrobial peptides”. Antibiotics 2022 11 7 860 10.3390/antibiotics11070860 35884114
    [Google Scholar]
  40. Vane C.H. Kim A.W. Lopes dos Santos R.A. Moss-Hayes V. Contrasting sewage, emerging and persistent organic pollutants in sediment cores from the River Thames estuary, London, England, UK. Mar. Pollut. Bull. 2022 175 113340 10.1016/j.marpolbul.2022.113340 35124377
    [Google Scholar]
  41. Christensen S.B. Drugs that changed society: History and current status of the early antibiotics: Salvarsan, sulfonamides, and β-lactams. Molecules 2021 26 19 6057 10.3390/molecules26196057 34641601
    [Google Scholar]
  42. Reddy D.S. Sinha A. Kumar A. Saini V.K. Drug re‐engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery. Arch Pharm 2022 355 11 2200214 10.1002/ardp.202200214 35841594
    [Google Scholar]
  43. Fasoulakis Z. Koutras A. Antsaklis P. Intrauterine growth restriction due to gestational diabetes: From pathophysiology to diagnosis and management. Medicina 2023 59 6 1139 10.3390/medicina59061139 37374343
    [Google Scholar]
  44. Nikiforou A.I. Lioukas S. Chatzopoulou E.C. Voudouris I. When there is a crisis, there is an opportunity? SMEs’ capabilities for durability and opportunity confidence. Int. J. Entrep. Behav. Res. 2023 29 5 1053 1074 10.1108/IJEBR‑11‑2021‑0939
    [Google Scholar]
  45. Sreenithya K.H. Jade D. Harrison M. Sugumar S. Identification of natural inhibitor against L1 β-lactamase present in Stenotrophomonas maltophilia. J. Mol. Model. 2022 28 11 342 10.1007/s00894‑022‑05336‑z
    [Google Scholar]
  46. Verma T. Aggarwal A. Singh S. Sharma S. Sarma S.J. Current challenges and advancements towards discovery and resistance of antibiotics. J. Mol. Struct. 2022 1248 131380 10.1016/j.molstruc.2021.131380
    [Google Scholar]
  47. Akusobi C. Benghomari B.S. Zhu J. Transposon mutagenesis in Mycobacterium abscessus identifies an essential penicillin-binding protein involved in septal peptidoglycan synthesis and antibiotic sensitivity. eLife 2022 11 e71947 10.7554/eLife.71947 35659317
    [Google Scholar]
  48. Kumar A. Kaushal M. Progression of β-Lactam Resistance in Staphylococcus aureus. In: Insights Into Drug Resist 2021 147 10.5772/intechopen.100622
    [Google Scholar]
  49. Alfei S. Schito A.M. β-lactam antibiotics and β-lactamase enzymes inhibitors, Part 2: Our limited resources. Pharmaceuticals 2022 15 4 476 10.3390/ph15040476 35455473
    [Google Scholar]
  50. Tangri N. Singhal S. Sharma P. Coexistence of pneumothorax and chilaiditi sign: A case report. Asian Pac. J. Trop. Biomed. 2014 4 1 75 77 10.1016/S2221‑1691(14)60212‑4 24144135
    [Google Scholar]
  51. Pacifici G.M. Clinical pharmacology of cefotaxime. J Clin Trials Res Ethics 2022 2 1
    [Google Scholar]
  52. Silva A. Costa E. Freitas A. Almeida A. Revisiting the frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections. Antibiotics 2022 11 6 768 10.3390/antibiotics11060768 35740174
    [Google Scholar]
  53. Alam M. Bano N. Ahmad T. Synergistic role of plant extracts and essential oils against multidrug resistance and gram-negative bacterial strains producing extended-spectrum β-lactamases. Antibiotics 2022 11 7 855 10.3390/antibiotics11070855 35884109
    [Google Scholar]
  54. Terreni M. Taccani M. Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules 2021 26 9 2671 10.3390/molecules26092671 34063264
    [Google Scholar]
  55. Carcione D. Siracusa C. Sulejmani A. Leoni V. Intra J. Old and new beta-lactamase inhibitors: Molecular structure, mechanism of action, and clinical use. Antibiotics 2021 10 8 995 10.3390/antibiotics10080995 34439045
    [Google Scholar]
  56. Bui T. Preuss C.V. Cephalosporins. In: StatPearls 2021
    [Google Scholar]
  57. Tiseo G. Brigante G. Giacobbe D.R. Maraolo A.E. Gona F. Falcone M. A position paper for the diagnosis and management of infections caused by multidrug-resistant bacteria: Endorsed by the Italian society of infection and tropical diseases (SIMIT), the Italian society of anti-infective therapy (SITA), the Italian group for. Int. J. Antimicrob. Agents 2022 60 2 106611 10.1016/j.ijantimicag.2022.106611 35697179
    [Google Scholar]
  58. Ventola CL The antibiotic resistance crisis: Part 1: Causes and threats 2015 40 4 277 83 25859123
    [Google Scholar]
  59. Exner M. Bhattacharya S. Christiansen B. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control 2017 12 Doc05 28451516
    [Google Scholar]
  60. Schneider T. Sahl H.G. An oldie but a goodie – cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol. 2010 300 2-3 161 169 10.1016/j.ijmm.2009.10.005 20005776
    [Google Scholar]
  61. Neu H.C. Relation of structural properties of beta-lactam antibiotics to antibacterial activity. Am. J. Med. 1985 79 2 2 13 10.1016/0002‑9343(85)90254‑2 3895915
    [Google Scholar]
  62. Jamil F. Mukhtar H. Fouillaud M. Dufossé L. Rhizosphere signaling: Insights into plant-rhizomicrobiome interactions for sustainable agronomy. Microorganisms 2022 10 5 899 10.3390/microorganisms10050899 35630345
    [Google Scholar]
  63. Walker R.C. The fluoroquinolones. Mayo Clin. Proc. 1999 74 10 1030 1037 10.4065/74.10.1030
    [Google Scholar]
  64. Hellinger W.C. Brewer N.S. Carbapenems and monobactams: Imipenem, meropenem, and aztreonam. Mayo Clin. Proc. 1999 74 4 420 434 10.4065/74.4.420
    [Google Scholar]
  65. Page M.G.P. The role of iron and siderophores in infection, and the development of siderophore antibiotics. Clin. Infect. Dis. 2019 69 S529 S537 10.1093/cid/ciz825 31724044
    [Google Scholar]
  66. Adkinson N.F. Swabb E.A. Sugerman A.A. Immunology of the monobactam aztreonam. Antimicrob. Agents Chemother. 1984 25 1 93 97 10.1128/AAC.25.1.93 6538398
    [Google Scholar]
  67. Retsch-Bogart G.Z. Quittner A.L. Gibson R.L. Efficacy and safety of inhaled aztreonam lysine for airway pseudomonas in cystic fibrosis. Chest 2009 135 5 1223 1232 10.1378/chest.08‑1421 19420195
    [Google Scholar]
  68. Peris-Vicente J. Peris-García E. Albiol-Chiva J. Liquid chromatography, a valuable tool in the determination of antibiotics in biological, food and environmental samples. Microchem. J. 2022 177 107309 10.1016/j.microc.2022.107309
    [Google Scholar]
  69. Turner J. Muraoka A. Bedenbaugh M. The chemical relationship among beta-lactam antibiotics and potential impacts on reactivity and decomposition. Front. Microbiol. 2022 13 807955 10.3389/fmicb.2022.807955 35401470
    [Google Scholar]
  70. Lee S.L. O’Connor T.F. Yang X. Modernizing pharmaceutical manufacturing: from batch to continuous production. J. Pharm. Innov. 2015 10 3 191 199 10.1007/s12247‑015‑9215‑8
    [Google Scholar]
  71. Domagala J.M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J. Antimicrob. Chemother. 1994 33 4 685 706 10.1093/jac/33.4.685 8056688
    [Google Scholar]
  72. Eyssen H.J. van den Bosch J.F. Janssen G.A. Vanderhaeghe H. Specific inhibition of cholesterol absorption by sulfaguanidine. Atherosclerosis 1971 14 2 181 192 10.1016/0021‑9150(71)90048‑7 5118612
    [Google Scholar]
  73. Henry R.J. The mode of action of sulfonamides. Bacteriol. Rev. 1943 7 4 175 262 10.1128/br.7.4.175‑262.1943 16350088
    [Google Scholar]
  74. Mahajan G.B. Balachandran L. Antibacterial agents from actinomycetes - a review. Front. Biosci. 2012 E4 1 240 253 10.2741/e373 22201868
    [Google Scholar]
