Skip to content
2000
Volume 32, Issue 2
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Antibiotic resistance poses a significant threat to public health, rendering many life-saving medications ineffective as pathogenic microorganisms develop resistance spontaneously. This results in infections that are difficult to treat, with limited or no treatment options. Traditionally, addressing this challenge involves developing new pharmaceuticals, a lengthy and costly process. However, a more efficient approach lies in improving drug delivery methods, which can be quicker and more economical. In recent years, 3D printing technology has emerged as a groundbreaking, industry-accepted technique that enables the affordable, simple, and rapid manufacturing of pharmaceuticals. This technology supports iterative design-build-test cycles, facilitating the development of a wide range of products, from simple 3D-printed tablets to complex medical devices, tailored for diverse applications. This article explores innovative strategies in the search for novel antibiotics, the development of more effective preventative measures, and, crucially, a deeper understanding of the ecology of antibiotics and antibiotic resistance. It provides an overview of these issues' historical and current status, emphasizing the potential of 3D printing to address antibiotic resistance. Additionally, it discusses how to expand conceptual frameworks in response to recent advancements in chemotherapy, antimicrobials, and antibiotic resistance. The article highlights various notable efforts in utilizing 3D printing to develop antimicrobial dosage forms and medical devices, offering insights into future possibilities.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128365632250524160128
2025-06-04
2025-12-12
Loading full text...

Full text loading...

References

  1. HutchingsM.I. TrumanA.W. WilkinsonB. Antibiotics: Past, present and future.Curr. Opin. Microbiol.201951728010.1016/j.mib.2019.10.00831733401
    [Google Scholar]
  2. LevyS.B. The challenge of antibiotic resistance.Sci. Am.19982783465310.1038/scientificamerican0398‑469487702
    [Google Scholar]
  3. OatesJ.A. WoodA.J.J. DonowitzG.R. MandellG.L. Beta-lactam antibiotics.N. Engl. J. Med.1988318741942610.1056/NEJM1988021831807063277053
    [Google Scholar]
  4. WeledjiE.P. WeledjiE.K. AssobJ.C. NsaghaD.S. Pros, cons and future of antibiotics.New Horiz. Transl. Med.201741-491410.1016/j.nhtm.2017.08.001
    [Google Scholar]
  5. WuL. WangX. XuW. FarzanehF. XuR. The structure and pharmacological functions of coumarins and their derivatives.Curr. Med. Chem.200916324236426010.2174/09298670978957818719754420
    [Google Scholar]
  6. JinadasaR.N. BloomS.E. WeissR.S. DuhamelG.E. Cytolethal distending toxin: A conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages.Microbiology201115771851187510.1099/mic.0.049536‑021565933
    [Google Scholar]
  7. PankeyG.A. SabathL.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections.Clin. Infect. Dis.200438686487010.1086/38197214999632
    [Google Scholar]
  8. AllahverdiyevA.M. AbamorE.S. BagirovaM. RafailovichM. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites.Future Microbiol.20116893394010.2217/fmb.11.7821861623
    [Google Scholar]
  9. TaylorM.J. VoroninD. JohnstonK.L. FordL. Wolbachia filarial interactions.Cell. Microbiol.201315452052610.1111/cmi.1208423210448
    [Google Scholar]
  10. KaufmanH.E. Treatment of viral diseases of the cornea and external eye.Prog. Retin. Eye Res.2000191698510.1016/S1350‑9462(99)00004‑X10614681
    [Google Scholar]
  11. WiseR. HartT. CarsO. Antimicrobial resistance.BMJ1998317715960961010.1136/bmj.317.7159.6099727981
    [Google Scholar]
  12. KhanS.N. KhanA.U. Breaking the spell: Combating multidrug resistant ‘superbugs’.Front. Microbiol.2016717410.3389/fmicb.2016.0017426925046
    [Google Scholar]
  13. NicolaouK.C. RigolS. A brief history of antibiotics and select advances in their synthesis.J. Antibiot.201871215318410.1038/ja.2017.6228676714
    [Google Scholar]
  14. AslamB. WangW. ArshadM.I. Antibiotic resistance: A rundown of a global crisis.Infect. Drug Resist.2018111645165810.2147/IDR.S17386730349322
    [Google Scholar]
  15. MorrisonL. ZembowerT.R. Antimicrobial resistance.Gastrointest. Endosc. Clin. N. Am.202030461963510.1016/j.giec.2020.06.00432891221
    [Google Scholar]
  16. KumarS. KumarA. Evaluation of restricted antibiotics utilisation in a tertiary care teaching hospital.Indian J Pharm Pract202114319820410.5530/ijopp.14.3.39
    [Google Scholar]
  17. AslamB. KhurshidM. ArshadM.I. Antibiotic resistance: One health one world outlook.Front. Cell. Infect. Microbiol.20211177151010.3389/fcimb.2021.77151034900756
    [Google Scholar]
  18. GardanJ. Additive manufacturing technologies: State of the art and trends.201714968
    [Google Scholar]
  19. NandiniV. 3D printing technology in dentistry-an overview.J Prosthet Implant Dent20225391010.55231/jpid.2022.v05.i03.04
    [Google Scholar]
  20. Regassa HundeB. Debebe WoldeyohannesA. Future prospects of computer-aided design (CAD) - A review from the perspective of artificial intelligence (AI), extended reality, and 3D printing.Results Engineering20221410047810.1016/j.rineng.2022.100478
    [Google Scholar]
  21. KantarosA. 3D printing in regenerative medicine: Technologies and resources utilized.Int. J. Mol. Sci.202223231462110.3390/ijms23231462136498949
    [Google Scholar]
  22. MussattoA. Research progress in multi-material laser-powder bed fusion additive manufacturing: A review of the state-of-the-art techniques for depositing multiple powders with spatial selectivity in a single layer.Results in Engineering20221610076910.1016/j.rineng.2022.100769
    [Google Scholar]
  23. ZhuA.X. KangY.K. YenC.J. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet Oncol.201920228229610.1016/S1470‑2045(18)30937‑930665869
    [Google Scholar]
  24. SikderP. BhaduriS.B. Antibacterial hydroxyapatite: An effective approach to cure infections in orthopedics.Racing for the Surface.202058361210.1007/978‑3‑030‑34475‑7_24
    [Google Scholar]
  25. ParkJ.H. KangS.H. KimJ.S. MoonH.S. SungJ.K. JeongH.Y. Contribution of sex and gender roles to the incidence of post-infectious irritable bowel syndrome in a prospective study.Sci. Rep.20231311946710.1038/s41598‑023‑45300‑237945663
    [Google Scholar]
  26. KongL. MeiJ. GeW. Application of 3D printing‐assisted articulating spacer in two‐stage revision surgery for periprosthetic infection after total knee arthroplasty: A retrospective observational study.BioMed Res. Int.202120211394863810.1155/2021/394863833628779
    [Google Scholar]
  27. DoganayM.T. John ChelliahC. TozluyurtA. 3D printed materials for combating antimicrobial resistance.Mater. Today20236737139810.1016/j.mattod.2023.05.03037790286
    [Google Scholar]
  28. MaceM.A.M. ReginattoC.L. SoaresR.M.D. FuentefriaA.M. Three-dimensional printing of medical devices and biomaterials with antimicrobial activity: A systematic review.Bioprinting202438e0033410.1016/j.bprint.2024.e00334
    [Google Scholar]
  29. KourkoutaL. KoukourikosK. IliadisC. PlatiP. DimitriadouA. History of antibiotics.Sumer. J. Med. Healthc.201815155
    [Google Scholar]
  30. HuangY. GuJ. ZhangM. Knowledge, attitude and practice of antibiotics: A questionnaire study among 2500 Chinese students.BMC Med. Educ.201313116310.1186/1472‑6920‑13‑16324321449
    [Google Scholar]
  31. TyldesleyJ. Daughter of Isis: Women of ancient Egypt.1995
    [Google Scholar]
  32. DichmanM-L. RosenstockS.J. ShabanzadehD.M. Antibiotics for uncomplicated diverticulitis.Cochrane Database Syst. Rev.202266CD00909235731704
    [Google Scholar]
  33. FancherC.A. ThamesH.T. ColvinM.G. Prevalence and molecular characteristics of avian pathogenic Escherichia coli in “no antibiotics ever” broiler farms.Microbiol. Spectr.202193e00834e2110.1128/Spectrum.00834‑2134878309
    [Google Scholar]
  34. HaiderR. Penicillin and the antibiotics revolution global history.Int J Heal Syst Med Sci202213140
    [Google Scholar]
  35. CottonM.F. SharlandM. Antimicrobial stewardship and infection prevention and control in low- and middle-income countries: Current status and best practices.Pediatr. Infect. Dis. J.2022413SS1S210.1097/INF.000000000000335535134033
    [Google Scholar]
  36. PierantoniL. Lo VecchioA. LenziJ. Parents’ perspective of antibiotic usage in children: A Nationwide survey in Italy.Pediatr. Infect. Dis. J.2021401090691110.1097/INF.000000000000322134437339
    [Google Scholar]
  37. MudryA. Otorhinolaryngology as “Made in Germany” since 1921: An international perspective.HNO202169536638410.1007/s00106‑021‑01047‑833860814
    [Google Scholar]
  38. KazanjianP.H. Efforts to regulate antibiotic misuse in hospitals: A history.Infect. Control Hosp. Epidemiol.20224391119112210.1017/ice.2021.33034325759
    [Google Scholar]
  39. NevesJ.V. Editorial for special issue “alternatives to antibiotics: Bacteriocins and antimicrobial peptides”.Antibiotics202211786010.3390/antibiotics1107086035884114
    [Google Scholar]
  40. VaneC.H. KimA.W. Lopes dos SantosR.A. Moss-HayesV. Contrasting sewage, emerging and persistent organic pollutants in sediment cores from the River Thames estuary, London, England, UK.Mar. Pollut. Bull.202217511334010.1016/j.marpolbul.2022.11334035124377
    [Google Scholar]
  41. ChristensenS.B. Drugs that changed society: History and current status of the early antibiotics: Salvarsan, sulfonamides, and β-lactams.Molecules20212619605710.3390/molecules2619605734641601
    [Google Scholar]
  42. ReddyD.S. SinhaA. KumarA. SainiV.K. Drug re‐engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery.Arch Pharm202235511220021410.1002/ardp.20220021435841594
    [Google Scholar]
  43. FasoulakisZ. KoutrasA. AntsaklisP. Intrauterine growth restriction due to gestational diabetes: From pathophysiology to diagnosis and management.Medicina2023596113910.3390/medicina5906113937374343
    [Google Scholar]
  44. NikiforouA.I. LioukasS. ChatzopoulouE.C. VoudourisI. When there is a crisis, there is an opportunity? SMEs’ capabilities for durability and opportunity confidence.Int. J. Entrep. Behav. Res.20232951053107410.1108/IJEBR‑11‑2021‑0939
    [Google Scholar]
  45. SreenithyaK.H. JadeD. HarrisonM. SugumarS. Identification of natural inhibitor against L1 β-lactamase present in Stenotrophomonas maltophilia.J. Mol. Model.2022281134210.1007/s00894‑022‑05336‑z
    [Google Scholar]
  46. VermaT. AggarwalA. SinghS. SharmaS. SarmaS.J. Current challenges and advancements towards discovery and resistance of antibiotics.J. Mol. Struct.2022124813138010.1016/j.molstruc.2021.131380
    [Google Scholar]
  47. AkusobiC. BenghomariB.S. ZhuJ. Transposon mutagenesis in Mycobacterium abscessus identifies an essential penicillin-binding protein involved in septal peptidoglycan synthesis and antibiotic sensitivity.eLife202211e7194710.7554/eLife.7194735659317
    [Google Scholar]
  48. KumarA. KaushalM. Progression of β-Lactam Resistance in Staphylococcus aureus.Insights Into Drug Resist Staphylococcus aureus. 202114710.5772/intechopen.100622
    [Google Scholar]
  49. AlfeiS. SchitoA.M. β-lactam antibiotics and β-lactamase enzymes inhibitors, Part 2: Our limited resources.Pharmaceuticals202215447610.3390/ph1504047635455473
    [Google Scholar]
  50. TangriN. SinghalS. SharmaP. Coexistence of pneumothorax and chilaiditi sign: A case report.Asian Pac. J. Trop. Biomed.201441757710.1016/S2221‑1691(14)60212‑424144135
    [Google Scholar]
  51. PacificiG.M. Clinical pharmacology of cefotaxime.J Clin Trials Res Ethics202221
    [Google Scholar]
  52. SilvaA. CostaE. FreitasA. AlmeidaA. Revisiting the frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections.Antibiotics202211676810.3390/antibiotics1106076835740174
    [Google Scholar]
  53. AlamM. BanoN. AhmadT. Synergistic role of plant extracts and essential oils against multidrug resistance and gram-negative bacterial strains producing extended-spectrum β-lactamases.Antibiotics202211785510.3390/antibiotics1107085535884109
    [Google Scholar]
  54. TerreniM. TaccaniM. PregnolatoM. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives.Molecules2021269267110.3390/molecules2609267134063264
    [Google Scholar]
  55. CarcioneD. SiracusaC. SulejmaniA. LeoniV. IntraJ. Old and new beta-lactamase inhibitors: Molecular structure, mechanism of action, and clinical use.Antibiotics202110899510.3390/antibiotics1008099534439045
    [Google Scholar]
  56. BuiT. PreussC.V. Cephalosporins.StatPearls2021
    [Google Scholar]
  57. TiseoG. BriganteG. GiacobbeD.R. MaraoloA.E. GonaF. FalconeM. A position paper for the diagnosis and management of infections caused by multidrug-resistant bacteria: Endorsed by the Italian society of infection and tropical diseases (SIMIT), the Italian society of anti-infective therapy (SITA), the Italian group for.Int. J. Antimicrob. Agents202260210661110.1016/j.ijantimicag.2022.10661135697179
    [Google Scholar]
  58. VentolaCL The antibiotic resistance crisis: Part 1: Causes and threats.20154042778325859123
    [Google Scholar]
  59. ExnerM. BhattacharyaS. ChristiansenB. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria?GMS Hyg. Infect. Control201712Doc0528451516
    [Google Scholar]
  60. SchneiderT. SahlH.G. An oldie but a goodie – cell wall biosynthesis as antibiotic target pathway.Int. J. Med. Microbiol.20103002-316116910.1016/j.ijmm.2009.10.00520005776
    [Google Scholar]
  61. NeuH.C. Relation of structural properties of beta-lactam antibiotics to antibacterial activity.Am. J. Med.198579221310.1016/0002‑9343(85)90254‑23895915
    [Google Scholar]
  62. JamilF. MukhtarH. FouillaudM. DufosséL. Rhizosphere signaling: Insights into plant-rhizomicrobiome interactions for sustainable agronomy.Microorganisms202210589910.3390/microorganisms1005089935630345
    [Google Scholar]
  63. WalkerR.C. The fluoroquinolones.Mayo Clin. Proc.199974101030103710.4065/74.10.1030
    [Google Scholar]
  64. HellingerW.C. BrewerN.S. Carbapenems and monobactams: Imipenem, meropenem, and aztreonam.Mayo Clin. Proc.199974442043410.4065/74.4.420
    [Google Scholar]
  65. PageM.G.P. The role of iron and siderophores in infection, and the development of siderophore antibiotics.Clin. Infect. Dis.201969S529S53710.1093/cid/ciz82531724044
    [Google Scholar]
  66. AdkinsonN.F. SwabbE.A. SugermanA.A. Immunology of the Monobactam aztreonam.Antimicrob. Agents Chemother.1984251939710.1128/AAC.25.1.936538398
    [Google Scholar]
  67. Retsch-BogartG.Z. QuittnerA.L. GibsonR.L. Efficacy and safety of inhaled aztreonam lysine for airway pseudomonas in cystic fibrosis.Chest200913551223123210.1378/chest.08‑142119420195
    [Google Scholar]
  68. Peris-VicenteJ. Peris-GarcíaE. Albiol-ChivaJ. Liquid chromatography, a valuable tool in the determination of antibiotics in biological, food and environmental samples.Microchem. J.202217710730910.1016/j.microc.2022.107309
    [Google Scholar]
  69. TurnerJ. MuraokaA. BedenbaughM. The chemical relationship among beta-lactam antibiotics and potential impacts on reactivity and decomposition.Front. Microbiol.20221380795510.3389/fmicb.2022.80795535401470
    [Google Scholar]
  70. LeeS.L. O’ConnorT.F. YangX. Modernizing pharmaceutical manufacturing: from batch to continuous production.J. Pharm. Innov.201510319119910.1007/s12247‑015‑9215‑8
    [Google Scholar]
  71. DomagalaJ.M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials.J. Antimicrob. Chemother.199433468570610.1093/jac/33.4.6858056688
    [Google Scholar]
  72. EyssenH.J. van den BoschJ.F. JanssenG.A. VanderhaegheH. Specific inhibition of cholesterol absorption by sulfaguanidine.Atherosclerosis197114218119210.1016/0021‑9150(71)90048‑75118612
    [Google Scholar]
  73. HenryR.J. The mode of action of sulfonamides.Bacteriol. Rev.19437417526210.1128/br.7.4.175‑262.194316350088
    [Google Scholar]
  74. MahajanG.B. BalachandranL. Antibacterial agents from actinomycetes - a review.Front. Biosci.2012E4124025310.2741/e37322201868
    [Google Scholar]
  75. SatoJ. KusanoH. AokiT. Discovery of a tricyclic β-lactam as a potent antimicrobial agent against carbapenem-resistant enterobacterales, including strains with reduced membrane permeability and four-amino acid insertion into penicillin-binding protein 3: Structure-activity-relationships and in vitro and in vivo activities.ACS Infect. Dis.20228340041010.1021/acsinfecdis.1c0054935112852