  75. Sato J. Kusano H. Aoki T. Discovery of a tricyclic β-lactam as a potent antimicrobial agent against carbapenem-resistant enterobacterales, including strains with reduced membrane permeability and four-amino acid insertion into penicillin-binding protein 3: Structure-activity-relationships and in vitro and in vivo activities. ACS Infect. Dis. 2022 8 3 400 410 10.1021/acsinfecdis.1c00549 35112852
    [Google Scholar]
  76. Naeem M. Rauf A. Maqbool S. Aslam A. Degree-based topological indices of geranyl and farnesyl penicillin G bioconjugate structure. Eur. Phys. J. Plus 2022 137 3 303 10.1140/epjp/s13360‑022‑02513‑0
    [Google Scholar]
  77. Buckley A.M. Moura I.B. Altringham J. The use of first-generation cephalosporin antibiotics, cefalexin and cefradine, is not associated with induction of simulated Clostridioides difficile infection. J. Antimicrob. Chemother. 2021 77 1 148 154 10.1093/jac/dkab349 34561709
    [Google Scholar]
  78. Imanipoor J. Mohammadi M. Porous aluminum-based metal–organic framework-aminoclay nanocomposite: Sustainable synthesis and ultrahigh sorption of cephalosporin antibiotics. Langmuir 2022 38 18 5900 5914 10.1021/acs.langmuir.2c00557 35470668
    [Google Scholar]
  79. Harvima R.J. Harvima I.T. Case: Unexpected development of severe penicillin allergy and review of literature. Clin. Case Rep. 2022 10 1 e05248 10.1002/ccr3.5248 35079384
    [Google Scholar]
  80. Mukai S. Shigemura K. Yang Y.M. Comparison between antimicrobial stewardship program and intervention by infection control team for managing antibiotic use in neurogenic bladder-related urinary tract infection patients: A retrospective chart audit. Am. J. Infect. Control 2022 50 6 668 672 10.1016/j.ajic.2021.10.025 34736991
    [Google Scholar]
  81. Chaturvedi P. Mishra A. Paswanb S.K. Application of quality by design approach in development of cefixime trihydrate loaded gastro-retentive Mucoadhesive microspheres. Eur J Parenter Pharm Sci 2022 27 2
    [Google Scholar]
  82. Harikumar B. Kokilavani S. Sudheer Khan S. Magnetically separable N/S doped Fe3O4 embedded on MoO3 nanorods for photodegradation of cefixime, Cr(VI) reduction, and its genotoxicity study. Chem. Eng. J. 2022 446 137273 10.1016/j.cej.2022.137273
    [Google Scholar]
  83. Koźmiński P. Rzewuska M. Piądłowska A. Halik P. Gniazdowska E. Synthesis, physicochemical and in vitro biological evaluation of 99mTc-cefepime radioconjugates, and development of DTPA-cefepime single vial kit formulation for labelling with technetium-99m. J. Radioanal. Nucl. Chem. 2022 331 7 2883 2894 10.1007/s10967‑022‑08363‑5
    [Google Scholar]
  84. Chu Y. Su H. Liu C. Zheng X. Fabrication of sandwich-like super-hydrophobic cathode for the electro-Fenton degradation of cefepime: H2O2 electro-generation, degradation performance, pathway and biodegradability improvement. Chemosphere 2022 286 Pt 2 131669 10.1016/j.chemosphere.2021.131669 34340112
    [Google Scholar]
  85. Méndez R. Latorre A. González-Jiménez P. Ceftobiprole medocaril. Rev. Esp. Quimioter. 2022 35 Suppl. 1 25 27 35488820
    [Google Scholar]
  86. Mitchell J.M. June C.M. Baggett V.L. Conformational flexibility in carbapenem hydrolysis drives substrate specificity of the class D carbapenemase OXA-24/40. J. Biol. Chem. 2022 298 7 102127 10.1016/j.jbc.2022.102127 35709986
    [Google Scholar]
  87. Roy S. Junghare V. Dutta S. Hazra S. Basu S. Differential binding of carbapenems with the AdeABC efflux pump and modulation of the expression of AdeB linked to novel mutations within two-component system AdeRS in carbapenem-Resistant Acinetobacter baumannii. mSystems 2022 7 4 e00217 e00222 10.1128/msystems.00217‑22 35735748
    [Google Scholar]
  88. Trave I. Micalizzi C. Molle M. Castelli R. Cozzani E. Parodi A. Acne fulminans induced by lymecycline in a patient with hidradenitis suppurativa: A case report. Case Rep. Dermatol. 2022 14 2 112 116 10.1159/000523799 35702372
    [Google Scholar]
  89. Bhardwaj P. Lim S.Y. Gruener A.M. Pseudotumor cerebri syndrome secondary to lymecycline therapy. Eur. J. Ophthalmol. 2022 32 3 NP102 NP104 10.1177/11206721211072373 35037776
    [Google Scholar]
  90. Hussein D. Almatrafi A.R. Mansour M.S. Howsawi A. Almustafa S. Alsaihaty H. Using multiple computational platforms to validate suitable therapeutic candidates that interfere with the viral s-glycoprotein and host ACE2 receptor protein interaction. SSRN 4110412 10.2139/ssrn.4110412
    [Google Scholar]
  91. Dong J. Chen F. Xu L. Fabrication of sensitive photoelectrochemical aptasensor using Ag nanoparticles sensitized bismuth oxyiodide for determination of chloramphenicol. Microchem. J. 2022 178 107317 10.1016/j.microc.2022.107317
    [Google Scholar]
  92. Liu Y. Cheng D. Xue J. Fate of bacterial community, antibiotic resistance genes and gentamicin residues in soil after three-year amendment using gentamicin fermentation waste. Chemosphere 2022 291 Pt 1 132734 10.1016/j.chemosphere.2021.132734 34743798
    [Google Scholar]
  93. Yuan Q. Sui M. Qin C. Migration, transformation and removal of macrolide antibiotics in the environment: A review. Environ. Sci. Pollut. Res. Int. 2022 29 18 26045 26062 10.1007/s11356‑021‑18251‑2 35067882
    [Google Scholar]
  94. Venditto V.J. Feola D.J. Delivering macrolide antibiotics to heal a broken heart – And other inflammatory conditions. Adv. Drug Deliv. Rev. 2022 184 114252 10.1016/j.addr.2022.114252 35367307
    [Google Scholar]
  95. Li J. Li W. Liu K. Global review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment. J. Hazard. Mater. 2022 439 129628 10.1016/j.jhazmat.2022.129628 35905608
    [Google Scholar]
  96. Li J. Lai Y. Li M. Repair of infected bone defect with clindamycin-tetrahedral DNA nanostructure complex-loaded 3D bioprinted hybrid scaffold. Chem. Eng. J. 2022 435 134855 10.1016/j.cej.2022.134855
    [Google Scholar]
  97. Armengol Álvarez L. Van de Sijpe G. Desmet S. Ways to improve insights into clindamycin pharmacology and pharmacokinetics tailored to practice. Antibiotics 2022 11 5 701 10.3390/antibiotics11050701 35625345
    [Google Scholar]
  98. Diggs F.J. Edwards J.D. Garza K.B. Hassoun A.A.M. Durham S.H. Evaluation of a capped dosing telavancin regimen compared to standard dosing at a large community teaching hospital. Antimicrob. Agents Chemother. 2022 66 1 e01603 e01621 10.1128/AAC.01603‑21 34662182
    [Google Scholar]
  99. Gharibian K.N. Lewis S.J. Heung M. Segal J.H. Salama N.N. Mueller B.A. Telavancin pharmacokinetics in patients with chronic kidney disease receiving haemodialysis. J. Antimicrob. Chemother. 2021 77 1 174 180 10.1093/jac/dkab370 34613416
    [Google Scholar]
  100. Yan J Zuo X Yang S Chen R Cai T Ding D Evaluation of potassium ferrate activated biochar for the simultaneous adsorption of copper and sulfadiazine: Competitive versus synergistic. J Hazard Mater 2022 424 Pt B 127435 10.1016/j.jhazmat.2021.127435 34638070
    [Google Scholar]
  101. Xia S Deng L Liu X Fabrication of magnetic nickel incorporated carbon nanofibers for superfast adsorption of sulfadiazine: Performance and mechanisms exploration. J Hazard Mater 2022 423 Pt B 127219 10.1016/j.jhazmat.2021.127219 34844349
    [Google Scholar]
  102. Yin N. Chen H. Yuan X. Highly efficient photocatalytic degradation of norfloxacin via Bi2Sn2O7/PDIH Z-scheme heterojunction: Influence and mechanism. J. Hazard. Mater. 2022 436 129317 10.1016/j.jhazmat.2022.129317 35739807