    [Google Scholar]
  76. NaeemM. RaufA. MaqboolS. AslamA. Degree-based topological indices of geranyl and farnesyl penicillin G bioconjugate structure.Eur. Phys. J. Plus2022137330310.1140/epjp/s13360‑022‑02513‑0
    [Google Scholar]
  77. BuckleyA.M. MouraI.B. AltringhamJ. The use of first-generation cephalosporin antibiotics, cefalexin and cefradine, is not associated with induction of simulated Clostridioides difficile infection.J. Antimicrob. Chemother.202177114815410.1093/jac/dkab34934561709
    [Google Scholar]
  78. ImanipoorJ. MohammadiM. Porous aluminum-based metal–organic framework-aminoclay nanocomposite: Sustainable synthesis and ultrahigh sorption of cephalosporin antibiotics.Langmuir202238185900591410.1021/acs.langmuir.2c0055735470668
    [Google Scholar]
  79. HarvimaR.J. HarvimaI.T. Case: Unexpected development of severe penicillin allergy and review of literature.Clin. Case Rep.2022101e0524810.1002/ccr3.524835079384
    [Google Scholar]
  80. MukaiS. ShigemuraK. YangY.M. Comparison between antimicrobial stewardship program and intervention by infection control team for managing antibiotic use in neurogenic bladder-related urinary tract infection patients: A retrospective chart audit.Am. J. Infect. Control202250666867210.1016/j.ajic.2021.10.02534736991
    [Google Scholar]
  81. ChaturvediP. MishraA. PaswanbS.K. Application of quality by design approach in development of cefixime trihydrate loaded gastro-retentive Mucoadhesive microspheres.Eur J Parenter Pharm Sci2022272
    [Google Scholar]
  82. HarikumarB. KokilavaniS. Sudheer KhanS. Magnetically separable N/S doped Fe3O4 embedded on MoO3 nanorods for photodegradation of cefixime, Cr(VI) reduction, and its genotoxicity study.Chem. Eng. J.202244613727310.1016/j.cej.2022.137273
    [Google Scholar]
  83. KoźmińskiP. RzewuskaM. PiądłowskaA. HalikP. GniazdowskaE. Synthesis, physicochemical and in vitro biological evaluation of 99mTc-cefepime radioconjugates, and development of DTPA-cefepime single vial kit formulation for labelling with technetium-99m.J. Radioanal. Nucl. Chem.202233172883289410.1007/s10967‑022‑08363‑5
    [Google Scholar]
  84. ChuY. SuH. LiuC. ZhengX. Fabrication of sandwich-like super-hydrophobic cathode for the electro-Fenton degradation of cefepime: H2O2 electro-generation, degradation performance, pathway and biodegradability improvement.Chemosphere2022286Pt 213166910.1016/j.chemosphere.2021.13166934340112
    [Google Scholar]
  85. MéndezR. LatorreA. González-JiménezP. Ceftobiprole medocaril.Rev. Esp. Quimioter.202235Suppl. 1252735488820
    [Google Scholar]
  86. MitchellJ.M. JuneC.M. BaggettV.L. Conformational flexibility in carbapenem hydrolysis drives substrate specificity of the class D carbapenemase OXA-24/40.J. Biol. Chem.2022298710212710.1016/j.jbc.2022.10212735709986
    [Google Scholar]
  87. RoyS. JunghareV. DuttaS. HazraS. BasuS. Differential binding of carbapenems with the AdeABC efflux pump and modulation of the expression of AdeB linked to novel mutations within two-component system AdeRS in carbapenem-resistant Acinetobacter baumannii.mSystems202274e00217e0022210.1128/msystems.00217‑2235735748
    [Google Scholar]
  88. TraveI. MicalizziC. MolleM. CastelliR. CozzaniE. ParodiA. Acne fulminans induced by lymecycline in a patient with hidradenitis suppurativa: A case report.Case Rep. Dermatol.202214211211610.1159/00052379935702372
    [Google Scholar]
  89. BhardwajP. LimS.Y. GruenerA.M. Pseudotumor cerebri syndrome secondary to lymecycline therapy.Eur. J. Ophthalmol.2022323NP102NP10410.1177/1120672121107237335037776
    [Google Scholar]
  90. HusseinD. AlmatrafiA.R. MansourM.S. HowsawiA. AlmustafaS. AlsaihatyH. Using multiple computational platforms to validate suitable therapeutic candidates that interfere with the viral s-glycoprotein and host ACE2 receptor protein interaction.SSRN411041210.2139/ssrn.4110412
    [Google Scholar]
  91. DongJ. ChenF. XuL. Fabrication of sensitive photoelectrochemical aptasensor using Ag nanoparticles sensitized bismuth oxyiodide for determination of chloramphenicol.Microchem. J.202217810731710.1016/j.microc.2022.107317
    [Google Scholar]
  92. LiuY. ChengD. XueJ. Fate of bacterial community, antibiotic resistance genes and gentamicin residues in soil after three-year amendment using gentamicin fermentation waste.Chemosphere2022291Pt 113273410.1016/j.chemosphere.2021.13273434743798
    [Google Scholar]
  93. YuanQ. SuiM. QinC. Migration, transformation and removal of macrolide antibiotics in the environment: A review.Environ. Sci. Pollut. Res. Int.20222918260452606210.1007/s11356‑021‑18251‑235067882
    [Google Scholar]
  94. VendittoV.J. FeolaD.J. Delivering macrolide antibiotics to heal a broken heart - and other inflammatory conditions.Adv. Drug Deliv. Rev.202218411425210.1016/j.addr.2022.11425235367307
    [Google Scholar]
  95. LiJ. LiW. LiuK. Global review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment.J. Hazard. Mater.202243912962810.1016/j.jhazmat.2022.12962835905608
    [Google Scholar]
  96. LiJ. LaiY. LiM. Repair of infected bone defect with clindamycin-tetrahedral DNA nanostructure complex-loaded 3D bioprinted hybrid scaffold.Chem. Eng. J.202243513485510.1016/j.cej.2022.134855
    [Google Scholar]
  97. Armengol ÁlvarezL. Van de SijpeG. DesmetS. Ways to improve insights into clindamycin pharmacology and pharmacokinetics tailored to practice.Antibiotics202211570110.3390/antibiotics1105070135625345
    [Google Scholar]
  98. DiggsF.J. EdwardsJ.D. GarzaK.B. HassounA.A.M. DurhamS.H. Evaluation of a capped dosing telavancin regimen compared to standard dosing at a large community teaching hospital.Antimicrob. Agents Chemother.2022661e01603e0162110.1128/AAC.01603‑2134662182
    [Google Scholar]
  99. GharibianK.N. LewisS.J. HeungM. SegalJ.H. SalamaN.N. MuellerB.A. Telavancin pharmacokinetics in patients with chronic kidney disease receiving haemodialysis.J. Antimicrob. Chemother.202177117418010.1093/jac/dkab37034613416
    [Google Scholar]
  100. YanJ ZuoX YangS ChenR CaiT DingD Evaluation of potassium ferrate activated biochar for the simultaneous adsorption of copper and sulfadiazine: Competitive versus synergistic.J Hazard Mater2022424Pt B12743510.1016/j.jhazmat.2021.12743534638070
    [Google Scholar]
  101. XiaS DengL LiuX Fabrication of magnetic nickel incorporated carbon nanofibers for superfast adsorption of sulfadiazine: Performance and mechanisms exploration.J Hazard Mater2022423Pt B12721910.1016/j.jhazmat.2021.12721934844349
    [Google Scholar]
  102. YinN. ChenH. YuanX. Highly efficient photocatalytic degradation of norfloxacin via Bi2Sn2O7/PDIH Z-scheme heterojunction: Influence and mechanism.J. Hazard. Mater.202243612931710.1016/j.jhazmat.2022.12931735739807
    [Google Scholar]
  103. WangY. WangR. LinN. Degradation of norfloxacin by MOF-derived lamellar carbon nanocomposites based on microwave-driven Fenton reaction: Improved Fe(III)/Fe(II) cycle.Chemosphere202229313361410.1016/j.chemosphere.2022.13361435032514
    [Google Scholar]
  104. SinghS. GoyalA. Antimicrobial agents in agriculture and their implications in antimicrobial resistance. In: Emerging Modalities in Mitigation of Antimicrobial Resistance.20224778
    [Google Scholar]
  105. BorgmannA. Prospects for the Theology of Technology.Essays Christ Exeg Hist Theol20222215
    [Google Scholar]
  106. GurstelleK.H. Uneven paths to health and healing: Medicine, politics and power in 19th century America.2022
    [Google Scholar]
  107. CudjoeM.M. Antibiotics resistance in the food chain: Implications on public health.Asian J Environ Ecol2022184102010.9734/ajee/2022/v18i430326
    [Google Scholar]
  108. EzeonuI.M. IrohaI.R. EsiobuN.D. Antibiotic resistance: Global trends, impact and mitigation.Medical Biotechnology, Biopharmaceutics, Forensic Science and Bioinformatics.202199113
    [Google Scholar]
  109. YouY ZhouY DuanX MaoX LiY Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable.Crit Rev Food Sci Nutr202211235866524
    [Google Scholar]
  110. KatiyarS.K. GaurS.N. SolankiR.N. Indian guidelines on nebulization therapy.Indian J. Tuberc.202269S1S19110.1016/j.ijtb.2022.06.00436372542
    [Google Scholar]
  111. AbdS.E. Interface of gold nanostructure for medical applications.Int J Technol Sci Eng202251134
    [Google Scholar]
  112. Hernandez-RodriguezP. BaqueroL.P. Combination therapy as a strategy to control infections caused by multi-resistant bacteria: Current review.Curr. Drug Targets202223326026510.2174/138945012266621061412235235282814
    [Google Scholar]
  113. DrioicheA. Zahra RadiF. AilliA. Correlation between the chemical composition and the antimicrobial properties of seven samples of essential oils of endemic Thymes in Morocco against multi-resistant bacteria and pathogenic fungi.Saudi Pharm. J.20223081200121410.1016/j.jsps.2022.06.02236164579
    [Google Scholar]
  114. ChoyR.K.M. BourgeoisA.L. OckenhouseC.F. WalkerR.I. SheetsR.L. FloresJ. Controlled human infection models to accelerate vaccine development.Clin. Microbiol. Rev.2022353e00008e0002110.1128/cmr.00008‑2135862754
    [Google Scholar]
  115. MoghimiS. ShafieiM. ForoumadiA. Drug design strategies for the treatment azole-resistant candidiasis.Expert Opin. Drug Discov.202217887989510.1080/17460441.2022.209894935793245
    [Google Scholar]
  116. MontañésJ.C. HuertasM. MoroS.G. Native RNA sequencing in fission yeast reveals frequent alternative splicing isoforms.Genome Res.20223261215122710.1101/gr.276516.12135618415
    [Google Scholar]
  117. LynsdaleC.L. SeltmannM.W. MonN.O. Investigating associations between nematode infection and three measures of sociality in Asian elephants.Behav. Ecol. Sociobiol.20227678710.1007/s00265‑022‑03192‑835765658
    [Google Scholar]
  118. ZhaoX. TangH. JiangX. Deploying gold nanomaterials in combating multi-drug-resistant bacteria.ACS Nano2022167100661008710.1021/acsnano.2c0226935776694
    [Google Scholar]
  119. KarymbaevaS. BoikoI. JacobssonS. Antimicrobial resistance and molecular epidemiological typing of Neisseria gonorrhoeae isolates from Kyrgyzstan in Central Asia, 2012 and 2017.BMC Infect. Dis.202121155910.1186/s12879‑021‑06262‑w34118893
    [Google Scholar]
  120. UddinT.M. ChakrabortyA.J. KhusroA. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects.J. Infect. Public Health202114121750176610.1016/j.jiph.2021.10.02034756812
    [Google Scholar]
  121. NanayakkaraA.K. BoucherH.W. FowlerV.G. JezekA. OuttersonK. GreenbergD.E. Antibiotic resistance in the patient with cancer: Escalating challenges and paths forward.CA Cancer J. Clin.202171648850410.3322/caac.2169734546590
    [Google Scholar]
  122. KhanA.H. AzizH.A. KhanN.A. HasanM.A. AhmedS. FarooqiI.H. Impact, disease outbreak and the eco-hazards associated with pharmaceutical residues: A critical review.Int. J. Environ. Sci. Technol.2021112
    [Google Scholar]
  123. AhmedT. AmeerH.A. JavedS. Pakistan’s backyard poultry farming initiative: impact analysis from a public health perspective.Trop. Anim. Health Prod.202153221010.1007/s11250‑021‑02659‑633733340
    [Google Scholar]
  124. DrewG.C. StevensE.J. KingK.C. Microbial evolution and transitions along the parasite-mutualist continuum.Nat. Rev. Microbiol.2021191062363810.1038/s41579‑021‑00550‑733875863
    [Google Scholar]
  125. PazzagliaJ. ReuschT.B.H. TerlizziA. Marín-GuiraoL. ProcacciniG. Phenotypic plasticity under rapid global changes: The intrinsic force for future seagrasses survival.Evol. Appl.20211451181120110.1111/eva.1321234025759
    [Google Scholar]
  126. BasuS. CopanaR. MoralesR. Keeping it real: Antibiotic use problems and stewardship solutions in low-and middle-income countries.Pediatr. Infect. Dis. J.2022413SS18S2510.1097/INF.000000000000332135134036
    [Google Scholar]
  127. SharmaA. SinghA. DarM.A. Menace of antimicrobial resistance in LMICs: Current surveillance practices and control measures to tackle hostility.J. Infect. Public Health202215217218110.1016/j.jiph.2021.12.00834972026
    [Google Scholar]
  128. WilsonM. The great betrayal-our own cells and our symbionts turn against us.In: Life After Death What Happens to Your Body After You Die?.20221176610.1007/978‑3‑030‑83036‑6_5
    [Google Scholar]
  129. ErnakovichJ.G. BarbatoR.A. RichV.I. Microbiome assembly in thawing permafrost and its feedbacks to climate.Glob. Change Biol.202228175007502610.1111/gcb.1623135722720
    [Google Scholar]
  130. MushtaqA. NawazH. Irfan MajeedM. Surface-enhanced Raman spectroscopy (SERS) for monitoring colistin-resistant and susceptible E. coli strains.Spectrochim. Acta A Mol. Biomol. Spectrosc.202227812131510.1016/j.saa.2022.12131535576839
    [Google Scholar]
  131. WilsonV.G. Beyond antibiotics–are phages our allies?Viruses: Intimate Invaders.202227930210.1007/978‑3‑030‑85487‑4_12
    [Google Scholar]
  132. AnandR. An extremely rare case of malignant transformation of Eccrine Spiradenoma.Int. J. Sci. Res.20221131210.36106/ijsr
    [Google Scholar]
  133. ZhangS. SunW.L. SongH.L. Effects of voltage on the emergence and spread of antibiotic resistance genes in microbial electrolysis cells: From mutation to horizontal gene transfer.Chemosphere2022291Pt 113270310.1016/j.chemosphere.2021.13270334718024
    [Google Scholar]
  134. AdesolaRO MosesOO Common genetic mechanisms implicated in antibiotic resistance.20226111010.31383/ga.vol6iss1pp1‑10
    [Google Scholar]
  135. ReddyS. BaratheP. KaurK. AnandU. ShriramV. KumarV. Antimicrobial resistance and medicinal plant products as potential alternatives to antibiotics in animal husbandry. In: Antimicrobial Resistance.20223578410.1007/978‑981‑16‑3120‑7_13
    [Google Scholar]
  136. XinK. ChenX. ZhangZ. Trace antibiotics increase the risk of antibiotic resistance genes transmission by regulating the biofilm extracellular polymeric substances and microbial community in the sewer.J. Hazard. Mater.202243212863410.1016/j.jhazmat.2022.12863435306411
    [Google Scholar]
  137. BhatB.A. MirW.R. SheikhB.A. RatherM.A. DarT.H. MirM.A. In vitro and in silico evaluation of antimicrobial properties of Delphinium cashmerianum L., a medicinal herb growing in Kashmir, India.J. Ethnopharmacol.202229111504610.1016/j.jep.2022.11504635167935
    [Google Scholar]
  138. AdegbiteB.R. EdoaJ.R. SchaumburgF. AlabiA.S. AdegnikaA.A. GrobuschM.P. Knowledge and perception on antimicrobial resistance and antibiotics prescribing attitude among physicians and nurses in Lambaréné region, Gabon: A call for setting-up an antimicrobial stewardship program.Antimicrob. Resist. Infect. Control20221114410.1186/s13756‑022‑01079‑x35241171
    [Google Scholar]
  139. SobierajskiT. MazińskaB. Chajęcka-WierzchowskaW. ŚmiałekM. HryniewiczW. Antimicrobial and antibiotic resistance from the perspective of polish veterinary students: An inter-university study.Antibiotics202211111510.3390/antibiotics1101011535052992
    [Google Scholar]
  140. BuckelA. Bridging the intention-action gap: Understanding onfarm biosecurity behaviour of smallholder poultry farmers in Ghana2022
    [Google Scholar]
  141. DaisleyB.A. ChernyshovaA.M. ThompsonG.J. Allen-VercoeE. Deteriorating microbiomes in agriculture - The unintended effects of pesticides on microbial life.Microbiome Research Reports202211610.20517/mrr.2021.0838089067
    [Google Scholar]
  142. HarbinN.J. LindbækM. RomørenM. Barriers and facilitators of appropriate antibiotic use in primary care institutions after an antibiotic quality improvement program - A nested qualitative study.BMC Geriatr.202222145810.1186/s12877‑022‑03161‑w35624423
    [Google Scholar]
  143. ChitungoI. DzinamariraT. NyazikaT.K. HerreraH. MusukaG. MurewanhemaG. Inappropriate antibiotic use in Zimbabwe in the COVID-19 era: A perfect recipe for antimicrobial resistance.Antibiotics202211224410.3390/antibiotics1102024435203846
    [Google Scholar]
  144. PatienceJ.F. RamirezA. Invited review: Strategic adoption of antibiotic-free pork production: The importance of a holistic approach.Transl. Anim. Sci.202263txac06310.1093/tas/txac06335854972
    [Google Scholar]
  145. Pérez de la LastraJ.M. AnandU. González-AcostaS. Antimicrobial resistance in the COVID-19 landscape: Is there an opportunity for anti-infective antibodies and antimicrobial peptides?Front. Immunol.20221392148310.3389/fimmu.2022.92148335720330