    [Google Scholar]
  103. Wang Y. Wang R. Lin N. Degradation of norfloxacin by MOF-derived lamellar carbon nanocomposites based on microwave-driven Fenton reaction: Improved Fe(III)/Fe(II) cycle. Chemosphere 2022 293 133614 10.1016/j.chemosphere.2022.133614 35032514
    [Google Scholar]
  104. Singh S. Goyal A. Antimicrobial agents in agriculture and their implications in antimicrobial resistance. In: Emerging Modalities in Mitigation of Antimicrobial Resistance. 2022 47 78
    [Google Scholar]
  105. Borgmann A. Prospects for the Theology of Technology. Essays Christ Exeg Hist Theol 2022 2 215
    [Google Scholar]
  106. Gurstelle K.H. Uneven paths to health and healing: Medicine, politics and power in 19th century. America 2022
    [Google Scholar]
  107. Cudjoe M.M. Antibiotics resistance in the food chain: Implications on public health. Asian J Environ Ecol 2022 18 4 10 20 10.9734/ajee/2022/v18i430326
    [Google Scholar]
  108. Ezeonu I.M. Iroha I.R. Esiobu N.D. Antibiotic resistance: Global trends, impact and mitigation. In: Medical Biotechnology. Biopharmaceutics, Forensic Science and Bioinformatics 2021 99 113
    [Google Scholar]
  109. You Y Zhou Y Duan X Mao X Li Y Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable. Crit Rev Food Sci Nutr 2022 1 12 35866524
    [Google Scholar]
  110. Katiyar S.K. Gaur S.N. Solanki R.N. Indian guidelines on nebulization therapy. Indian J. Tuberc. 2022 69 S1 S191 10.1016/j.ijtb.2022.06.004 36372542
    [Google Scholar]
  111. Abd S.E. Interface of gold nanostructure for medical applications. Int J Technol Sci Eng 2022 5 1 1 34
    [Google Scholar]
  112. Hernandez-Rodriguez P. Baquero L.P. Combination therapy as a strategy to control infections caused by multi-resistant bacteria: Current review. Curr. Drug Targets 2022 23 3 260 265 10.2174/1389450122666210614122352 35282814
    [Google Scholar]
  113. Drioiche A. Zahra Radi F. Ailli A. Correlation between the chemical composition and the antimicrobial properties of seven samples of essential oils of endemic Thymes in Morocco against multi-resistant bacteria and pathogenic fungi. Saudi Pharm. J. 2022 30 8 1200 1214 10.1016/j.jsps.2022.06.022 36164579
    [Google Scholar]
  114. Choy R.K.M. Bourgeois A.L. Ockenhouse C.F. Walker R.I. Sheets R.L. Flores J. Controlled human infection models to accelerate vaccine development. Clin. Microbiol. Rev. 2022 35 3 e00008 e00021 10.1128/cmr.00008‑21 35862754
    [Google Scholar]
  115. Moghimi S. Shafiei M. Foroumadi A. Drug design strategies for the treatment azole-resistant candidiasis. Expert Opin. Drug Discov. 2022 17 8 879 895 10.1080/17460441.2022.2098949 35793245
    [Google Scholar]
  116. Montañés J.C. Huertas M. Moro S.G. Native RNA sequencing in fission yeast reveals frequent alternative splicing isoforms. Genome Res. 2022 32 6 1215 1227 10.1101/gr.276516.121 35618415
    [Google Scholar]
  117. Lynsdale C.L. Seltmann M.W. Mon N.O. Investigating associations between nematode infection and three measures of sociality in Asian elephants. Behav. Ecol. Sociobiol. 2022 76 7 87 10.1007/s00265‑022‑03192‑8 35765658
    [Google Scholar]
  118. Zhao X. Tang H. Jiang X. Deploying gold nanomaterials in combating multi-drug-resistant bacteria. ACS Nano 2022 16 7 10066 10087 10.1021/acsnano.2c02269 35776694
    [Google Scholar]
  119. Karymbaeva S. Boiko I. Jacobsson S. Antimicrobial resistance and molecular epidemiological typing of Neisseria gonorrhoeae isolates from Kyrgyzstan in Central Asia, 2012 and 2017. BMC Infect. Dis. 2021 21 1 559 10.1186/s12879‑021‑06262‑w 34118893
    [Google Scholar]
  120. Uddin T.M. Chakraborty A.J. Khusro A. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021 14 12 1750 1766 10.1016/j.jiph.2021.10.020 34756812
    [Google Scholar]
  121. Nanayakkara A.K. Boucher H.W. Fowler V.G. Jezek A. Outterson K. Greenberg D.E. Antibiotic resistance in the patient with cancer: Escalating challenges and paths forward. CA Cancer J. Clin. 2021 71 6 488 504 10.3322/caac.21697 34546590
    [Google Scholar]
  122. Khan A.H. Aziz H.A. Khan N.A. Hasan M.A. Ahmed S. Farooqi I.H. Impact, disease outbreak and the eco-hazards associated with pharmaceutical residues: A critical review. Int. J. Environ. Sci. Technol. 2021 1 12
    [Google Scholar]
  123. Ahmed T. Ameer H.A. Javed S. Pakistan’s backyard poultry farming initiative: impact analysis from a public health perspective. Trop. Anim. Health Prod. 2021 53 2 210 10.1007/s11250‑021‑02659‑6 33733340
    [Google Scholar]
  124. Drew G.C. Stevens E.J. King K.C. Microbial evolution and transitions along the parasite-mutualist continuum. Nat. Rev. Microbiol. 2021 19 10 623 638 10.1038/s41579‑021‑00550‑7 33875863
    [Google Scholar]
  125. Pazzaglia J. Reusch T.B.H. Terlizzi A. Marín-Guirao L. Procaccini G. Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival. Evol. Appl. 2021 14 5 1181 1201 10.1111/eva.13212 34025759
    [Google Scholar]
  126. Basu S. Copana R. Morales R. Keeping it real: Antibiotic use problems and stewardship solutions in low-and middle-income countries. Pediatr. Infect. Dis. J. 2022 41 3S S18 S25 10.1097/INF.0000000000003321 35134036
    [Google Scholar]
  127. Sharma A. Singh A. Dar M.A. Menace of antimicrobial resistance in LMICs: Current surveillance practices and control measures to tackle hostility. J. Infect. Public Health 2022 15 2 172 181 10.1016/j.jiph.2021.12.008 34972026
    [Google Scholar]
  128. Wilson M. The great betrayal-our own cells and our symbionts turn against us. In: Life After Death What Happens to Your Body After You Die? 2022 117 66 10.1007/978‑3‑030‑83036‑6_5
    [Google Scholar]
  129. Ernakovich J.G. Barbato R.A. Rich V.I. Microbiome assembly in thawing permafrost and its feedbacks to climate. Glob. Change Biol. 2022 28 17 5007 5026 10.1111/gcb.16231 35722720
    [Google Scholar]
  130. Mushtaq A. Nawaz H. Irfan Majeed M. Surface-enhanced Raman spectroscopy (SERS) for monitoring colistin-resistant and susceptible E. coli strains. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 278 121315 10.1016/j.saa.2022.121315 35576839
    [Google Scholar]
  131. Wilson V.G. Beyond antibiotics–are phages our allies? In: Viruses: Intimate Invaders. 2022 279 30 10.1007/978‑3‑030‑85487‑4_12
    [Google Scholar]
  132. Anand R. An extremely rare case of malignant transformation of Eccrine Spiradenoma. Int. J. Sci. Res. 2022 11 3 1 2 10.36106/ijsr
    [Google Scholar]
  133. Zhang S. Sun W.L. Song H.L. Effects of voltage on the emergence and spread of antibiotic resistance genes in microbial electrolysis cells: From mutation to horizontal gene transfer. Chemosphere 2022 291 Pt 1 132703 10.1016/j.chemosphere.2021.132703 34718024
    [Google Scholar]
  134. Adesola RO Moses OO Common genetic mechanisms implicated in antibiotic resistance. 2022 6 1 1 10 10.31383/ga.vol6iss1pp1‑10
    [Google Scholar]
  135. Reddy S. Barathe P. Kaur K. Anand U. Shriram V. Kumar V. Antimicrobial resistance and medicinal plant products as potential alternatives to antibiotics in animal husbandry. In: Antimicrobial Resistance 2022 357 84 10.1007/978‑981‑16‑3120‑7_13
    [Google Scholar]
  136. Xin K. Chen X. Zhang Z. Trace antibiotics increase the risk of antibiotic resistance genes transmission by regulating the biofilm extracellular polymeric substances and microbial community in the sewer. J. Hazard. Mater. 2022 432 128634 10.1016/j.jhazmat.2022.128634 35306411