    [Google Scholar]
  146. MuurinenJ. CairnsJ. EkakoroJ.E. WickwareC.L. RupleA. JohnsonT.A. Biological units of antimicrobial resistance and strategies for their containment in animal production.FEMS Microbiol. Ecol.2022987fiac06010.1093/femsec/fiac06035587376
    [Google Scholar]
  147. RoemhildR. BollenbachT. AnderssonD.I. The physiology and genetics of bacterial responses to antibiotic combinations.Nat. Rev. Microbiol.202220847849010.1038/s41579‑022‑00700‑535241807
    [Google Scholar]
  148. MutukuC. GazdagZ. MeleghS. Occurrence of antibiotics and bacterial resistance genes in wastewater: Resistance mechanisms and antimicrobial resistance control approaches.World J. Microbiol. Biotechnol.202238915210.1007/s11274‑022‑03334‑035781751
    [Google Scholar]
  149. DeyA. YadavM. KumarD. A combination therapy strategy for treating antibiotic resistant biofilm infection using a guanidinium derivative and nanoparticulate Ag(0) derived hybrid gel conjugate.Chem. Sci.20221334101031011810.1039/D2SC02980D36128224
    [Google Scholar]
  150. HanD. LiuX. WuS. Metal organic framework-based antibacterial agents and their underlying mechanisms.Chem. Soc. Rev.202251167138716910.1039/D2CS00460G35866702
    [Google Scholar]
  151. RakholiyaM. ChauhanB. GondaliaS. KanojiyaD. A review on pitted keratolysis and medicinal herbs as an antibacterial.GIS Sci J20229514531461
    [Google Scholar]
  152. WasanR.K. AbidullahM. KaurA. KaurC. KatariaJ. KaurV. To evaluate the resistivity of Klebsiella pneumonia against present antibiogram.Int. J. Health Sci.202265573674310.53730/ijhs.v6nS5.8757
    [Google Scholar]
  153. ZhuL. ShuaiX.Y. LinZ.J. Landscape of genes in hospital wastewater breaking through the defense line of last-resort antibiotics.Water Res.202220911790710.1016/j.watres.2021.11790734864622
    [Google Scholar]
  154. SkurnikM. Can bacteriophages replace antibiotics?Antibiotics202211557510.3390/antibiotics1105057535625219
    [Google Scholar]
  155. XuW.J. CaiJ.X. LiY.J. WuJ.Y. XiangD. Recent progress of macrophage vesicle-based drug delivery systems.Drug Deliv. Transl. Res.202212102287230210.1007/s13346‑021‑01110‑534984664
    [Google Scholar]
  156. BekeleT. AlamnieG. Treatment of antibiotic-resistant bacteria by nanoparticles: Current approaches and prospects.Prospects2022619
    [Google Scholar]
  157. Tse Sum BuiB. AuroyT. HauptK. Fighting antibiotic‐resistant bacteria: Promising strategies orchestrated by molecularly imprinted polymers.Angew. Chem. Int. Ed.2022618e20210649310.1002/anie.20210649334779567
    [Google Scholar]
  158. WuQ. ZouD. ZhengX. LiuF. LiL. XiaoZ. Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community.Sci. Total Environ.202284515738410.1016/j.scitotenv.2022.15738435843318
    [Google Scholar]
  159. PaulD. VermaJ. BanerjeeA. KonarD. DasB. Antimicrobial resistance traits and resistance mechanisms in bacterial pathogens.In: Antimicrobial Resistance.2022127
    [Google Scholar]
  160. AurilioC. SansoneP. BarbarisiM. Mechanisms of action of carbapenem resistance.Antibiotics202211342110.3390/antibiotics1103042135326884
    [Google Scholar]
  161. NandhiniP. KumarP. MickymarayS. AlothaimA.S. SomasundaramJ. RajanM. Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: A review.Antibiotics202211560610.3390/antibiotics1105060635625250
    [Google Scholar]
  162. AlmutairyB. Extensively and multidrug-resistant bacterial strains: Case studies of antibiotics resistance.Front. Microbiol.202415138151110.3389/fmicb.2024.138151139027098
    [Google Scholar]
  163. MareșC. PetcaR.C. PopescuR.I. Update on urinary tract infection antibiotic resistance-a retrospective study in females in conjunction with clinical data.Life202414110610.3390/life1401010638255721
    [Google Scholar]
  164. GavankarS.A. JadhavR.R. JajuJ.B. SawantM. A retrospective study of antibiotic resistance in patients attending outpatient and inpatient department of rural tertiary care hospital.Int J Acad Med Pharm20246887891
    [Google Scholar]
  165. CuninghamW. PereraS. CoulterS. WangZ. TongS.Y.C. WozniakT.M. Repurposing antibiotic resistance surveillance data to support treatment of recurrent infections in a remote setting.Sci. Rep.2024141241410.1038/s41598‑023‑50008‑438287025
    [Google Scholar]
  166. WoodsR.J. BarbosaC. KoeppingL. RaygozaJ.A. MwangiM. ReadA.F. The evolution of antibiotic resistance in an incurable and ultimately fatal infection.Evol. Med. Public Health202311116317310.1093/emph/eoad01237325804
    [Google Scholar]
  167. BuonsensoD. GiaimoM. PataD. Retrospective study on Staphylococcus aureus resistance profile and antibiotic use in a pediatric population.Antibiotics2023129137810.3390/antibiotics1209137837760675
    [Google Scholar]
  168. PrajescuB. GavriliuL. IesanuM.I. Bacterial species and antibiotic resistance-a retrospective analysis of bacterial cultures in a pediatric hospital.Antibiotics202312696610.3390/antibiotics1206096637370285
    [Google Scholar]
  169. IoannouP. MarakiS. KoumakiD. A six-year retrospective study of microbiological characteristics and antimicrobial resistance in specimens from a tertiary hospital’s surgical ward.Antibiotics202312349010.3390/antibiotics1203049036978357
    [Google Scholar]
  170. BanerjeeR PatelR Molecular diagnostics for genotypic detection of antibiotic resistance: current landscape and future directions.JAC-Antimicrobial Resist20235dlad018
    [Google Scholar]
  171. PerikleousE.P. GkentziD. BertzouanisA. ParaskakisE. SovticA. FouzasS. Antibiotic resistance in patients with cystic fibrosis: Past, present, and future.Antibiotics202312221710.3390/antibiotics1202021736830128
    [Google Scholar]
  172. Grudlewska-BudaK. Bauza-KaszewskaJ. Wiktorczyk-KapischkeN. BudzyńskaA. Gospodarek-KomkowskaE. SkowronK. Antibiotic resistance in selected emerging bacterial foodborne pathogens-an issue of concern?Antibiotics202312588010.3390/antibiotics1205088037237783
    [Google Scholar]
  173. JaraD. Bello-ToledoH. DomínguezM. Antibiotic resistance in bacterial isolates from freshwater samples in Fildes Peninsula, King George Island, Antarctica.Sci. Rep.2020101314510.1038/s41598‑020‑60035‑032081909
    [Google Scholar]
  174. MuurinenJ. MuziasariW.I. HultmanJ. Antibiotic resistomes and microbiomes in the surface water along the code river in indonesia reflect drainage basin anthropogenic activities.Environ. Sci. Technol.20225621149941500610.1021/acs.est.2c0157035775832
    [Google Scholar]
  175. BenaudN. ChelliahD.S. WongS.Y. FerrariB.C. Soil substrate culturing approaches recover diverse members of Actinomycetota from desert soils of Herring Island, East Antarctica.Extremophiles20222622410.1007/s00792‑022‑01271‑235829965
    [Google Scholar]
  176. HutinelM. LarssonD.G.J. FlachC.F. Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city.Sci. Total Environ.202281215143310.1016/j.scitotenv.2021.15143334748849
    [Google Scholar]
  177. LassenS.B. AhsanM.E. IslamS.R. Prevalence of antibiotic resistance genes in Pangasianodon hypophthalmus and Oreochromis niloticus aquaculture production systems in Bangladesh.Sci. Total Environ.202281315191510.1016/j.scitotenv.2021.15191534826462
    [Google Scholar]
  178. PaunV.I. LavinP. ChifiriucM.C. PurcareaC. First report on antibiotic resistance and antimicrobial activity of bacterial isolates from 13,000-year old cave ice core.Sci. Rep.202111151410.1038/s41598‑020‑79754‑533436712
    [Google Scholar]
  179. RizzoC. Lo GiudiceA. Life from a snowflake: Diversity and adaptation of cold-loving bacteria among ice crystals.Crystals202212331210.3390/cryst12030312
    [Google Scholar]
  180. Kosznik-KwaśnickaK. GolecP. JaroszewiczW. LubomskaD. PiechowiczL. Into the unknown: Microbial communities in caves, their role, and potential use.Microorganisms202210222210.3390/microorganisms1002022235208677
    [Google Scholar]
  181. RawatN Anjali , Jamwal R, et al. Detection of unprecedented level of antibiotic resistance and identification of antibiotic resistance factors, including QRDR mutations in Escherichia coli isolated from commercial chickens from North India.J. Appl. Microbiol.2022132126827810.1111/jam.1520934245665
    [Google Scholar]
  182. Haifa-HaryaniW.O. Amatul-SamahahM.A. Azzam-SayutiM. Prevalence, antibiotics resistance and plasmid profiling of Vibrio spp. Isolated from cultured shrimp in peninsular Malaysia.Microorganisms2022109185110.3390/microorganisms1009185136144453
    [Google Scholar]
  183. ZhangX. HeJ. QiaoL. WangZ. ZhengQ. XiongC. 3D printed PCLA scaffold with nano-hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug-resistant bacteria colonization.Cell Prolif.20225510e1328910.1111/cpr.13289
    [Google Scholar]
  184. QuX. WangM. WangM. Multi‐mode antibacterial strategies enabled by gene‐transfection and immunomodulatory nanoparticles in 3D‐printed scaffolds for synergistic exogenous and endogenous treatment of infections.Adv. Mater.20223418220009610.1002/adma.20220009635267223
    [Google Scholar]
  185. ShakibaniaS. KhakbizM. BektasC.K. GhazanfariL. BaniziM.T. LeeK.B. A review of 3D printing technology for rapid medical diagnostic tools.Mol. Syst. Des. Eng.20227431532410.1039/D1ME00178G
    [Google Scholar]
  186. MassazzaA. ArdinoV. FioravanzoR.E. Climate change, trauma and mental health in Italy: A scoping review.Eur. J. Psychotraumatol.2022131204637410.1080/20008198.2022.204637435432785
    [Google Scholar]
  187. TavoschiL. ForniS. PorrettaA. Prolonged outbreak of New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE), Tuscany, Italy, 2018 to 2019.Euro Surveill.2020256200008510.2807/1560‑7917.ES.2020.25.6.200008532070467
    [Google Scholar]
  188. PicciniG. MontomoliE. Pathogenic signature of invasive non-typhoidal Salmonella in Africa: Implications for vaccine development.Hum. Vaccin. Immunother.20201692056207110.1080/21645515.2020.178579132692622
    [Google Scholar]
  189. PappaO. ChochlakisD. SandalakisV. DioliC. PsaroulakiA. MavridouA. Antibiotic resistance of Legionella pneumophila in clinical and water isolates—a systematic review.Int. J. Environ. Res. Public Health20201716580910.3390/ijerph1716580932796666
    [Google Scholar]
  190. Aslan KayiranM. KaradagA.S. Al-KhuzaeiS. ChenW. ParishL.C. Antibiotic resistance in acne: Mechanisms, complications and management.Am. J. Clin. Dermatol.202021681381910.1007/s40257‑020‑00556‑632889707
    [Google Scholar]
  191. AbolghaitS.K. FathiA.G. YoussefF.M. AlgammalA.M. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers.Int. J. Food Microbiol.202032810866910.1016/j.ijfoodmicro.2020.10866932497922
    [Google Scholar]
  192. AnderssonP. BeckinghamW. GorrieC.L. Vancomycin-resistant Enterococcus (VRE) outbreak in a neonatal intensive care unit and special care nursery at a tertiary-care hospital in Australia—A retrospective case-control study.Infect. Control Hosp. Epidemiol.201940555155810.1017/ice.2019.4130868978
    [Google Scholar]
  193. ChenJ. LiJ. ZhangH. ShiW. LiuY. Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China.Front. Microbiol.201910191610.3389/fmicb.2019.0191631481945
    [Google Scholar]
  194. Yousefi-AvarvandA. VaezH. TafaghodiM. SahebkarA.H. ArzanlouM. KhademiF. Antibiotic resistance of Helicobacter pylori in Iranian children: A systematic review and meta-analysis.Microb. Drug Resist.201824798098610.1089/mdr.2017.029229227738
    [Google Scholar]
  195. OtokuneforK. OtokuneforT.V. OmakweleG. Multi-drug resistant Mycobacterium tuberculosis in Port Harcourt, Nigeria.Afr. J. Lab. Med.20187280510.4102/ajlm.v7i2.80530568903
    [Google Scholar]
  196. TasnimT. TarafderS. AlamF.M. SattarH. Mostofa KamalS.M. Pre-extensively drug resistant tuberculosis (Pre-XDR-TB) among pulmonary multidrug resistant tuberculosis (MDR-TB) patients in Bangladesh.J. Tuberc. Res.20186319920610.4236/jtr.2018.63018
    [Google Scholar]
  197. YangY. ChuL. YangS. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.Acta Biomater.20187926527510.1016/j.actbio.2018.08.01530125670
    [Google Scholar]
  198. RanjbarR. Safarpoor DehkordiF. Sakhaei ShahrezaM.H. RahimiE. Prevalence, identification of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxin producing Escherichia coli strains isolated from raw milk and traditional dairy products.Antimicrob. Resist. Infect. Control2018715310.1186/s13756‑018‑0345‑x29686859
    [Google Scholar]
  199. GarazzinoS. LutsarI. BertainaC. TovoP.A. SharlandM. New antibiotics for paediatric use: A review of a decade of regulatory trials submitted to the European Medicines Agency from 2000-Why aren’t we doing better?Int. J. Antimicrob. Agents20134229911810.1016/j.ijantimicag.2013.05.00123810180
    [Google Scholar]
  200. BallardDH TappaK BoyerCJ JammalamadakaU HemmanurK WeismanJA Antibiotics in 3D-printed implants, instruments and materials: Benefits, challenges and future directions.J 3D Print Med201938393
    [Google Scholar]
  201. BenmassaoudM.M. KohamaC. KimT.W.B. Efficacy of eluted antibiotics through 3D printed femoral implants.Biomed. Microdevices20192135110.1007/s10544‑019‑0395‑831203428
    [Google Scholar]
  202. InzanaJ.A. TrombettaR.P. SchwarzE.M. KatesS.L. AwadH.A. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection.Eur. Cell. Mater.20153023224710.22203/eCM.v030a1626535494
    [Google Scholar]
  203. JahanmardF. DijkmansF.M. MajedA. Toward antibacterial coatings for personalized implants.ACS Biomater. Sci. Eng.20206105486549210.1021/acsbiomaterials.0c0068333320546
    [Google Scholar]
  204. Di LucaM. HoskinsC. CorduasF. 3D printed biodegradable multifunctional implants for effective breast cancer treatment.Int. J. Pharm.202262912236310.1016/j.ijpharm.2022.12236336336202
    [Google Scholar]
  205. PiccoC.J. UtomoE. McCleanA. Development of 3D-printed subcutaneous implants using concentrated polymer/drug solutions.Int. J. Pharm.202363112247710.1016/j.ijpharm.2022.12247736509226
    [Google Scholar]
  206. PaleelF. QinM. TagalakisA.D. Yu-Wai-ManC. LamprouD.A. Manufacturing and characterisation of 3D-printed sustained-release Timolol implants for glaucoma treatment.Drug Deliv. Transl. Res.202411138578377
    [Google Scholar]
  207. FarmerZ.L. Domínguez-RoblesJ. MancinelliC. LarrañetaE. LamprouD.A. Urogynecological surgical mesh implants: New trends in materials, manufacturing and therapeutic approaches.Int. J. Pharm.202058511951210.1016/j.ijpharm.2020.11951232526332
    [Google Scholar]
  208. FarmerZ.L. UtomoE. Domínguez-RoblesJ. 3D printed estradiol-eluting urogynecological mesh implants: Influence of material and mesh geometry on their mechanical properties.Int. J. Pharm.202159312014510.1016/j.ijpharm.2020.12014533309830
    [Google Scholar]
  209. RenJ. MurrayR. WongC.S. Development of 3D printed biodegradable mesh with antimicrobial properties for pelvic organ prolapse.Polymers202214476310.3390/polym1404076335215676
    [Google Scholar]
  210. AinsworthM.J. LotzO. GilmourA. Covalent protein immobilization on 3D‐printed microfiber meshes for guided cartilage regeneration.Adv. Funct. Mater.2023332220658310.1002/adfm.202206583
    [Google Scholar]
  211. BragagliaM. SciarrettaF. FileticiP. Soybean oil‐based 3D printed mesh designed for guided bone regeneration (GBR) in oral surgery.Macromol. Biosci.2024245230045810.1002/mabi.20230045838198834
    [Google Scholar]
  212. PietrzakK. IsrebA. AlhnanM.A. A flexible-dose dispenser for immediate and extended release 3D printed tablets.Eur. J. Pharm. Biopharm.20159638038710.1016/j.ejpb.2015.07.02726277660
    [Google Scholar]
  213. AbbasN QamarN HussainA LatifS ArshadMS IjazQA Fabrication of modified-release custom-designed ciprofloxacin tablets via fused deposition modeling 3D printing.J 3D Print Med20204172710.2217/3dp‑2019‑0024
    [Google Scholar]
  214. HuanbuttaK. SriamornsakP. KittanaphonT. SuwanpitakK. KlinkesornN. SangnimT. Development of a zero-order kinetics drug release floating tablet with anti–flip-up design fabricated by 3D-printing technique.J. Pharm. Investig.202151221322210.1007/s40005‑020‑00507‑7
    [Google Scholar]
  215. RuhE. MammadovE. Antibacterial activity of ciprofloxacin-impregnated 3D-printed polylactic acid discs: An in vitro study.J. Infect. Dev. Ctries.202216348449010.3855/jidc.1526735404854
    [Google Scholar]
  216. KodamaJ. ChenH. ZhouT. Antibacterial efficacy of quaternized chitosan coating on 3D printed titanium cage in rat intervertebral disc space.Spine J.20212171217122810.1016/j.spinee.2021.02.01633621666