    [Google Scholar]
  137. Bhat B.A. Mir W.R. Sheikh B.A. Rather M.A. Dar T.H. Mir M.A. In vitro and in silico evaluation of antimicrobial properties of Delphinium cashmerianum L., a medicinal herb growing in Kashmir, India. J. Ethnopharmacol. 2022 291 115046 10.1016/j.jep.2022.115046 35167935
    [Google Scholar]
  138. Adegbite B.R. Edoa J.R. Schaumburg F. Alabi A.S. Adegnika A.A. Grobusch M.P. Knowledge and perception on antimicrobial resistance and antibiotics prescribing attitude among physicians and nurses in Lambaréné region, Gabon: A call for setting-up an antimicrobial stewardship program. Antimicrob. Resist. Infect. Control 2022 11 1 44 10.1186/s13756‑022‑01079‑x 35241171
    [Google Scholar]
  139. Sobierajski T. Mazińska B. Chajęcka-Wierzchowska W. Śmiałek M. Hryniewicz W. Antimicrobial and antibiotic resistance from the perspective of polish veterinary students: An inter-university study. Antibiotics 2022 11 1 115 10.3390/antibiotics11010115 35052992
    [Google Scholar]
  140. Buckel A. Bridging the intention-action gap: Understanding onfarm biosecurity behaviour of smallholder poultry farmers in Ghana. 2022
    [Google Scholar]
  141. Daisley B.A. Chernyshova A.M. Thompson G.J. Allen-Vercoe E. Deteriorating microbiomes in agriculture - The unintended effects of pesticides on microbial life. Microbiome Research Reports 2022 1 1 6 10.20517/mrr.2021.08 38089067
    [Google Scholar]
  142. Harbin N.J. Lindbæk M. Romøren M. Barriers and facilitators of appropriate antibiotic use in primary care institutions after an antibiotic quality improvement program - A nested qualitative study. BMC Geriatr. 2022 22 1 458 10.1186/s12877‑022‑03161‑w 35624423
    [Google Scholar]
  143. Chitungo I. Dzinamarira T. Nyazika T.K. Herrera H. Musuka G. Murewanhema G. Inappropriate antibiotic use in Zimbabwe in the COVID-19 era: A perfect recipe for antimicrobial resistance. Antibiotics 2022 11 2 244 10.3390/antibiotics11020244 35203846
    [Google Scholar]
  144. Patience J.F. Ramirez A. Invited review: Strategic adoption of antibiotic-free pork production: The importance of a holistic approach. Transl. Anim. Sci. 2022 6 3 txac063 10.1093/tas/txac063 35854972
    [Google Scholar]
  145. Pérez de la Lastra J.M. Anand U. González-Acosta S. Antimicrobial resistance in the COVID-19 landscape: Is there an opportunity for anti-infective antibodies and antimicrobial peptides? Front. Immunol. 2022 13 921483 10.3389/fimmu.2022.921483 35720330
    [Google Scholar]
  146. Muurinen J. Cairns J. Ekakoro J.E. Wickware C.L. Ruple A. Johnson T.A. Biological units of antimicrobial resistance and strategies for their containment in animal production. FEMS Microbiol. Ecol. 2022 98 7 fiac060 10.1093/femsec/fiac060 35587376
    [Google Scholar]
  147. Roemhild R. Bollenbach T. Andersson D.I. The physiology and genetics of bacterial responses to antibiotic combinations. Nat. Rev. Microbiol. 2022 20 8 478 490 10.1038/s41579‑022‑00700‑5 35241807
    [Google Scholar]
  148. Mutuku C. Gazdag Z. Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: Resistance mechanisms and antimicrobial resistance control approaches. World J. Microbiol. Biotechnol. 2022 38 9 152 10.1007/s11274‑022‑03334‑0 35781751
    [Google Scholar]
  149. Dey A. Yadav M. Kumar D. A combination therapy strategy for treating antibiotic resistant biofilm infection using a guanidinium derivative and nanoparticulate Ag(0) derived hybrid gel conjugate. Chem. Sci. 2022 13 34 10103 10118 10.1039/D2SC02980D 36128224
    [Google Scholar]
  150. Han D. Liu X. Wu S. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem. Soc. Rev. 2022 51 16 7138 7169 10.1039/D2CS00460G 35866702
    [Google Scholar]
  151. Rakholiya M. Chauhan B. Gondalia S. Kanojiya D. A review on pitted keratolysis and medicinal herbs as an antibacterial. GIS Sci J 2022 9 5 1453 1461
    [Google Scholar]
  152. Wasan R.K. Abidullah M. Kaur A. Kaur C. Kataria J. Kaur V. To evaluate the resistivity of Klebsiella pneumonia against present antibiogram. Int. J. Health Sci. 2022 6 55 736 743 10.53730/ijhs.v6nS5.8757
    [Google Scholar]
  153. Zhu L. Shuai X.Y. Lin Z.J. Landscape of genes in hospital wastewater breaking through the defense line of last-resort antibiotics. Water Res. 2022 209 117907 10.1016/j.watres.2021.117907 34864622
    [Google Scholar]
  154. Skurnik M. Can bacteriophages replace antibiotics? Antibiotics 2022 11 5 575 10.3390/antibiotics11050575 35625219
    [Google Scholar]
  155. Xu W.J. Cai J.X. Li Y.J. Wu J.Y. Xiang D. Recent progress of macrophage vesicle-based drug delivery systems. Drug Deliv. Transl. Res. 2022 12 10 2287 2302 10.1007/s13346‑021‑01110‑5 34984664
    [Google Scholar]
  156. Bekele T. Alamnie G. Treatment of antibiotic-resistant bacteria by nanoparticles: Current approaches and prospects. Prospects 2022 6 1 9
    [Google Scholar]
  157. Tse Sum Bui B. Auroy T. Haupt K. Fighting antibiotic‐resistant bacteria: Promising strategies orchestrated by molecularly imprinted polymers. Angew. Chem. Int. Ed. 2022 61 8 e202106493 10.1002/anie.202106493 34779567
    [Google Scholar]
  158. Wu Q. Zou D. Zheng X. Liu F. Li L. Xiao Z. Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community. Sci. Total Environ. 2022 845 157384 10.1016/j.scitotenv.2022.157384 35843318
    [Google Scholar]
  159. Paul D. Verma J. Banerjee A. Konar D. Das B. Antimicrobial resistance traits and resistance mechanisms in bacterial pathogens. In: Antimicrobial Resistance 2022 1 27
    [Google Scholar]
  160. Aurilio C. Sansone P. Barbarisi M. Mechanisms of action of carbapenem resistance. Antibiotics 2022 11 3 421 10.3390/antibiotics11030421 35326884
    [Google Scholar]
  161. Nandhini P. Kumar P. Mickymaray S. Alothaim A.S. Somasundaram J. Rajan M. Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: A review. Antibiotics 2022 11 5 606 10.3390/antibiotics11050606 35625250
    [Google Scholar]
  162. Almutairy B. Extensively and multidrug-resistant bacterial strains: Case studies of antibiotics resistance. Front. Microbiol. 2024 15 1381511 10.3389/fmicb.2024.1381511 39027098
    [Google Scholar]
  163. Mareș C. Petca R.C. Popescu R.I. Update on urinary tract infection antibiotic resistance-a retrospective study in females in conjunction with clinical data. Life 2024 14 1 106 10.3390/life14010106 38255721
    [Google Scholar]
  164. Gavankar S.A. Jadhav R.R. Jaju J.B. Sawant M. A retrospective study of antibiotic resistance in patients attending outpatient and inpatient department of rural tertiary care hospital. Int J Acad Med Pharm 2024 6 887 891
    [Google Scholar]
  165. Cuningham W. Perera S. Coulter S. Wang Z. Tong S.Y.C. Wozniak T.M. Repurposing antibiotic resistance surveillance data to support treatment of recurrent infections in a remote setting. Sci. Rep. 2024 14 1 2414 10.1038/s41598‑023‑50008‑4 38287025
    [Google Scholar]
  166. Woods R.J. Barbosa C. Koepping L. Raygoza J.A. Mwangi M. Read A.F. The evolution of antibiotic resistance in an incurable and ultimately fatal infection. Evol. Med. Public Health 2023 11 1 163 173 10.1093/emph/eoad012 37325804
    [Google Scholar]
  167. Buonsenso D. Giaimo M. Pata D. Retrospective study on Staphylococcus aureus resistance profile and antibiotic use in a pediatric population. Antibiotics 2023 12 9 1378 10.3390/antibiotics12091378 37760675