    [Google Scholar]
  217. JiangY. ShiK. ZhouL. 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc.Bioact. Mater.20232052853810.1016/j.bioactmat.2022.06.00235846840
    [Google Scholar]
  218. ScheidC. MonteiroS.A. MelloW. A novel honeycomb-like 3D-printed device for rotating-disk sorptive extraction of organochlorine and organophosphorus pesticides from environmental water samples.J. Chromatogr. A2024172246489210.1016/j.chroma.2024.46489238608369
    [Google Scholar]
  219. ZhangY. ZhaiD. XuM. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity.Biofabrication20179202503710.1088/1758‑5090/aa6ed628631614
    [Google Scholar]
  220. VisscherL.E. DangH.P. KnackstedtM.A. HutmacherD.W. TranP.A. 3D printed Polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics.Mater. Sci. Eng. C201887788910.1016/j.msec.2018.02.00829549952
    [Google Scholar]
  221. LeeJ.H. BaikJ.M. YuY.S. Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis.Sci. Rep.2020101755410.1038/s41598‑020‑64573‑532371998
    [Google Scholar]
  222. FallahA. AltunbekM. BartoloP. 3D printed scaffold design for bone defects with improved mechanical and biological properties.J. Mech. Behav. Biomed. Mater.202213410541810.1016/j.jmbbm.2022.10541836007489
    [Google Scholar]
  223. DubeyA. VahabiH. KumaravelV. Antimicrobial and biodegradable 3D printed scaffolds for orthopedic infections.ACS Biomater. Sci. Eng.2023974020404410.1021/acsbiomaterials.3c0011537339247
    [Google Scholar]
  224. PodgórskiR. WojasińskiM. MałolepszyA. JaroszewiczJ. CiachT. Fabrication of 3D-printed scaffolds with multiscale porosity.ACS Omega2024927291862920410.1021/acsomega.3c0903539005818
    [Google Scholar]
  225. Vivero-LopezM. XuX. MurasA. Anti-biofilm multi drug-loaded 3D printed hearing aids.Mater. Sci. Eng. C202111911160610.1016/j.msec.2020.11160633321650
    [Google Scholar]
  226. IsaakidouA. ApachiteiI. Fratila-ApachiteiL.E. ZadpoorA.A. High-precision 3D printing of microporous cochlear implants for personalized local drug delivery.J. Funct. Biomater.2023141049410.3390/jfb1410049437888159
    [Google Scholar]
  227. IsaakidouA. GanjianM. van HoftenR. Multi-scale in silico and ex silico mechanics of 3D printed cochlear implants for local drug delivery.Front. Bioeng. Biotechnol.202411128929910.3389/fbioe.2023.128929938356932
    [Google Scholar]
  228. YueJ. ZhaoP. GerasimovJ.Y. 3D‐printable antimicrobial composite resins.Adv. Funct. Mater.201525436756676710.1002/adfm.201502384
    [Google Scholar]
  229. de OliveiraW.B.V. LisboaT.P. de SouzaC.C. MatosM.A.C. MatosR.C. Composite material immobilized in 3D-printed support, an economical approach for electrochemical sensing of nimesulide.Microchem. J.202318810846310.1016/j.microc.2023.108463
    [Google Scholar]
  230. HeM. ZhangF. LiC. Mechanical properties and oral restoration applications of 3D printed aliphatic polyester-calcium composite materials.Alex. Eng. J.20248824525210.1016/j.aej.2024.01.042
    [Google Scholar]
  231. LeeS. ThioS.K. ParkS.Y. BaeS. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water.Harmful Algae20198810163810.1016/j.hal.2019.10163831582154
    [Google Scholar]
  232. LiF. MacdonaldN.P. GuijtR.M. BreadmoreM.C. Multimaterial 3D printed fluidic device for measuring pharmaceuticals in biological fluids.Anal. Chem.20199131758176310.1021/acs.analchem.8b0377230513198
    [Google Scholar]
  233. DuarteL.C. FigueredoF. RibeiroL.E.B. CortónE. ColtroW.K.T. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection.Anal. Chim. Acta20191071364310.1016/j.aca.2019.04.04531128753
    [Google Scholar]
  234. WangL. PumeraM. Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices.Trends Analyt. Chem.202113511615110.1016/j.trac.2020.116151
    [Google Scholar]
  235. KulkarniM.B. VelmuruganK. NirmalJ. GoelS. Development of dexamethasone loaded nanomicelles using a 3D printed microfluidic device for ocular drug delivery applications.Sens. Actuators A Phys.202335711438510.1016/j.sna.2023.114385
    [Google Scholar]
  236. MishraP. NavariyaS. GuptaP. A novel approach to low-cost, rapid and simultaneous colorimetric detection of multiple analytes using 3D printed microfluidic channels.R. Soc. Open Sci.202411123116810.1098/rsos.23116838234445
    [Google Scholar]
  237. MaverT. MastnakT. MiheličM. MaverU. FinšgarM. Clindamycin-based 3D-printed and electrospun coatings for treatment of implant-related infections.Materials2021146146410.3390/ma1406146433802712
    [Google Scholar]
  238. KhanS.B. IrfanS. LamS.S. SunX. ChenS. 3D printed nanofiltration membrane technology for waste water distillation.J. Water Process Eng.20224910295810.1016/j.jwpe.2022.102958
    [Google Scholar]
  239. WangY. GeninaN. MüllertzA. RantanenJ. Coating of primary powder particles improves the quality of binder jetting 3D printed oral solid products.J. Pharm. Sci.2023112250651210.1016/j.xphs.2022.08.03036030845
    [Google Scholar]
  240. SträhleU.T. PützN. HannigM. A coating machine for coating filaments with bioactive nanomaterials for extrusion 3D printing.Heliyon20241012e3322310.1016/j.heliyon.2024.e3322339027443
    [Google Scholar]
  241. dos SantosJ. de OliveiraR.S. de OliveiraT.V. 3D printing and nanotechnology: A multiscale alliance in personalized medicine.Adv. Funct. Mater.20213116200969110.1002/adfm.202009691
    [Google Scholar]
  242. DebnathS.K. DebnathM. SrivastavaR. OmriA. Intervention of 3D printing in health care: Transformation for sustainable development.Expert Opin. Drug Deliv.202118111659167210.1080/17425247.2021.198128734520310
    [Google Scholar]
  243. RojasF. CundiffG.W. Urogynecology and reconstructive pelvic surgery.In: Review of Gynecology and Obstetrics.2007109
    [Google Scholar]
  244. TemesgenZ BaddourLM RizzaSA A rational approach to clinical infectious diseases: A manual for house officers and other non-infectious diseases clinicians.2020
    [Google Scholar]
  245. CorduasF. MathewE. McGlynnR. MariottiD. LamprouD.A. MancusoE. Melt-extrusion 3D printing of resorbable levofloxacin-loaded meshes: Emerging strategy for urogynaecological applications.Mater. Sci. Eng. C202113111252310.1016/j.msec.2021.11252334857302
    [Google Scholar]
  246. FangD. PanH. CuiM. Fabrication of three-dimensional-printed ofloxacin gastric floating sustained-release tablets with different structures.J. Drug Deliv. Sci. Technol.20226710299210.1016/j.jddst.2021.102992
    [Google Scholar]
  247. Domínguez-RoblesJ. MancinelliC. MancusoE. 3D printing of drug-loaded thermoplastic polyurethane meshes: A potential material for soft tissue reinforcement in vaginal surgery.Pharmaceutics20201216310.3390/pharmaceutics1201006331941047
    [Google Scholar]
  248. AminR. KnowltonS. HartA. 3D-printed microfluidic devices.Biofabrication20168202200110.1088/1758‑5090/8/2/02200127321137
    [Google Scholar]
  249. ChenX. GaoC. JiangJ. WuY. ZhuP. ChenG. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.Biomed. Mater.201914606500310.1088/1748‑605X/ab388d31382255
    [Google Scholar]
  250. LeeJ.H. ParkJ.K. SonK.H. LeeJ.W. PCL/Sodium-alginate based 3D-printed dual drug delivery system with antibacterial activity for osteomyelitis therapy.Gels20228316310.3390/gels803016335323276
    [Google Scholar]
  251. Guarch-PérezC. ShaqourB. RioolM. 3D-printed gentamicin-releasing poly-ε-caprolactone composite prevents fracture-related Staphylococcus aureus infection in mice.Pharmaceutics2022147136310.3390/pharmaceutics1407136335890261
    [Google Scholar]
  252. Martínez-PérezD. Guarch-PérezC. PurbayantoM.A.K. ChoińskaE. RioolM. ZaatS.A.J. 3D-printed dual drug delivery nanoparticle-loaded hydrogels to combat antibiotic-resistant bacteria.Int J Bioprinting20239
    [Google Scholar]
  253. MirhajM. VarshosazJ. LabbafS. EmadiR. Marcus SeifalianA. SharifianjaziF. An antibacterial Multi-Layered scaffold fabricated by 3D printing and electrospinning methodologies for skin tissue regeneration.Int. J. Pharm.202364512335710.1016/j.ijpharm.2023.12335737647978
    [Google Scholar]
  254. ErkusH. BedirT. KayaE. Innovative transdermal drug delivery system based on amoxicillin-loaded gelatin methacryloyl microneedles obtained by 3D printing.Materialia20232710170010.1016/j.mtla.2023.101700
    [Google Scholar]
  255. Fernandez-VelayosS. VergaraG. OlmosJ.M. 3D printed monoliths: From powder to an efficient catalyst for antibiotic degradation.Sci. Total Environ.202490616737610.1016/j.scitotenv.2023.16737637758129
    [Google Scholar]
  256. Ke re mu A, Liang Z, Chen L, Tu xun A, A bu li ke mu M, Wu Y. 3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for treatment of infected bone defects.Biomed. Pharmacother.202417211622810.1016/j.biopha.2024.11622838320333
    [Google Scholar]
  257. SukhumK.V. NewcomerE.P. CassC. Antibiotic-resistant organisms establish reservoirs in new hospital built environments and are related to patient blood infection isolates.Commun. Med.2022216210.1038/s43856‑022‑00124‑535664456
    [Google Scholar]
  258. PillingerM. WeberB. StandenB. SchmidM.C. KesselringJ.C. Multi-strain probiotics show increased protection of intestinal epithelial cells against pathogens in rainbow trout (Oncorhynchus mykiss).Aquaculture202256073848710.1016/j.aquaculture.2022.738487
    [Google Scholar]
  259. DemirkesenI. OzkayaB. Recent strategies for tackling the problems in gluten-free diet and products.Crit. Rev. Food Sci. Nutr.202262357159710.1080/10408398.2020.182381432981341
    [Google Scholar]
  260. KudluC. Brand Kerala: Commodification of Open-Source Ayurveda.2013
  261. RohdeJ. Ten Lessons From a Career in Global Health: Guidance to Those Considering a Life Working With the Poor Countries of the World202210.1093/acrefore/9780190632366.013.446
    [Google Scholar]
  262. PloylearmsangC. SomboonC. NamdeeU. SuttiruksaS. Managing health care needs of the elderly through an elderly care manager: Thailand.F1000 Res.20221168010.12688/f1000research.122555.139281328
    [Google Scholar]
  263. MigitaN. Regulatory Programs to Foster Medical Product Development: User Experience in the United States and Japan.2022
    [Google Scholar]
  264. AbedO.A. AttlassyY. XuJ. HanK. MoonJ.J. Emerging nanotechnologies and microbiome engineering for the treatment of inflammatory bowel disease.Mol. Pharm.202219124393441010.1021/acs.molpharmaceut.2c0022235878420
    [Google Scholar]
  265. HanR. XiaoY. BaiQ. ChoiC.H.J. Self-therapeutic metal-based nanoparticles for treating inflammatory diseases.Acta Pharm. Sin. B20231351847186510.1016/j.apsb.2022.07.00937250153
    [Google Scholar]
  266. CopeH. WillisC.R.G. MacKayM.J. Routine omics collection is a golden opportunity for European human research in space and analog environments.Patterns202231010055010.1016/j.patter.2022.10055036277820
    [Google Scholar]
  267. JiangB. JiX. LyuZ.Q. Detection of two copies of a bla NDM-1-encoding plasmid in Escherichia coli isolates from a pediatric patient with diarrhea.Infect. Drug Resist.20221522323210.2147/IDR.S34611135115791
    [Google Scholar]
  268. BindaynaK.M. JojiR.M. EzzatH. JahramiH.A. Antibiotic-resistance genes in E. coli strains in GCC countries: A meta-analysis.Saudi J. Med. Med. Sci.202210111110.4103/sjmms.sjmms_638_2135283714
    [Google Scholar]
  269. FallahF. TaherpourA. HashemiA. Global spread of New Delhi metallo-beta-lactamase-1 (NDM-1).Arch. Clin. Infect. Dis.20116171177
    [Google Scholar]
  270. da SilvaK.E. TanmoyA.M. PragasamA.K. The international and intercontinental spread and expansion of antimicrobial-resistant Salmonella typhi: A genomic epidemiology study.Lancet Microbe202238e567e57710.1016/S2666‑5247(22)00093‑335750070
    [Google Scholar]
  271. PavliA. MaltezouH.C. Travel vaccines throughout history.Travel Med. Infect. Dis.20224610227810.1016/j.tmaid.2022.10227835167951
    [Google Scholar]
  272. IkhimiukorO.O. OdihE.E. Donado-GodoyP. OkekeI.N. A bottom-up view of antimicrobial resistance transmission in developing countries.Nat. Microbiol.20227675776510.1038/s41564‑022‑01124‑w35637328
    [Google Scholar]
  273. PapadimouD. MalmqvistE. AncillottiM. Socio-cultural determinants of antibiotic resistance: A qualitative study of Greeks’ attitudes, perceptions and values.BMC Public Health2022221143910.1186/s12889‑022‑13855‑w35902816
    [Google Scholar]
  274. NunanC. Ending routine farm antibiotic use in Europe.In: Achieving responsible farm antibiotic use through improving animal health and welfare in pig and poultry production. 2022
    [Google Scholar]
  275. MondainV. ReturN. BertrandB. Lieutier-ColasF. CarencoP. DiamantisS. Advocacy for responsible antibiotic production and use.Antibiotics202211798010.3390/antibiotics1107098035884234
    [Google Scholar]
  276. BienenstockE.J. Operationalizing Social Science for National Security.2022231
    [Google Scholar]
  277. LimayeD. LimayeV. KrauseG. FortwengelG. A systematic review of the literature to assess self-medication practices.Ann. Med. Health Sci. Res.201771115
    [Google Scholar]
  278. McGettiganP. RoderickP. KadamA. PollockA.M. Threats to global antimicrobial resistance control: Centrally approved and unapproved antibiotic formulations sold in India.Br. J. Clin. Pharmacol.2019851597010.1111/bcp.1350329397576
    [Google Scholar]
  279. LexchinJ. Drug promotion in India since 2000: Problems remain.Int. J. Health Serv.202151339240310.1177/002073142093210932538245
    [Google Scholar]
  280. MirandaM.R.H. DubeyA. RaviG.S. CharyuluR.N. Fixed-dose combinations banned in India: Is it the right decision? An eye-opening review.Expert Opin. Drug Saf.2019181097798510.1080/14740338.2019.165129231374180
    [Google Scholar]
  281. LaxminarayanR. DuseA. WattalC. Antibiotic resistance—the need for global solutions.Lancet Infect. Dis.201313121057109810.1016/S1473‑3099(13)70318‑924252483
    [Google Scholar]
  282. SpellbergB. BlaserM. GuidosR.J. Combating antimicrobial resistance: Policy recommendations to save lives.Clin. Infect. Dis.201152Suppl 5S397S42821474585
    [Google Scholar]
  283. RanaA.S. IslamM.S. SaikotF.K. LuoW. Probiotic screening and growth kinetics of Lactobacillus isolated from Channa punctata intestine.North Am Acad Res J2021411122810.5281/zenodo.5651197
    [Google Scholar]
  284. Amábile-CuevasC.F. Antibiotic resistance: From Darwin to Lederberg to Keynes.Microb. Drug Resist.2013192738710.1089/mdr.2012.011523046150
    [Google Scholar]
  285. DuvalR.E. GrareM. DemoréB. Fight against antimicrobial resistance: We always need new antibacterials but for right bacteria.Molecules20192417315210.3390/molecules2417315231470632
    [Google Scholar]
  286. TheronG. JenkinsH.E. CobelensF. Data for action: Collection and use of local data to end tuberculosis.Lancet2015386100102324233310.1016/S0140‑6736(15)00321‑926515676
    [Google Scholar]
  287. FriedeA. ReidJ.A. OryH.W. CDC WONDER: A comprehensive on-line public health information system of the Centers for Disease Control and Prevention.Am. J. Public Health19938391289129410.2105/AJPH.83.9.12898395776
    [Google Scholar]
  288. LlorC. BjerrumL. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem.Ther. Adv. Drug Saf.20145622924110.1177/204209861455491925436105
    [Google Scholar]
  289. JangT.H. WuS. KirznerD. Focus group study of hand hygiene practice among healthcare workers in a teaching hospital in Toronto, Canada.Infect. Control Hosp. Epidemiol.201031214415010.1086/64979220017635
    [Google Scholar]
  290. KhanH.A. BaigF.K. MehboobR. Nosocomial infections: Epidemiology, prevention, control and surveillance.Asian Pac. J. Trop. Biomed.20177547848210.1016/j.apjtb.2017.01.019
    [Google Scholar]
  291. ChakrabartyA. DasU.S. Universal health database in India: Emergence, feasibility and multiplier effects.Soft Computing Applications and Techniques in Healthcare.1st ed.20202153410.1201/9781003003496‑11
    [Google Scholar]
  292. GrooA.C. MatouguiN. UmerskaA. SaulnierP. Reverse micelle-lipid nanocapsules: A novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide.Int. J. Nanomedicine2018137565757410.2147/IJN.S18004030532539
    [Google Scholar]
  293. VentolaCL The antibiotic resistance crisis: Part 2: Management strategies and new agents.20154053445225987823
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128365632250524160128
Loading
/content/journals/cpd/10.2174/0113816128365632250524160128
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test