    [Google Scholar]
  168. Prajescu B. Gavriliu L. Iesanu M.I. Bacterial species and antibiotic resistance-a retrospective analysis of bacterial cultures in a pediatric hospital. Antibiotics 2023 12 6 966 10.3390/antibiotics12060966 37370285
    [Google Scholar]
  169. Ioannou P. Maraki S. Koumaki D. A six-year retrospective study of microbiological characteristics and antimicrobial resistance in specimens from a tertiary hospital’s surgical ward. Antibiotics 2023 12 3 490 10.3390/antibiotics12030490 36978357
    [Google Scholar]
  170. Banerjee R Patel R Molecular diagnostics for genotypic detection of antibiotic resistance: current landscape and future directions. JAC-Antimicrobial Resist 2023 5 dlad018
    [Google Scholar]
  171. Perikleous E.P. Gkentzi D. Bertzouanis A. Paraskakis E. Sovtic A. Fouzas S. Antibiotic resistance in patients with cystic fibrosis: Past, present, and future. Antibiotics 2023 12 2 217 10.3390/antibiotics12020217 36830128
    [Google Scholar]
  172. Grudlewska-Buda K. Bauza-Kaszewska J. Wiktorczyk-Kapischke N. Budzyńska A. Gospodarek-Komkowska E. Skowron K. Antibiotic resistance in selected emerging bacterial foodborne pathogens-an issue of concern? Antibiotics 2023 12 5 880 10.3390/antibiotics12050880 37237783
    [Google Scholar]
  173. Jara D. Bello-Toledo H. Domínguez M. Antibiotic resistance in bacterial isolates from freshwater samples in Fildes Peninsula, King George Island, Antarctica. Sci. Rep. 2020 10 1 3145 10.1038/s41598‑020‑60035‑0 32081909
    [Google Scholar]
  174. Muurinen J. Muziasari W.I. Hultman J. Antibiotic resistomes and microbiomes in the surface water along the code river in indonesia reflect drainage basin anthropogenic activities. Environ. Sci. Technol. 2022 56 21 14994 15006 10.1021/acs.est.2c01570 35775832
    [Google Scholar]
  175. Benaud N. Chelliah D.S. Wong S.Y. Ferrari B.C. Soil substrate culturing approaches recover diverse members of Actinomycetota from desert soils of Herring Island, East Antarctica. Extremophiles 2022 26 2 24 10.1007/s00792‑022‑01271‑2 35829965
    [Google Scholar]
  176. Hutinel M. Larsson D.G.J. Flach C.F. Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city. Sci. Total Environ. 2022 812 151433 10.1016/j.scitotenv.2021.151433 34748849
    [Google Scholar]
  177. Lassen S.B. Ahsan M.E. Islam S.R. Prevalence of antibiotic resistance genes in Pangasianodon hypophthalmus and Oreochromis niloticus aquaculture production systems in Bangladesh. Sci. Total Environ. 2022 813 151915 10.1016/j.scitotenv.2021.151915 34826462
    [Google Scholar]
  178. Paun V.I. Lavin P. Chifiriuc M.C. Purcarea C. First report on antibiotic resistance and antimicrobial activity of bacterial isolates from 13,000-year old cave ice core. Sci. Rep. 2021 11 1 514 10.1038/s41598‑020‑79754‑5 33436712
    [Google Scholar]
  179. Rizzo C. Lo Giudice A. Life from a snowflake: Diversity and adaptation of cold-loving bacteria among ice crystals. Crystals 2022 12 3 312 10.3390/cryst12030312
    [Google Scholar]
  180. Kosznik-Kwaśnicka K. Golec P. Jaroszewicz W. Lubomska D. Piechowicz L. Into the unknown: Microbial communities in caves, their role, and potential use. Microorganisms 2022 10 2 222 10.3390/microorganisms10020222 35208677
    [Google Scholar]
  181. Rawat N Anjali Jamwal R Detection of unprecedented level of antibiotic resistance and identification of antibiotic resistance factors, including QRDR mutations in Escherichia coli isolated from commercial chickens from North India. J. Appl. Microbiol. 2022 132 1 268 278 10.1111/jam.15209 34245665
    [Google Scholar]
  182. Haifa-Haryani W.O. Amatul-Samahah M.A. Azzam-Sayuti M. Prevalence, antibiotics resistance and plasmid profiling of Vibrio spp. Isolated from cultured shrimp in peninsular Malaysia. Microorganisms 2022 10 9 1851 10.3390/microorganisms10091851 36144453
    [Google Scholar]
  183. Zhang X. He J. Qiao L. Wang Z. Zheng Q. Xiong C. 3D printed PCLA scaffold with nano-hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug-resistant bacteria colonization. Cell Prolif. 2022 55 10 e13289 10.1111/cpr.13289
    [Google Scholar]
  184. Qu X. Wang M. Wang M. Multi‐mode antibacterial strategies enabled by gene‐transfection and immunomodulatory nanoparticles in 3D‐printed scaffolds for synergistic exogenous and endogenous treatment of infections. Adv. Mater. 2022 34 18 2200096 10.1002/adma.202200096 35267223
    [Google Scholar]
  185. Shakibania S. Khakbiz M. Bektas C.K. Ghazanfari L. Banizi M.T. Lee K.B. A review of 3D printing technology for rapid medical diagnostic tools. Mol. Syst. Des. Eng. 2022 7 4 315 324 10.1039/D1ME00178G
    [Google Scholar]
  186. Massazza A. Ardino V. Fioravanzo R.E. Climate change, trauma and mental health in Italy: A scoping review. Eur. J. Psychotraumatol. 2022 13 1 2046374 10.1080/20008198.2022.2046374 35432785
    [Google Scholar]
  187. Tavoschi L. Forni S. Porretta A. Prolonged outbreak of New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE), Tuscany, Italy, 2018 to 2019. Euro Surveill. 2020 25 6 2000085 10.2807/1560‑7917.ES.2020.25.6.2000085 32070467
    [Google Scholar]
  188. Piccini G. Montomoli E. Pathogenic signature of invasive non-typhoidal Salmonella in Africa: Implications for vaccine development. Hum. Vaccin. Immunother. 2020 16 9 2056 2071 10.1080/21645515.2020.1785791 32692622
    [Google Scholar]
  189. Pappa O. Chochlakis D. Sandalakis V. Dioli C. Psaroulaki A. Mavridou A. Antibiotic resistance of Legionella pneumophila in clinical and water isolates—a systematic review. Int. J. Environ. Res. Public Health 2020 17 16 5809 10.3390/ijerph17165809 32796666
    [Google Scholar]
  190. Aslan Kayiran M. Karadag A.S. Al-Khuzaei S. Chen W. Parish L.C. Antibiotic resistance in acne: Mechanisms, complications and management. Am. J. Clin. Dermatol. 2020 21 6 813 819 10.1007/s40257‑020‑00556‑6 32889707
    [Google Scholar]
  191. Abolghait S.K. Fathi A.G. Youssef F.M. Algammal A.M. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers. Int. J. Food Microbiol. 2020 328 108669 10.1016/j.ijfoodmicro.2020.108669 32497922
    [Google Scholar]
  192. Andersson P. Beckingham W. Gorrie C.L. Vancomycin-resistant Enterococcus (VRE) outbreak in a neonatal intensive care unit and special care nursery at a tertiary-care hospital in Australia—A retrospective case-control study. Infect. Control Hosp. Epidemiol. 2019 40 5 551 558 10.1017/ice.2019.41 30868978
    [Google Scholar]
  193. Chen J. Li J. Zhang H. Shi W. Liu Y. Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China. Front. Microbiol. 2019 10 1916 10.3389/fmicb.2019.01916 31481945
    [Google Scholar]
  194. Yousefi-Avarvand A. Vaez H. Tafaghodi M. Sahebkar A.H. Arzanlou M. Khademi F. Antibiotic resistance of Helicobacter pylori in Iranian children: A systematic review and meta-analysis. Microb. Drug Resist. 2018 24 7 980 986 10.1089/mdr.2017.0292 29227738
    [Google Scholar]
  195. Otokunefor K. Otokunefor T.V. Omakwele G. Multi-drug resistant Mycobacterium tuberculosis in Port Harcourt, Nigeria. Afr. J. Lab. Med. 2018 7 2 805 10.4102/ajlm.v7i2.805 30568903
    [Google Scholar]
  196. Tasnim T. Tarafder S. Alam F.M. Sattar H. Mostofa Kamal S.M. Pre-extensively drug resistant tuberculosis (Pre-XDR-TB) among pulmonary multidrug resistant tuberculosis (MDR-TB) patients in Bangladesh. J. Tuberc. Res. 2018 6 3 199 206 10.4236/jtr.2018.63018
    [Google Scholar]
  197. Yang Y. Chu L. Yang S. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater. 2018 79 265 275 10.1016/j.actbio.2018.08.015 30125670
    [Google Scholar]
  198. Ranjbar R. Safarpoor Dehkordi F. Sakhaei Shahreza M.H. Rahimi E. Prevalence, identification of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxin producing Escherichia coli strains isolated from raw milk and traditional dairy products. Antimicrob. Resist. Infect. Control 2018 7 1 53 10.1186/s13756‑018‑0345‑x 29686859
    [Google Scholar]
  199. Garazzino S. Lutsar I. Bertaina C. Tovo P.A. Sharland M. New antibiotics for paediatric use: A review of a decade of regulatory trials submitted to the European Medicines Agency from 2000-Why aren’t we doing better? Int. J. Antimicrob. Agents 2013 42 2 99 118 10.1016/j.ijantimicag.2013.05.001 23810180
    [Google Scholar]
  200. Ballard DH Tappa K Boyer CJ Jammalamadaka U Hemmanur K Weisman JA Antibiotics in 3D-printed implants, instruments and materials: Benefits, challenges and future directions J 3D Print Med 2019 83 93
    [Google Scholar]
  201. Benmassaoud M.M. Kohama C. Kim T.W.B. Efficacy of eluted antibiotics through 3D printed femoral implants. Biomed. Microdevices 2019 21 3 51 10.1007/s10544‑019‑0395‑8 31203428
    [Google Scholar]
  202. Inzana J.A. Trombetta R.P. Schwarz E.M. Kates S.L. Awad H.A. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur. Cell. Mater. 2015 30 232 247 10.22203/eCM.v030a16 26535494
    [Google Scholar]
  203. Jahanmard F. Dijkmans F.M. Majed A. Toward antibacterial coatings for personalized implants. ACS Biomater. Sci. Eng. 2020 6 10 5486 5492 10.1021/acsbiomaterials.0c00683 33320546
    [Google Scholar]
  204. Di Luca M. Hoskins C. Corduas F. 3D printed biodegradable multifunctional implants for effective breast cancer treatment. Int. J. Pharm. 2022 629 122363 10.1016/j.ijpharm.2022.122363 36336202
    [Google Scholar]
  205. Picco C.J. Utomo E. McClean A. Development of 3D-printed subcutaneous implants using concentrated polymer/drug solutions. Int. J. Pharm. 2023 631 122477 10.1016/j.ijpharm.2022.122477 36509226
    [Google Scholar]
  206. Paleel F. Qin M. Tagalakis A.D. Yu-Wai-Man C. Lamprou D.A. Manufacturing and characterisation of 3D-printed sustained-release Timolol implants for glaucoma treatment. Drug Deliv. Transl. Res. 2024 1 11 38578377
    [Google Scholar]
  207. Farmer Z.L. Domínguez-Robles J. Mancinelli C. Larrañeta E. Lamprou D.A. Urogynecological surgical mesh implants: New trends in materials, manufacturing and therapeutic approaches. Int. J. Pharm. 2020 585 119512 10.1016/j.ijpharm.2020.119512 32526332
    [Google Scholar]
  208. Farmer Z.L. Utomo E. Domínguez-Robles J. 3D printed estradiol-eluting urogynecological mesh implants: Influence of material and mesh geometry on their mechanical properties. Int. J. Pharm. 2021 593 120145 10.1016/j.ijpharm.2020.120145 33309830
    [Google Scholar]
  209. Ren J. Murray R. Wong C.S. Development of 3D printed biodegradable mesh with antimicrobial properties for pelvic organ prolapse. Polymers 2022 14 4 763 10.3390/polym14040763 35215676
    [Google Scholar]
  210. Ainsworth M.J. Lotz O. Gilmour A. Covalent protein immobilization on 3D‐printed microfiber meshes for guided cartilage regeneration. Adv. Funct. Mater. 2023 33 2 2206583 10.1002/adfm.202206583
    [Google Scholar]
  211. Bragaglia M. Sciarretta F. Filetici P. Soybean oil‐based 3D printed mesh designed for guided bone regeneration (GBR) in oral surgery. Macromol. Biosci. 2024 24 5 2300458 10.1002/mabi.202300458 38198834
    [Google Scholar]
  212. Pietrzak K. Isreb A. Alhnan M.A. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur. J. Pharm. Biopharm. 2015 96 380 387 10.1016/j.ejpb.2015.07.027 26277660
    [Google Scholar]
  213. Abbas N Qamar N Hussain A Latif S Arshad MS Ijaz QA Fabrication of modified-release custom-designed ciprofloxacin tablets via fused deposition modeling 3D printing. J 3D Print Med 2020 4 17 27 10.2217/3dp‑2019‑0024
    [Google Scholar]
  214. Huanbutta K. Sriamornsak P. Kittanaphon T. Suwanpitak K. Klinkesorn N. Sangnim T. Development of a zero-order kinetics drug release floating tablet with anti–flip-up design fabricated by 3D-printing technique. J. Pharm. Investig. 2021 51 2 213 222 10.1007/s40005‑020‑00507‑7
    [Google Scholar]
  215. Ruh E. Mammadov E. Antibacterial activity of ciprofloxacin-impregnated 3D-printed polylactic acid discs: An in vitro study. J. Infect. Dev. Ctries. 2022 16 3 484 490 10.3855/jidc.15267 35404854
    [Google Scholar]
  216. Kodama J. Chen H. Zhou T. Antibacterial efficacy of quaternized chitosan coating on 3D printed titanium cage in rat intervertebral disc space. Spine J. 2021 21 7 1217 1228 10.1016/j.spinee.2021.02.016 33621666
    [Google Scholar]
  217. Jiang Y. Shi K. Zhou L. 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc. Bioact. Mater. 2023 20 528 538 10.1016/j.bioactmat.2022.06.002 35846840
    [Google Scholar]
  218. Scheid C. Monteiro S.A. Mello W. A novel honeycomb-like 3D-printed device for rotating-disk sorptive extraction of organochlorine and organophosphorus pesticides from environmental water samples. J. Chromatogr. A 2024 1722 464892 10.1016/j.chroma.2024.464892 38608369
    [Google Scholar]
  219. Zhang Y. Zhai D. Xu M. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication 2017 9 2 025037 10.1088/1758‑5090/aa6ed6 28631614
    [Google Scholar]
  220. Visscher L.E. Dang H.P. Knackstedt M.A. Hutmacher D.W. Tran P.A. 3D printed Polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics. Mater. Sci. Eng. C 2018 87 78 89 10.1016/j.msec.2018.02.008 29549952
    [Google Scholar]
  221. Lee J.H. Baik J.M. Yu Y.S. Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Sci. Rep. 2020 10 1 7554 10.1038/s41598‑020‑64573‑5 32371998
    [Google Scholar]
  222. Fallah A. Altunbek M. Bartolo P. 3D printed scaffold design for bone defects with improved mechanical and biological properties. J. Mech. Behav. Biomed. Mater. 2022 134 105418 10.1016/j.jmbbm.2022.105418 36007489
    [Google Scholar]
  223. Dubey A. Vahabi H. Kumaravel V. Antimicrobial and biodegradable 3D printed scaffolds for orthopedic infections. ACS Biomater. Sci. Eng. 2023 9 7 4020 4044 10.1021/acsbiomaterials.3c00115 37339247
    [Google Scholar]
  224. Podgórski R. Wojasiński M. Małolepszy A. Jaroszewicz J. Ciach T. Fabrication of 3D-printed scaffolds with multiscale porosity. ACS Omega 2024 9 27 29186 29204 10.1021/acsomega.3c09035 39005818
    [Google Scholar]
  225. Vivero-Lopez M. Xu X. Muras A. Anti-biofilm multi drug-loaded 3D printed hearing aids. Mater. Sci. Eng. C 2021 119 111606 10.1016/j.msec.2020.111606 33321650
    [Google Scholar]
  226. Isaakidou A. Apachitei I. Fratila-Apachitei L.E. Zadpoor A.A. High-precision 3D printing of microporous cochlear implants for personalized local drug delivery. J. Funct. Biomater. 2023 14 10 494 10.3390/jfb14100494 37888159
    [Google Scholar]
  227. Isaakidou A. Ganjian M. van Hoften R. Multi-scale in silico and ex silico mechanics of 3D printed cochlear implants for local drug delivery. Front. Bioeng. Biotechnol. 2024 11 1289299 10.3389/fbioe.2023.1289299 38356932
    [Google Scholar]
  228. Yue J. Zhao P. Gerasimov J.Y. 3D‐printable antimicrobial composite resins. Adv. Funct. Mater. 2015 25 43 6756 6767 10.1002/adfm.201502384
    [Google Scholar]
  229. de Oliveira W.B.V. Lisboa T.P. de Souza C.C. Matos M.A.C. Matos R.C. Composite material immobilized in 3D-printed support, an economical approach for electrochemical sensing of nimesulide. Microchem. J. 2023 188 108463 10.1016/j.microc.2023.108463
    [Google Scholar]
  230. He M. Zhang F. Li C. Mechanical properties and oral restoration applications of 3D printed aliphatic polyester-calcium composite materials. Alex. Eng. J. 2024 88 245 252 10.1016/j.aej.2024.01.042
    [Google Scholar]
  231. Lee S. Thio S.K. Park S.Y. Bae S. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water. Harmful Algae 2019 88 101638 10.1016/j.hal.2019.101638 31582154
    [Google Scholar]
  232. Li F. Macdonald N.P. Guijt R.M. Breadmore M.C. Multimaterial 3D printed fluidic device for measuring pharmaceuticals in biological fluids. Anal. Chem. 2019 91 3 1758 1763 10.1021/acs.analchem.8b03772 30513198
    [Google Scholar]
  233. Duarte L.C. Figueredo F. Ribeiro L.E.B. Cortón E. Coltro W.K.T. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection. Anal. Chim. Acta 2019 1071 36 43 10.1016/j.aca.2019.04.045 31128753
    [Google Scholar]
  234. Wang L. Pumera M. Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. Trends Analyt. Chem. 2021 135 116151 10.1016/j.trac.2020.116151
    [Google Scholar]
  235. Kulkarni M.B. Velmurugan K. Nirmal J. Goel S. Development of dexamethasone loaded nanomicelles using a 3D printed microfluidic device for ocular drug delivery applications. Sens. Actuators A Phys. 2023 357 114385 10.1016/j.sna.2023.114385
    [Google Scholar]
  236. Mishra P. Navariya S. Gupta P. A novel approach to low-cost, rapid and simultaneous colorimetric detection of multiple analytes using 3D printed microfluidic channels. R. Soc. Open Sci. 2024 11 1 231168 10.1098/rsos.231168 38234445
    [Google Scholar]
  237. Maver T. Mastnak T. Mihelič M. Maver U. Finšgar M. Clindamycin-based 3D-printed and electrospun coatings for treatment of implant-related infections. Materials 2021 14 6 1464 10.3390/ma14061464 33802712
    [Google Scholar]
  238. Khan S.B. Irfan S. Lam S.S. Sun X. Chen S. 3D printed nanofiltration membrane technology for waste water distillation. J. Water Process Eng. 2022 49 102958 10.1016/j.jwpe.2022.102958
    [Google Scholar]
  239. Wang Y. Genina N. Müllertz A. Rantanen J. Coating of primary powder particles improves the quality of binder jetting 3D printed oral solid products. J. Pharm. Sci. 2023 112 2 506 512 10.1016/j.xphs.2022.08.030 36030845
    [Google Scholar]
  240. Strähle U.T. Pütz N. Hannig M. A coating machine for coating filaments with bioactive nanomaterials for extrusion 3D printing. Heliyon 2024 10 12 e33223 10.1016/j.heliyon.2024.e33223 39027443
    [Google Scholar]
  241. dos Santos J. de Oliveira R.S. de Oliveira T.V. 3D printing and nanotechnology: A multiscale alliance in personalized medicine. Adv. Funct. Mater. 2021 31 16 2009691 10.1002/adfm.202009691
    [Google Scholar]
  242. Debnath S.K. Debnath M. Srivastava R. Omri A. Intervention of 3D printing in health care: Transformation for sustainable development. Expert Opin. Drug Deliv. 2021 18 11 1659 1672 10.1080/17425247.2021.1981287 34520310
    [Google Scholar]
  243. Rojas F. Cundiff G.W. Urogynecology and reconstructive pelvic surgery. In: Review of Gynecology and Obstetrics 2007 109
    [Google Scholar]
  244. Temesgen Z Baddour LM Rizza SA A rational approach to clinical infectious diseases: A manual for house officers and other non-infectious diseases clinicians. 2020
    [Google Scholar]
  245. Corduas F. Mathew E. McGlynn R. Mariotti D. Lamprou D.A. Mancuso E. Melt-extrusion 3D printing of resorbable levofloxacin-loaded meshes: Emerging strategy for urogynaecological applications. Mater. Sci. Eng. C 2021 131 112523 10.1016/j.msec.2021.112523 34857302
    [Google Scholar]
  246. Fang D. Pan H. Cui M. Fabrication of three-dimensional-printed ofloxacin gastric floating sustained-release tablets with different structures. J. Drug Deliv. Sci. Technol. 2022 67 102992 10.1016/j.jddst.2021.102992
    [Google Scholar]
  247. Domínguez-Robles J. Mancinelli C. Mancuso E. 3D printing of drug-loaded thermoplastic polyurethane meshes: A potential material for soft tissue reinforcement in vaginal surgery. Pharmaceutics 2020 12 1 63 10.3390/pharmaceutics12010063 31941047
    [Google Scholar]
  248. Amin R. Knowlton S. Hart A. 3D-printed microfluidic devices. Biofabrication 2016 8 2 022001 10.1088/1758‑5090/8/2/022001 27321137
    [Google Scholar]
  249. Chen X. Gao C. Jiang J. Wu Y. Zhu P. Chen G. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Biomed. Mater. 2019 14 6 065003 10.1088/1748‑605X/ab388d 31382255
    [Google Scholar]
  250. Lee J.H. Park J.K. Son K.H. Lee J.W. PCL/Sodium-alginate based 3D-printed dual drug delivery system with antibacterial activity for osteomyelitis therapy. Gels 2022 8 3 163 10.3390/gels8030163 35323276
    [Google Scholar]
  251. Guarch-Pérez C. Shaqour B. Riool M. 3D-printed gentamicin-releasing poly-ε-caprolactone composite prevents fracture-related Staphylococcus aureus infection in mice. Pharmaceutics 2022 14 7 1363 10.3390/pharmaceutics14071363 35890261
    [Google Scholar]
  252. Martínez-Pérez D. Guarch-Pérez C. Purbayanto M.A.K. Choińska E. Riool M. Zaat S.A.J. 3D-printed dual drug delivery nanoparticle-loaded hydrogels to combat antibiotic-resistant bacteria. Int J Bioprinting Int J Bioprinting 2023 9
    [Google Scholar]
  253. Mirhaj M. Varshosaz J. Labbaf S. Emadi R. Marcus Seifalian A. Sharifianjazi F. An antibacterial Multi-Layered scaffold fabricated by 3D printing and electrospinning methodologies for skin tissue regeneration. Int. J. Pharm. 2023 645 123357 10.1016/j.ijpharm.2023.123357 37647978
    [Google Scholar]
  254. Erkus H. Bedir T. Kaya E. Innovative transdermal drug delivery system based on amoxicillin-loaded gelatin methacryloyl microneedles obtained by 3D printing. Materialia 2023 27 101700 10.1016/j.mtla.2023.101700
    [Google Scholar]
  255. Fernandez-Velayos S. Vergara G. Olmos J.M. 3D printed monoliths: From powder to an efficient catalyst for antibiotic degradation. Sci. Total Environ. 2024 906 167376 10.1016/j.scitotenv.2023.167376 37758129
    [Google Scholar]
  256. Ke re mu A, Liang Z, Chen L, Tu xun A, A bu li ke mu M, Wu Y. 3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for treatment of infected bone defects. Biomed. Pharmacother. 2024 172 116228 10.1016/j.biopha.2024.116228 38320333
    [Google Scholar]
  257. Sukhum K.V. Newcomer E.P. Cass C. Antibiotic-resistant organisms establish reservoirs in new hospital built environments and are related to patient blood infection isolates. Commun. Med. 2022 2 1 62 10.1038/s43856‑022‑00124‑5 35664456
    [Google Scholar]
  258. Pillinger M. Weber B. Standen B. Schmid M.C. Kesselring J.C. Multi-strain probiotics show increased protection of intestinal epithelial cells against pathogens in rainbow trout (Oncorhynchus mykiss). Aquaculture 2022 560 738487 10.1016/j.aquaculture.2022.738487
    [Google Scholar]
  259. Demirkesen I. Ozkaya B. Recent strategies for tackling the problems in gluten-free diet and products. Crit. Rev. Food Sci. Nutr. 2022 62 3 571 597 10.1080/10408398.2020.1823814 32981341
    [Google Scholar]
  260. Kudlu C. Brand Kerala: Commodification of Open-Source Ayurveda. 2013
    [Google Scholar]
  261. Rohde J. Ten Lessons From a Career in Global Health: Guidance to Those Considering a Life Working With the Poor Countries of the World. 2022 10.1093/acrefore/9780190632366.013.446
    [Google Scholar]
  262. Ploylearmsang C. Somboon C. Namdee U. Suttiruksa S. Managing health care needs of the elderly through an elderly care manager: Thailand. F1000 Res. 2022 11 680 10.12688/f1000research.122555.1 39281328
    [Google Scholar]
  263. Migita N. . Regulatory Programs to Foster Medical Product Development: User Experience in the United States and Japan. 2022
    [Google Scholar]
  264. Abed O.A. Attlassy Y. Xu J. Han K. Moon J.J. Emerging nanotechnologies and microbiome engineering for the treatment of inflammatory bowel disease. Mol. Pharm. 2022 19 12 4393 4410 10.1021/acs.molpharmaceut.2c00222 35878420
    [Google Scholar]
  265. Han R. Xiao Y. Bai Q. Choi C.H.J. Self-therapeutic metal-based nanoparticles for treating inflammatory diseases. Acta Pharm. Sin. B 2023 13 5 1847 1865 10.1016/j.apsb.2022.07.009 37250153
    [Google Scholar]
  266. Cope H. Willis C.R.G. MacKay M.J. Routine omics collection is a golden opportunity for European human research in space and analog environments. Patterns 2022 3 10 100550 10.1016/j.patter.2022.100550 36277820
    [Google Scholar]
  267. Jiang B. Ji X. Lyu Z.Q. Detection of two copies of a bla NDM-1-encoding plasmid in Escherichia coli isolates from a pediatric patient with diarrhea. Infect. Drug Resist. 2022 15 223 232 10.2147/IDR.S346111 35115791
    [Google Scholar]
  268. Bindayna K.M. Joji R.M. Ezzat H. Jahrami H.A. Antibiotic-resistance genes in E. coli strains in GCC countries: A meta-analysis. Saudi J. Med. Med. Sci. 2022 10 1 1 11 10.4103/sjmms.sjmms_638_21 35283714
    [Google Scholar]
  269. Fallah F. Taherpour A. Hashemi A. Global spread of New Delhi metallo-beta-lactamase-1 (NDM-1). Arch. Clin. Infect. Dis. 2011 6 171 177
    [Google Scholar]
  270. da Silva K.E. Tanmoy A.M. Pragasam A.K. The international and intercontinental spread and expansion of antimicrobial-resistant Salmonella typhi: A genomic epidemiology study. Lancet Microbe 2022 3 8 e567 e577 10.1016/S2666‑5247(22)00093‑3 35750070
    [Google Scholar]
  271. Pavli A. Maltezou H.C. Travel vaccines throughout history. Travel Med. Infect. Dis. 2022 46 102278 10.1016/j.tmaid.2022.102278 35167951
    [Google Scholar]
  272. Ikhimiukor O.O. Odih E.E. Donado-Godoy P. Okeke I.N. A bottom-up view of antimicrobial resistance transmission in developing countries. Nat. Microbiol. 2022 7 6 757 765 10.1038/s41564‑022‑01124‑w 35637328
    [Google Scholar]
  273. Papadimou D. Malmqvist E. Ancillotti M. Socio-cultural determinants of antibiotic resistance: A qualitative study of Greeks’ attitudes, perceptions and values. BMC Public Health 2022 22 1 1439 10.1186/s12889‑022‑13855‑w 35902816
    [Google Scholar]
  274. Nunan C. Ending routine farm antibiotic use in Europe. In: Achieving responsible farm antibiotic use through improving animal health and welfare in pig and poultry production. 2022
    [Google Scholar]
  275. Mondain V. Retur N. Bertrand B. Lieutier-Colas F. Carenco P. Diamantis S. Advocacy for responsible antibiotic production and use. Antibiotics 2022 11 7 980 10.3390/antibiotics11070980 35884234
    [Google Scholar]
  276. Bienenstock E.J. Operationalizing Social Science for National Security. 2022 231
    [Google Scholar]
  277. Limaye D. Limaye V. Krause G. Fortwengel G. A systematic review of the literature to assess self-medication practices. Ann. Med. Health Sci. Res. 2017 7 1 1 15
    [Google Scholar]
  278. McGettigan P. Roderick P. Kadam A. Pollock A.M. Threats to global antimicrobial resistance control: Centrally approved and unapproved antibiotic formulations sold in India. Br. J. Clin. Pharmacol. 2019 85 1 59 70 10.1111/bcp.13503 29397576
    [Google Scholar]
  279. Lexchin J. Drug promotion in India since 2000: Problems remain. Int. J. Health Serv. 2021 51 3 392 403 10.1177/0020731420932109 32538245
    [Google Scholar]
  280. Miranda M.R.H. Dubey A. Ravi G.S. Charyulu R.N. Fixed-dose combinations banned in India: Is it the right decision? An eye-opening review. Expert Opin. Drug Saf. 2019 18 10 977 985 10.1080/14740338.2019.1651292 31374180
    [Google Scholar]
  281. Laxminarayan R. Duse A. Wattal C. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 2013 13 12 1057 1098 10.1016/S1473‑3099(13)70318‑9 24252483
    [Google Scholar]
  282. Spellberg B. Blaser M. Guidos R.J. Combating antimicrobial resistance: Policy recommendations to save lives. Clin. Infect. Dis. 2011 52 Suppl. 5 S397 S428 21474585
    [Google Scholar]
  283. Rana A.S. Islam M.S. Saikot F.K. Luo W. Probiotic screening and growth kinetics of Lactobacillus isolated from Channa punctata intestine. North Am Acad Res J 2021 4 11 12 28 10.5281/zenodo.5651197
    [Google Scholar]
  284. Amábile-Cuevas C.F. Antibiotic resistance: From Darwin to Lederberg to Keynes. Microb. Drug Resist. 2013 19 2 73 87 10.1089/mdr.2012.0115 23046150
    [Google Scholar]
  285. Duval R.E. Grare M. Demoré B. Fight against antimicrobial resistance: We always need new antibacterials but for right bacteria. Molecules 2019 24 17 3152 10.3390/molecules24173152 31470632
    [Google Scholar]
  286. Theron G. Jenkins H.E. Cobelens F. Data for action: Collection and use of local data to end tuberculosis. Lancet 2015 386 10010 2324 2333 10.1016/S0140‑6736(15)00321‑9 26515676
    [Google Scholar]
  287. Friede A. Reid J.A. Ory H.W. CDC WONDER: A comprehensive on-line public health information system of the Centers for Disease Control and Prevention. Am. J. Public Health 1993 83 9 1289 1294 10.2105/AJPH.83.9.1289 8395776
    [Google Scholar]
  288. Llor C. Bjerrum L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014 5 6 229 241 10.1177/2042098614554919 25436105
    [Google Scholar]
  289. Jang T.H. Wu S. Kirzner D. Focus group study of hand hygiene practice among healthcare workers in a teaching hospital in Toronto, Canada. Infect. Control Hosp. Epidemiol. 2010 31 2 144 150 10.1086/649792 20017635
    [Google Scholar]
  290. Khan H.A. Baig F.K. Mehboob R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pac. J. Trop. Biomed. 2017 7 5 478 482 10.1016/j.apjtb.2017.01.019
    [Google Scholar]
  291. Chakrabarty A. Das U.S. Universal health database in India: Emergence, feasibility and multiplier effects. In: Soft Computing Applications and Techniques in Healthcare. 1st ed. 2020 215 34 10.1201/9781003003496‑11
    [Google Scholar]
  292. Groo A.C. Matougui N. Umerska A. Saulnier P. Reverse micelle-lipid nanocapsules: A novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int. J. Nanomedicine 2018 13 7565 7574 10.2147/IJN.S180040 30532539
    [Google Scholar]
  293. Ventola CL The antibiotic resistance crisis: Part 2: Management strategies and new agents. 2015 40 5 344 52 25987823
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128365632250524160128
Loading
/content/journals/cpd/10.2174/0113816128365632250524160128
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Antibiotics ; antibiotic resistance ; 3D printing ; antimicrobial ; microorganism ; fungi ; parasites
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test